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Bayesian Decision Trees provide a probabilistic framework that reduces the instability of
Decision Trees while maintaining their explainability. While Markov Chain Monte Carlo
methods are typically used to construct Bayesian Decision Trees, here we provide a
deterministic Bayesian Decision Tree algorithm that eliminates the sampling and does not
require a pruning step. This algorithm generates the greedy-modal tree (GMT) which is
applicable to both regression and classification problems. We tested the algorithm on
various benchmark classification data sets and obtained similar accuracies to other known
techniques. Furthermore, we show that we can statistically analyze how was the GMT
derived from the data and demonstrate this analysis with a financial example. Notably, the
GMT allows for a technique that provides explainable simpler models which is often a
prerequisite for applications in finance or the medical industry.
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1 INTRODUCTION

The success of machine learning techniques applied to financial and medical problems can be encumbered
by the inherent noise in the data.When the noise is not properly considered, there is a risk to overfit the data
generating unnecessarily complexmodels thatmay lead to incorrect interpretations. Thus, there has been lot
of efforts aimed at increasing model interpretability in machine learning applications [1–5].

Decision Trees (DT) are popular machine learning models applied to both classification and
regression tasks with known training algorithms such as CART [6], C4.5 [7], and boosted trees [8].
With fewer nodes than other node-based models, DT are considered an explainable model. In
addition, the tree structure can return the output with considerably fewer computations than other
more complex models. However, as discussed by Linero in [9], greedely constructed trees are
unstable. To improve the stability, new algorithms utilize tree ensembles such as bagging trees [10],
Random Forests (RF) [11], and XGBoost (XG) [12]. But increasing the number of trees also increases
the number of nodes and therefore the complexity of the model.

The Bayesian approach was introduced to solve the DT instability issue while producing a single tree
model that accounts for the noise in the data. The first techniques, also known as BayesianDecision Trees,
were introduced in [13], BCART [14, 15], and BART [16]. The former article proposed a deterministic
algorithm while the other three are based on Markov Chain Monte Carlo convergence. Some recent
studies have improved upon these algorithms, for review see [9], and include a detailed interpretability
analysis of themodel, [17].Whilemost of the Bayesianwork is based onMarkov Chain convergence, here
we take a deterministic approach that: 1) considers the noise in the data, 2) generates less complexmodels
measured in terms of the number of nodes, and 3) provides a statistical framework to understand how the
model is constructed.

The proposed algorithm departs from [13], introduces the trivial partition to avoid the pruning
step, and generalizes the approach to employ any conjugate prior. Although this approach is
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Bayesian, given the input data andmodel parameters the resulting
tree is deterministic. Since it is deterministic, one can easily
analyze the statistical reasons behind the choice of each node.
We start with an overview of the Bayesian Decision Trees in
Section 2. Section 3 describes the building block of our
algorithm, namely the partition probability space, and provides
the algorithms to construct the greedy-modal tree (GMT).
Section 4 benchmarks the GMT vs. common techniques
showing that the GMT works well for various publicly
available data sets. Finally, a trading example is discussed in
Section 5 followed by some conclusive remarks in Section 6.

2 BAYESIAN DECISION TREES OVERVIEW

A Decision Tree is a directed acyclic graph. All its nodes have a
parent node except the root node, the only one that has no parent.
The level ℓ ∈ N0 of a node is the number of ancestors of the node,
starting from 0 at the root node. We classify the nodes as either
sprouts or leaves. While sprouts point to two other child nodes in the
case of binary trees, leaves are terminal nodes containing the model
information. Each sprout contains a rule used to choose one of its
children. To query the tree, we start at the root node and apply the
rules to an input to select the child nodes until we reach a leaf.

We can use Decision Trees to partition Rd and assign an
output to each subset of the partition. In this work, we restrict
ourselves to finite partitions of Rd . Each leaf of the tree will
correspond to one of the subsets of the partition, one-to-one and
onto. Our approach of Decision Trees departs from the Bayesian
Decision Tree framework which provides a marginal likelihood to
a Decision Tree based on some input data. Let’s define the input
data asD � [(xi, yi)]ni�1 with n independent observations. A point
x � (x1, . . . , xd) in Rd contains the features of each observation
whose outcome y is randomly sampled from a random field Yx .
The Bayesian Decision Tree assumes the distribution of Yx is
constant at each leaf. Given x, the tree will return the posterior
distribution of the parameters θ generating Y within the leaf x
belongs to. In practice, the distribution of Y will determine the
type of problem we are solving: a discrete random variable
translates into a classification problem whereas a continuous
random variable translates into a regression problem.

The probability of such a Bayesian Decision Tree, namely T ,
can be computed with the usual Bayes approach,

p(T |D) � p(D|T )
p(D) p(T ), (1)

where p(T ) is the prior distribution over the tree space. To
compute the marginal likelihood p(D|T ), we consider the
partition D � {D1, . . . ,Dk} induced by T and take the product
of the marginal likelihoods at each leaf,

p(D|T ) � ∏k
j�1

L(Dj) � ∏k
j�1

∫
Θ

p(Dj

∣∣∣∣θ)p(θ)dθ (2)

The probability p(θ) from Eq. 2 is the prior distribution of the
parameters θ. In this article, we will assume for simplicity that

p(θ) is independent of T although this is not a requirement. The
purpose of p(θ) is therefore two-fold:

- To obtain the tree probability from Eq. 1,
- To compute the posterior distribution of the parameters
generating Y at each leaf.

Figure 1 shows a Bayesian Decision Tree that partitions R2

into [(−∞, 5) × (−∞,∞), (5,∞) × (−∞, 2.5), (5,∞) ×
(2.5,∞)] and the corresponding posterior distributions Beta
(1, 5), Beta (3, 1), and Beta (1, 3). More information about
conjugate priors and marginal likelihoods can be found in [18].

In an attempt to build explainable Bayesian Decision Trees, we
define a greedy construction that does not apply Markov Chain
Monte Carlo. This construction balances the greedy approach
from [6] with the Bayesian approach discussed in [9, 14–17]. For
this, we compute the probability of each split at every node and
choose the modal split. This results in a model that performs well
with different data sets as shown in Section 4.

3 FROM THE PARTITION PROBABILITY
SPACE TO BAYESIAN DECISION TREES

The building block of the GMT algorithm is the partition
probability space. For this space, we only consider binary
partitions of the form Sr,h �
{{x ∈ Rd such that xr ≤ h}, {x ∈ Rd such that xr > h}} where
r ∈ {1, . . . , d}, h ∈ R∖{xr1, . . . , xrn}. Any partition of this form
will induce a partition {D1,D2} of D. Note that any of these
two subsets are allowed to be the empty set. Finally, for each
dimension we identify all partitions that result in the same non-
empty D1 and D2. All partitions that leave D1 or D2 empty are
also identified as the trivial partition S0. After identification, we

will have 1 + ∑d
r�1

(nr − 1) different partitions S, nr tbeing the

number of different features along dimension r. Following the
minimum margin classifier idea, the partition representative
location h will be placed at the mid-point between contiguous
different features in a dimension.

FIGURE 1 | Example of a Bayesian Decision Tree for a 2-categories
example in R2. On the left: the data set is displayed three times. The first layer
corresponds to the data set before any split. The second layer displays the
two sets resulting from splitting along dimension 1. The third layer is an
additional split of the right subset along dimension 2. The final leaves are
displayed in orange. On the right: equivalent tree with posterior distributions
for probability of being red assuming a Beta (1,1) prior distribution. The
marginal likelihood of the tree is p(D|T ) � B(1, 5)B(3, 1)B(1, 3)/B(1,1)3,
where B is the Beta function.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org March 2021 | Volume 7 | Article 5988332

Nuti et al. Bayesian Decision Trees

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


The partition probability space is the finite probability space
defined by partitions S and their probabilities p(S|D). These
probabilities can be computed using Eqs 1, 2when replacing T by
S. In practice, we will work with ln[p(D|S)p(S)] which are the
log-probabilities from Eq. 1 omitting the constant normalizing
factor p(D):

ln[p(D|S)p(S)] � ln[p(S|D)] + ln[p(D)] (3)

We will also need the feature sorted indices of the input features
for computation and visualization purposes, namely i1, . . . , in such
that xrirj ≤ x

r
irj+1

for all r � 1, . . . , d and j � 1, . . . , n − 1. An example
of the split probability space is shown in Figure 2. In this example,
the inputs x live in R2 and the outcomes are drawn from a
Bernoulli random variable. The points x are generated from

two independent Gaussian distributions equally likely, i.e. we
drew from each distribution with probability 0.5. The first
distribution is a multivariate Gaussian with mean (−1,−1)t and
covariance 2I. Points sampled from this distribution have a
probability of 0.25 of being green. The second distribution is
another multivariate Gaussian with mean (1, 3)t and covariance
0.5I. In this case, the probability of being green is 0.75. Because the
mean of these Gaussian distributions are further apart along the x2

axis, the most probable partitions given the data are found along
this dimension.

Each partition S can be encoded into a tree node N : if the
partition is s0, the node becomes a leaf and stores the posterior
hyper-parameters of θ; for any other Sr,h, the node becomes a
sprout and stores the values r and h. Among all partitions, the

FIGURE 2 | Example of a data set whose outcomes are either green or red. The location of the points is sampled from a mixture of two Gaussian distributions with
equal probability. One distribution draws outcomes from a Bernoulli distribution with probability 0.25, while the other from a Bernoulli with probability 0.75. On the left:
log-probabilities of all possible non-trivial partitions given the data set. On the right: actual probability of a point being green and modal splits along each dimension.
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mode and its node are of particular interest. Algorithm 1 returns
the modal node in the general case. For the classification problem, we
also provide Algorithm 2 withO(dn) cost assuming p(θ) follows a
Dirichlet conjugate prior. Both algorithms start by computing
ln[p(D|S0)p(S0)] and initializing N to be a leaf. Then, they loop
through each dimension and the sorted features to verify whether
there exists a new node with higher log-probability. Because the
features are sorted, there is at most one observation that moves from
D2 to D1 when j increases by one.

With the partition space and modal node defined, we can
introduce the GMT construction. We start by finding the modal
nodeN for our initial data setD. This node is the root of the tree
and will be returned by the train method inAlgorithm 3. IfN is a
leaf, the GMT is completed. Otherwise, we splitD intoD1 andD2

according toN . We repeat the process for the new input data sets
D1 andD2, and linkN 1 andN 2 to their parentN . The recursion
is defined in the grow_tree method from Algorithm 3. Note that
Algorithms 1 and 2 are just two implementations of
find_modal_node, but one can replace this method by any
other that returns the desired node based on the partition
space. In addition, one can easily compute ln[p(D|T )] for the
GMT by adding the leaves’ ln[L(Dj)] calculated in Algorithm 1
line 2, or Algorithm 2 line 2. In practice, we realized that the
GMTmarginal log-likelihood ln[p(D|T )] tends to be the highest
when exploring for different possible roots.

The average cost ofAlgorithm 3 isO[c(n)ln(n)]where c(n) is
the cost of find_modal_node. If we choose find_modal_node to
be Algorithm 2, the average cost of Algorithm 3 becomes

O[dn ln(n)]. While Algorithms 1 and 2 only look at one
successor ahead, we could improve the greedy exploration by
looking at several levels ahead as suggested in [13]. Looking at m
levels ahead comes at the expense of increasing the order of c(n),
for instance c(n) � (dn)m in the case of Algorithm 2. Section 4
shows that the GMT constructed by looking at only one level
ahead performs well in practice.

4 BENCHMARK

4.1 Decision Trees, Random Forests,
XGBoost, and GMT
In this Section we use Algorithm 2 and 3 to construct the GMT.
We assume that the outcomes, 0 or 1, are drawn from Bernoulli
random variables. The prior distribution p(θ) is chosen to be the
Beta (10, 10) and each tree will return the expected probability of
drawing the outcome 0. The prior probabilities for each partition
will be p(S0) � 1 − 0.91+ℓ and p(Sr,h) � 0.91+ℓ/dnr , where ℓ is the
level and nr the number of non-trivial partitions along r. Note that
the denominator d in p(Sr,h) is implicitly assuming a uniform prior
distribution over the dimension space. One could also project the
probabilities on each dimension to visualize which features are
most informative. As an alternative to the suggested p(S), one can
use the partition margin weighted approach from [13].

The accuracy is measured as a percentage of the correct
predictions. Each prediction will simply be the highest
probability outcome. If there is a tie, we choose the category 0
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by default. We compare the GMT results to DT [6, 19], RF [11,
19], and XG [12]. For reproducibility purposes, we set all random
seeds to 0. In the case of RF, we enable bootstrapping to improve
its performance. We also fix the number of trees to five for RF and
XG. We provide the GMT Python module with integration into
scikit-learn in [20].

We test the GMT on a selection of data sets from the
University of California, Irvine (UCI) database [21]. We
compute the accuracy of the DT, RF, XG, and GMT with a
shuffled 10-fold cross validation.We do not perform any
parameter tuning and keep the same p(θ) and p(S) for all
examples. Accuracy is shown in Table 1 while training time
and node count in Table 2.

The results reveal some interesting properties of the GMT.
Noticeably, the GMT seems to perform well in general. In all
cases, the DT accuracy is lower than the RF accuracy. The only
case in which RF considerably outperforms the GMT is with the
EEG data set. One reasonmay be that some information is hidden
at the lower levels, i.e. feature correlation information that is hard
to extract by looking at only one level ahead. The accuracy
difference between GMT and RF indicates that these two
techniques may work well for different data sets. Interestingly,
the XG and GMT yield similar accuracies. Finally, in most cases
the GMT takes more time to train than the other three techniques
which is caused by the feature sorting overhead computation.
Notably, the node count in Table 2 shows that we successfully
managed to simplify the models while producing similar
accuracy. Note that for four of the seven data sets, the average
number of nodes is less than ten and produces slightly better
accuracies than RF. Ten nodes implies less than five sprouts in
average which can be easily analyzed by a human. This highlights
the importance of the priors p(S) and p(θ) to avoid a pruning
step. The strength of these two priors will determine how much
statistical evidence do we require from our data to produce a
meaningful split. In the following Section 5, we take a deeper look
and explain the reasons behind the GMT construction with a
finance application.

4.2 Bayesian Decision Trees and GMT
In this section we analyze the GMT on the Wisconsin breast-cancer
data set studied in [9, 14] which is available at the University of
California, Irvine (UCI) database [21]. Although this data set
contains 699 observations, we are going to use the 683 that are
complete. Each observation contains nine features and the outcome
classifies the tumor as benign or malignant. We test the GMT for
p(S0) � 1 − q1+ℓ , q ∈ {0.75, 0.8, 0.85, 0.90, 0.95, 0.97} and a
Dirichlet prior with parameters (α1, α2) ∈ {1, 2, 3, 4, 5, 10}2. For
each of the 216 parameter sets we perform a 10-fold cross
validation and plot the average accuracy in Figure 3. The results
display a lower average accuracy compared to the 98.4% for BCART
[14] with nine ormore leaves, and the 96.8% for BART [9].Whenwe
run the methods and parameters from Section 4.1 we obtain 95.3%
for DT, 95.8% for RF, and 95.5% for XG. We were unable to
compare the BCART and BART performance with the data sets
from Section 4.1 due to the lack of software.

5 TRADING EXAMPLE

We consider three stocks, A, B, and C, whose price follows a
multidimensional Ornstein-Uhlenbeck process, [22]. Using the

TABLE 1 | Accuracy of DT, RF, XG, and GMT for several data sets. We apply a
shuffled 10-fold cross validation to each test. Results are sorted by relative
performance, starting from hightest accuracy difference between GMT and RF.

Accuracy

d n DT
[6, 19]

RF
[11, 19]

XG
[12]

GMT GMT
− RF

Credit 23 30,000 72.5% 78.6% 82.0% 82.0% 3.4%
Diabetic 19 1,151 60.4% 63.1% 65.2% 65.3% 2.2%
Heart 20 270 72.6% 78.5% 80.4% 80.4% 1.9%
Seismic 18 2,584 87.8% 91.9% 93.0% 93.2% 1.3%
Haberman 3 306 59.8% 69.6% 69.9% 69.6% 0.0%
Gamma 10 19,020 81.7% 85.9% 86.2% 84.9% −1.0%
EEG 14 14,980 83.8% 88.1% 80.5% 79.8% −8.3%
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notation from [22], we can sample the prices by applying the
Euler’s discretization, Xt+Δt � μ + e−θΔt(Xt − μ) + G. We
assume that σ is a unitary matrix, therefore the random vector
G follows a normal distribution with mean 0 and covariance
(θ + θT )− 1[I − e−(θ+θ

T )Δt]. For this example, we set the
parameters to,

μ � ⎛⎜⎝ 100
110
105

⎞⎟⎠, θ � ⎛⎜⎝ 4 −1 0
0.4 2 0
0 0 0.2

⎞⎟⎠, Δt � 0.1. (4)

Our goal is to train the GMT to predict the best portfolio
configuration. Given that we have three stocks, we consider
the following eight buy/sell configurations: +A/−B/−C (buy
one stock A, sell one stock B, sell one stock C), −A/−B/−C,
−A/+B/−C, +A/+B/−C, −A/−B/+C,+A/−B/+C, -A/+B/+C,
+A/+B/+C. At each time step, we take the three stock
prices Xti as inputs. The outcome is defined as the
configuration that corresponds to the next price move, i.e.
sign(X1

ti+1 − X1
ti )A/sign(X2

ti+1 − X2
ti )B/sign(X3

ti+1 − X3
ti )C. For

example, if the prices are (100, 105, 110) at ti and
(110, 100, 120) at ti+1, the features are (100, 105, 110), the
outcome is +A − B + C, and the profit between ti and ti+1
for this portfolio is +(110 − 100) − (100 − 105) + (120 − 110).
Each portfolio configuration is identified to an integer from 0
to 7. We sample 10,000 time steps, train on the first 8,000
observations and test on the next 2,000.

We treat this problem as an eight class classification
problem. The GMT is trained with the p(S) from Section 4
and a Dirichlet conjugate prior p(θ) with hyper-parameters
(1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8). To benchmark the results,
we train a 10 × 10. nodes neural network using the
MLPClassifier from [19]. During the test phase, our
predictions will be the expected modal portfolio
configuration: if the input x returns the leaf posterior
hyper-parameters α*, we predict the portfolio
arg maxk {αpk/∑ αp}. The test results are shown in Figure 4.

The GMT we obtained by training on the first 8,000
observations has only four leaves: if the price of stock A is
below 99.96 and the price of stock B below 109.85, we choose
+ A + B − C; if the price of A is below 99.96 and the price of B
above 109.85, we choose + A-B-C; if the price of A is above 99.96
and the price of B below 110.14, we choose −A + B − C; and if the
price of A is above 99.96 and the price of B above 110.14, we

choose −A − B + C. Although the mean reversion for stock C is
not captured in this model, we successfully recovered simple rules
to trade the mean reversion of A and B. Since the price of C is
more volatile by Eq. 4, the current price of C is not enough to
recover the mean reversion decision logic. Some filtering of the
price of C would allow to capture its mean reversion. In the neural
network case, the over-parametrization makes it difficult to
recover this simple model.

The deterministic nature of Algorithm 3 provides a
practical framework to explain how was the GMT
constructed. We look at each of the nodes to understand
how were the modal nodes chosen. The resulting GMT model
contains three sprouts—node 0, node 1, node 2—and four
leaves—node 3, node 4, node 5, node 6. Figure 5 shows the log-
probability 3) of splitting our data-set at a particular price by stock
for the three sprouts. At the root level, node 0, we consider the
whole data set. In this case, one can increase the GMT likelihood the
most by choosing S0,99.96, i.e., splitting the data according to Stock
A’s price at 99.96. After this node becomes a sprout, the input data is
split into two subsets of sizes 3,640 (inputs with Stock A’s price
below 99.96), and 4,360 (inputs with Stock A’s price above 99.96).

TABLE 2 | Training time in milliseconds and average node count per fold. The node count includes the number of leaves.

Train time (ms) Node count

DT [6, 19] RF [11, 19] XG GMT DT [6, 19] RF [11, 19] XG GMT

Credit 569.5 334.7 133.6 1,044.2 8,505.2 3,898.9 579.6 43.4
Diabetic 8.7 10.1 15.2 26.8 399.2 182.3 329.6 7.0
Heart 1.4 4.8 20.1 13.2 83.4 44.7 179.6 9.2
Seismic 10.5 11.7 20.5 18.5 410.2 177.7 304.6 6.4
Haberman 1.0 4.1 15.6 1.4 179.8 66.3 194.0 3.2
Gamma 245.2 232.2 92.2 519.1 3,564.0 1,514.9 551.6 111.4
EEG 123.4 101.2 117.9 550.8 2,553.4 1,374.7 472.8 203.4

FIGURE 3 | Average accuracy vs. average number of leaves for each
GMT parameter set applied to the Wisonson breast-cancer data. The color
indicates which parameter q ∈ {0.75, 0.8,0.85, 0.90, 0.95, 0.97} was chosen.
We include a quadratic regression of the results.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org March 2021 | Volume 7 | Article 5988336

Nuti et al. Bayesian Decision Trees

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


These two subsets’ partition log-probabilities are then shown in node
one and node two plots respectively. By looking at the two figures, we
conclude we can maximize the log-probability by splitting at Stock’s
B price 109.85 for node 1, and at Stock’s B price 110.14 for node 2.
The black horizontal line in each figure marks the log-probability of
S0, i.e.. the stopping condition. When any possible split log-
probability is below this line, the node is chosen to be a leaf, as it
happens in this example for nodes 3, 4, 5, and 6. Finally, note that by
symmetry, the blue, orange, and green lines should look periodic
because the extreme splits only separate one input point from the
data set. In addition, the green line looks convex which indicates it is
better not to split the data based on Stock C’s price.

6 DISCUSSION AND FUTURE WORK

The proposed GMT is a deterministic Bayesian Decision Tree that
reduces the training time by avoiding any Markov Chain Monte

Carlo sampling or a pruning step. The GMT numerical example
results show similar accuracies to other known techniques. This
approach may be most useful where the ability to explain the
model is a requirement. Hence, the advantages of the GMT are
that it can be easily understood. Furthermore, the ability to specify
p(θ) and p(S) may be particularly suitable to noisy problems.
However, it is not clear whether the hyper-parameters used in the
examples are optimal for each data set. Future work will explore
the sensitivity and parameter tuning for different prior
distributions. It still remains to find a more efficient
deterministic way to explore meaningful trees like Markov
Chain Monte Carlo based Bayesian Decision Trees do.

As an extension, we would like to assess the performance of this
algorithm on regression problems and experiment with larger
partition spaces such as the SVM hyperplanes. Another
computational advantage not explored is parallelization, which
would allow for a more exhaustive exploration of the tree
probability space from Eq. 1.

FIGURE 4 | From top to bottom, left to right: Simulated stock prices, test period PnL (Profit and Loss) for the GMT, test period PnL for the neural network, confusion
matrix for the GMT, and confusion matrix for the neural network. The PnL is the cumulative profit achieved when the predicted portfolios are executed. The costs are
omitted for simplicity.
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