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The mechanical contraction of the pumping heart is driven by electrical excitation waves
running across the heart muscle due to the excitable electrophysiology of heart cells. With
cardiac arrhythmias these waves turn into stable or chaotic spiral waves (also called rotors)
whose observation in the heart is very challenging. While mechanical motion can be
measured in 3D using ultrasound, electrical activity can (so far) not be measured directly
within the muscle and with limited resolution on the heart surface, only. To bridge the gap
between measurable and not measurable quantities we use two approaches from
machine learning, echo state networks and convolutional autoencoders, to solve two
relevant data modelling tasks in cardiac dynamics: Recovering excitation patterns from
noisy, blurred or undersampled observations and reconstructing complex electrical
excitation waves from mechanical deformation. For the synthetic data sets used to
evaluate both methods we obtained satisfying solutions with echo state networks and
good results with convolutional autoencoders, both clearly indicating that the data
reconstruction tasks can in principle be solved by means of machine learning.

Keywords: reservoir computing, convolutional autoencoder, image enhancement, cross-prediction, cardiac
arrhythmias, excitable media, electro-mechanical coupling, cardiac imaging

1 INTRODUCTION

Cardiac arrhythmias, such as ventricular or atrial fibrillation, are electro-mechanical dysfunctions of
the heart that are associated with complex, chaotic spatio-temporal excitation waves within the heart
muscle resulting in incoherent mechanical contraction and a significant loss of pump function [1–3].
Ventricular fibrillation (VF) is the most common deadly manifestation of a cardiac arrhythmia and
requires immediate defibrillation using high-energy electric shocks. Atrial fibrillation (AF) is the most
common form of a cardiac arrhythmia, affecting 33 million patients worldwide [62]. While not
immediately life-threatening, AF is considered to be responsible for 15% of strokes if left untreated [63,
64]. The structural substrate and functional mechanisms that underlie the onset and perpetuation of
VF and AF are not fully understood. It is generally agreed that imaging of the cardiac electrical and
mechanical function is key to an improved mechanistic understanding of cardiac disease and the
development of novel diagnosis and therapy. This has motivated the development of non-invasive and
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invasive electrophysiological measurement and imaging
modalities. Electrical activity of the heart can (so far) non-
invasively be measured on its surface, only. Direct
measurements can be made in vivo inside the heart using so-
called basket catheters with typically 64 electrodes or in ex-vivo
experiments, where an extracted heart in a Langendorff perfusion
set-up is kept beating and the cell membrane voltage on the
epicardial surface is made visible using fluorescent dyes (a
method also known as optical mapping) [4]. A method for
indirect observation of electrical excitation waves is ECG
imaging where an array of EEG-electrodes is placed on the
body surface and an (ill-posed) inverse problem is solved to
estimate the potential on the surface of the heart. Mechanical
contraction and deformation of the heart tissue can be studied in
full 3D using ultrasound, in 2D using real-time MRT [5] or (using
optical mapping) by motion tracking in Langendorff experiments.

The reconstruction of patterns of action potential wave
propagation in cardiac tissue from ultrasound has been
introduced by Otani et al. [6, 7]. They proposed to use
ultrasound to visualize the propagation of these waves through
the mechanical deformations they induce and to reconstruct
action potential-induced active stress from the deformation.
Provost et al. [8] introduced electromechanical wave imaging to
map the mechanical deformation of cardiac tissue at high temporal
and spatial resolutions. The observed deformations resulting from
the electrical activation were found to be closely correlated with
electrical activation sequences. The cardiac excitation-contraction-
coupling (ECC) [9] has also been studied in optical mapping
experiments in Langendorff-perfused isolated hearts [10–12].
Using electromechanical optical mapping [12], it was shown that
during ventricular tachyarrhythmias electrical rotors introduce
corresponding rotating mechanical waves. These co-existing
electro-mechanical rotors were observed on the epicardial surface
of isolated Langendorff-perfused intact pig and rabbit hearts using
optical mapping [13]. Using high-resolution ultrasound, these
mechanical rotors were also observed inside the ventricular wall
during ventricular tachycardia and fibrillation [13].

All these measurement modalities are limited, in particular
those suitable for in vivo applications. Measurements with basket
catheters are effectively undersampling the spatio-temporal wave
pattern. Inverse ECGs suffer from ill-posedness and require
regularization that may lead to loss of spatial resolution and
blurring. Limited spatial resolution is also an issue with
ultrasound measurements, but they are currently the only way
to “look inside” the heart, albeit measuring only mechanical
motion. Electrical excitation waves inside the heart muscle are
so far not accessible by any measurement modality available.

These limitations motivated the search for algorithms to
reconstruct electro-mechanical wave dynamics in cardiac tissue
from measurable quantities. Berg et al. [14] devised

synchronization-based system identification of extended excitable
media, in which model parameters are estimated by minimizing the
synchronization error. Using this approach, Lebert and Christoph
[15] demonstrated that electro-mechanic wave dynamics of
excitable-deformable media can be recovered from a limited set
of observables using a synchronization-based data assimilation
approach. Hoffman et al. reconstructed electrical wave dynamics
using ensemble Kalman filters [16, 17]. In another approach, it was
shown that echo state networks [18] and deep convolutional neural
networks [19, 20] provide excellent cross estimation results for
different variables of a mathematical model describing complex
electrical excitation waves during cardiac arrhythmias. Following
this approach, Christoph and Lebert [21] demonstrated the
reconstruction of electrical excitation and active stress from
deformation using a simulated deformable excitable medium. To
continue this research and to address the general challenge of
missing or impaired observations we consider in this article two
tasks: (i) recovering electrical excitation patterns from noisy, blurred
or undersampled observations and (ii) reconstructing electrical
excitation waves from mechanical deformation. To solve the
corresponding data processing and cross-prediction tasks two
machine learning methods are employed and evaluated: echo
state networks and convolutional autoencoders. Both algorithms
are applied to synthetical data generated by prototypical models for
electrophysiology and electromechanical coupling.

2 METHODS

In this section we will first introduce in Sections 2.1 and 2.2 the
mathematicalmodels describing cardiac dynamics whichwere used to
generate the example data for the two tasks to be solved: (i) recovering
electrical wave pattern from impaired observations and (ii) cross-
predicting electrical excitation frommechanical deformation. Then in
Section 2.3 both machine learning methods used for solving these
tasks, echo state networks (Section 2.3.1) and convolutional
autoencoders (Section 2.3.2), will be briefly introduced.

2.1 Recovering Complex Spatio-Temporal
Wave Patterns From Impaired Observations
For motivating, illustrating, and evaluating the employed
methods for dealing with incomplete or distorted observations
we shall use spatio-temporal time series generated with the
Bueno-Orovio-Cherry-Fenton (BOCF) model [22] describing
complex electrical excitation patterns in the heart during
cardiac arrhythmias. The BOCF model is a set of partial
differential equations (PDEs) with four variables and will be
introduced in Section 2.1.1. In Section 2.1.2 a formal description
of the data recovery tasks will be given.

TABLE 1 | TNNP model parameter values for the BOCF model [22].

uo 0 τ−v2 1150 τ fi 0.11 τs1 2.7342 τs2 3 τo1 6 τo2 6
uu 1.58 τ+v 1.4506 τ−w1 70 τ−w2 20 τso1 43 τso2 0.2 τsi 2.8723
θv 0.3 τw∞ 0.07 τ−v1 60 τ+w 280 ks 2.0994 w*

∞ 0.94 θw 0.015
us 0.9087 θ−v 0.015 k−w 65 θo 0.006 u−w 0.03 kso 2 uso 0.65
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2.1.1 Bueno–Orovio–Cherry–Fenton Model
Cardiac dynamics is controlled by electrical excitation waves
triggering mechanical contractions of the heart. In the case
of cardiac arrhythmias like lethal ventricular fibrillation,
wave break-up and complex chaotic wave patterns occur
resulting in significantly reduced pump performance of the
heart. From the broad range of mathematical models
describing this spatio-temporal dynamics [23] we chose the
Bueno–Orovio–Cherry–Fenton (BOCF) model [22] to generate
spatio-temporal time series that are used as a benchmark to
validate our approaches for reconstructing complex wave
patterns in excitable media from incomplete data. The BOCF
model consists of four system variables whose evolution is given
by four (partial) differential equations

zu
zt

� D · ∇2u − (Jsi + Jfi + Jso)
zv
zt

� 1
τ−v

(1 − H(u − θv))(v∞ − v) − 1
τ+v

H(u − θv)v

zw
zt

� 1
τ−w

(1 − H(u − θw))(w∞ − w) − 1
τ+w

H(u − θw)w

zs
zt

� 1
2τs

((1 + tanh(ks(u − us))) − 2s).

(1)

The variable u represents the continuum limit representation
of the membrane voltage of cardiac cells and the variables v, w,

and s are gating variables controlling ionic transmembrane
currents Jsi, Jfi and Jso given by the equations

Jsi � − 1
τsi

H(u − θw)ws

Jfi � − 1
τfi

vH(u − θv)(u − θv)(uu − u)

Jso� 1
τo

(u − uo)(1 −H(u − θw)) + 1
τso

H(u − θw).

(2)

Here H(·) denotes the Heaviside function and the currents
depend on the following seven voltage controlled variables

τ−v � (1 − H(u − θ−v ))τ−v1 +H(u − θ−v )τ−v2
τ−w � τ−w1 +

1
2
(τ−w2 − τ−w1)(1 + tanh(k−w(u − u−

w)))
τ−so � τso1 + 1

2
(τso2 − τso1)(1 + tanh(kso(u − uso)))

τs � (1 − H(u − θw))τs1 + H(u − θw)τs2
τo � (1 −H(u − θo))τo1 + H(u − θo)τo2

v∞ � ⎧⎨⎩ 1, if u≤ θ−v
0, if u≥ θ−v

w∞ � (1 − H(u − θo))(1 − u
τw∞

) +H(u − θo)wp
∞.

(3)

FIGURE 1 | Snapshots of the four fields u, v, w, s of the BOCF model Eq. (1) (from left to right).

FIGURE2 | Snapshots of the three cases of impaired data based on u [from left to right: (A) reference data u, (B) noisy data, (C) blurred data, and (D) undersampled
data].
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For simulating the dynamics we used the set of parameters
given in Table 1 for which the BOCF model was found [22] to
exhibit excitation wave dynamics similar to the Ten
Tusscher–Noble–Noble–Panfilov (TNNP) model [24] describing
human heart tissue.

Typical snapshots of the four variables during a chaotic
evolution are shown in Figure 1. The spatio-temporal chaotic
dynamics of this system is actually transient chaos whose lifetime
grows exponentially with system size [25, 26]. To obtain chaotic
dynamics with a sufficiently long lifetime the system has been
simulated on a domain of 512 × 512 grid points with a grid
constant of Δx � 1.0 space units and a diffusion constantD � 0.2.
Furthermore, an explicit Euler stepping in time with Δt � 0.1, a 5
point approximation of the Laplace operator, and no-flux
boundary conditions were used for solving the PDEs.

2.1.2 Reconstruction Tasks
Experimental measurements of the dynamics of a system of interest
often allow only the observation of some state variables (e.g., the
membrane voltage) and may provide only incomplete or distorted
information about the measured observable. Typical limitations are
(additive) measurement noise and low-spatial resolution (due to the
experimental conditions and/or the available hardware). Formally,
measurements impaired due to noise, blurring or undersampling can
be described as follows: Let Xn ∈ Rr×c be the measured data (here:
snapshots of the field u) where r and c specify the two spatial
dimensions. Each sample Xn with n � 1, . . . ,N corresponds to a
true system output X′

n ∈ Rr ′×c′ that is assumed to be known only
during the training phase in terms of a training set
D � {Z1 � (X1,X′

1), . . . ,ZN � (XN ,X′
N )}. Note that with coarse

graining r ≤ r ′ and c≤ c′. The task is to predict the true system
output X′ from impaired observationsX which belong to one of the
following three cases:

1. Noisy data: To add noise each element of X′ is replaced with
probability p by 0 or 1 drawn from a Bernoulli distribution B(0.5)
(note that in our case X′ is given by the variable u of the BOCF
model which has a range of [0, 1]). To simulate different levels of
noise different probabilities p � 0.1, 0.2, . . . , 0.9 are used to
generate noisy data sets {Xn}. In the following p is called the
noise level.

2. Blurred data: Date with reduced spatial resolution are obtained
as Fourier low-pass filtered data X � F −1(Pm(F(X′))) where
F and F −1 denote the Fourier transform and its inverse,
respectively, and Pm is a projection where frequencies
outside a radius m ∈ [2, 4, 8, . . . , 18] (Manhattan distance)
centered at frequency zero are set to zero.

3. Undersampled data: To generate undersampled date X′ is
down-sampled Rr′×c′ →Rr×c with r < r′ and c< c′ by
accessing every 2i-th value of X′, where i ∈ [1, 7].

Figure 2 shows examples of the three types of impaired
observations.

2.2 Predicting Electrical Excitation From
Mechanical Contraction
To learn the relation between mechanical deformation and
electrical excitation inverse modelling data were generated by a
conceptual electro-mechanical model consisting of an
Aliev–Panfilov model describing the electrical activity and a
driven mass-spring-system [15].

2.2.1 Aliev–Panfilov Model
Specifically developed to mimic cardiac action potentials in the
myocardium, the Aliev–Panfilov model is a modification of the
FitzHugh–Nagumo model, which reproduces the characteristic
shape of electric pulses occurring in the heart [27]. It is given by a
set of two differential equations,

zu
zt

� ∇(D · ∇u) − ku(u − a)(u − 1) − uv (4)

FIGURE 3 | Two dimensional mass-spring damper system with one
active spring modelling fibre orientation (red) and one passive spring (gray), the
centre of mass xcm, the four points of attachment qi to the structural springs
and the orientation parameter η.

FIGURE 4 | Schematic representation of an ESN. On the left side
(colored in blue) is the input layer where the input signal u→n and a constant
bias bin are fed in. The reservoir is represented as the large circle in the middle,
where the small circles are the nodes. The output layer on the right
(colored in orange) provides the reservoir signals s

→
n that are part of the vector

x→n � [bout; s
→

n; u
→

n] used for computing the output y→n � Wout x
→

n.
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zv
zt

� ϵ(u, v) · ( − v − ku(u − b − 1))

ϵ(u, v) � ϵ0 + μ1v
μ2 + u

(5)

in which u and v are the normalized membrane voltage and the
recovery variable, respectively, and a, b and k are model
parameters. The term ∇(D · ∇u) accounts for the diffusion, in
which the tensor D can be used to model anisotropies in the
myocardial tissue. In addition, the term ϵ(u, v) is introduced to
adjust the shape of the restitution curve by modulating the
parameters μ1 and μ2. The computational advantage of the
Aliev–Panfilov model lies in its simplicity over other ion-flow-
based models which allows shorter runtimes and combined with
the elastomechanical model, keeps computational costs fairly
reasonable. For this reason, the Aliev–Panfilov model was
chosen for generating synthetic data from complex chaotic
electromechnical wave dynamics.

Within the heart muscle, the myocardium, cells contract upon
electrical excitation through a passing action potential. At this
point it is important to note that muscle fibre contracts along its
principal orientation which has to be considered during the
implementation of the mechanical part of the simulation. To
couple the mechanical contraction of the muscle fibre to electrical
excitation of a cell, as an extension to the Aliev–Panfilov model
the active stress Ta was introduced by Nash and Panfilov [28]
which leads to contraction in the principal orientation of the
muscle fibre. The change of the active stress is described by

zTa

zt
� ϵT(u) · (kTu − Ta) , (6)

where kT controls the strength of the build-up of active stress. The
term ϵT(u) regulates the influence of u on Ta for large u. In our
simulations we use a smooth function introduced by Göktepe and
Kuhl [29] given by

ϵT(u) � ϵT ,0 + (ϵ∞ − ϵT ,0) · exp( − exp( − ξT · (u − u0)) . (7)

Here, ξT controls the steepness of the transition between ϵ∞
and ϵT ,0 and u0 denotes the potential threshold for the activation
of the active stress, with ϵ∞ < ϵT ,0 to achieve a physiological time
course [30].

2.2.2 Mass-Spring Damper System
The elasto-mechanical properties of the cardiac muscle fibre were
implemented using a modified two-dimensional mass-spring
damper system [31]. For the current study the mass-spring
system was implemented in two dimensions because this
allows shorter runtimes and primarily serves as a proof-of-
principle for the evaluated reconstruction approach. In its
two-dimensional form this mechanical model might
correspond best to a cut-out of the atrium’s wall, since there
the muscle tissue is less than 4 mm thick. However, this mass-
spring system can easily be expanded to three dimensions
(see [15]).

FIGURE 5 | Stencil for locally sampling data used as input of the ESN
operating at the location of the dark blue pixel in the center. The stencil is
characterized by its width σ and the spatial separation Δσ of sampling points.

FIGURE 6 | Proposed autoencoder architecture for reconstruction of data from noisy or blurred input. Each block is a set of layers. The values written vertically
describe the dimension of the input for each layer, e.g., for noisy and blurred data r � 512, c � 512 and for the inverse modelling data r � 100, c � 100. The horizontally
written values at the layers are the number of channels or number of filters. Group 1 is an combination of layers, consisting of: Conv2D, BatchNormlization, LeakyReLU,
Conv2D, BatchNormlization and LeakyReLU layers. Group 2 is an extension of Group 1 where a MaxPooling2D and Dropout layer are placed before Group 1.
Similar applies to Group 3, it consists of a Dropout layer followed by the layers from Group 1 and finalized by a Conv2DTranspose layer follows. The architecture was
visualized with Net2Vis [55].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org March 2021 | Volume 6 | Article 6165845

Herzog et al. Reconstructing Cardiac Excitation Waves

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


FIGURE 7 | Autoencoder architecture used for reconstruction from undersampled observations. Each block is a set of layers. The layer labeling is the same as in
Figure 6. Visualized with Net2Vis [55].

TABLE 2 | The examined set of hyperparameters σ and Δσ for the local states.

σ Δσ σ Δσ σ Δσ σ Δσ σ Δσ σ Δσ σ Δσ σ Δσ

25 2 29 2 33 2 37 2 41 2 45 2 49 4 101 10
25 4 29 7 33 8 37 4 41 4 45 4 49 8 101 20
25 8 29 14 33 16 37 9 41 8 45 11 49 16 101 25
25 24 29 28 33 32 37 12 41 20 45 22 49 24 101 50

37 18 41 40 45 44 49 48
37 36

FIGURE 8 | Exemplary visualization of the input and output for both networks for data with different noise levels p: (A)–(F) p � 0.1, (G)–(L) p � 0.5, and (M)–(R) p �
0.9. Comparing the absolute differences between the prediction and the ground truth [(D), (J), (P) for the CAE and (F), (L), (R) for the ESN] one can see that the CAE is
less sensitive to noise. Note that the errors develop primarily on the fronts of the waves.
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Placed on a regular lattice, one mechanical cell is made up of
four particles xi at the corners connected by structural springs
and two sets of orthogonal springs connecting the centre of
mass x→cm to each side of the cell (see Figure 3). The springs in
the middle of the cell are called axial springs, of which one is
made to be active (red). Here it is important to point out that
one cell in the electrical model corresponds to one cell in the
mechanical mass-spring system. For setting the fibre
orientation through the active axial spring, the orientation
parameter η ∈ [0, 1] has been introduced, with which the
four points of attachment qi can be computed easily. This
parameter can be set individually for each cell, so that
various fibre orientations can be modelled.

Using x→cm � 1
4∑ 3

i�0 x
→

i the forces from the passive spring f
→

j

and the active spring f
→

a are obtained as.

f
→

j � −kj ( ‖ q→j − x→cm ‖ − lj,0) · e→j , (8)

f
→

a � −ka ( ‖ q→a − x→cm ‖ − la,0
1 + ca · Ta

) · e→a . (9)

Here lj,0, kj and la,0, ka denote the resting lengths and spring
constants of the passive and active spring, respectively. From
Eq. (9) it can be seen that, upon a rise in active stress Ta from Eq.
(6), the active spring contracts and an inward force is generated.
The parameter ca represents a scaling factor to modulate the
influence of the active stress. Through the orientation parameter
the forces from the active and passive spring can be
redistributed to the corresponding particles at the corners.

For example for q→1, the force on x0 would be f
→

0 � η f
→

q1

and on x1 it would amount to f
→

1 � (1 − η) f→q1
.

In addition, the mechanical grid is held together by structural
forces between the corner particles, which can be computed using

f
→

ij � −kij ( ‖ x→i − x→j ‖ − lij) · e→ij , (10)

f
→

ji � − f
→

ij , (11)

with lij being the resting length between particle xi and xj.
Finally, with all the above forces acting on particle xi with mass

mi, its motion is determined according to

mi
d2 x→i

dt2
� ∑

{a}{j}{ij}
fk
→− ]

d x→i

dt
, (12)

with the sum ∑
{a}{j}{ij}

fk
→

of all relevant springs pulling or pushing the

particle. The damping constant ν sets the strength of the damping
to increase the stability of the mechanical system as a whole.

The area of each cell was calculated with a simple formula for a
general quadrilateral using the positions of its four corners. As a
measure of contraction, the relative change of area

ΔA(t) � A(t)
Aundeformed

− 1 (13)

has been used. The numerical algorithm for solving the full set of
electro-mechanical ODEs is summarized in the Appendix.

2.2.3 Reconstruction Task
The inverse modelling data are generated by forward modelling
M : u1ΔA using the output of Equations (4) and (13). The task
is to train an ESN or CAE to approximateM−1 : ΔA1u. To fulfill
this task we use the membrane voltages and the local
deformations at all r × c grid points sampled at times tn. The
training data set D � {Z1 � (X1,X′

1), . . . ,ZN � (XN ,X′
N )} thus

consists of snapshots Xn ∈ Rr×c and X′
n ∈ Rr×c of the relative

mechanical deformation ΔA(tn) and the membrane voltage
u(tn), respectively, and we aim at approximating M−1 :
Xn1X′

n with r, c � 100.

FIGURE 9 | (A) Evolution of the loss function values over the epochs for
noisy input data generated with noise levels p � 0.1, p � 0.5, and p � 0.9
(compare Figure 8). It can be seen that the training always ran up to the point
where early stopping, as defined in Section 3.1, terminated it. The solid
lines are the values of the loss function during training on the training data,
while the dotted lines are the values of the loss function obtained when the
trained model is applied to the validation data. One epoch trained
approximately 110 s on a GTX 1080 Ti. (B) Comparison between CAE and
ESN performance with noisy input data showing boxplots of mean absolute
errors (18) for different noise levels p ∈ [0.1, 0.2, . . . , 0.9]. Each discrete value
on the x-axis is assigned to the boxes of the CAE and ESN, where the ESN
boxplots are colored in orange and the CNNboxplots are colored in blue. Note
that for better visibility the CAE boxes and the ESN boxes a slightly shifted to
the left and to the right, respectively. A tabular overview of the values can be
found in Table 3).
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2.3 Machine Learning Methods
In this section we will introduce the two machine learning
approaches, echo state networks (ESN) [32] and convolutional
autoencoders (CAE) [33], that will be applied to solve the
reconstruction tasks defined in Section 2.1.2.

2.3.1 Echo State Network
Echo state networks have been introduced in 2001 by Jaeger [32]
as a simplified type of recurrent neural network, in which the
weights describing the strength of the connections within the
network are fixed. In its general composition an ESN subdivides
into three sections [32], as illustrated in Figure 4. First of all, there
is the input layer into which the input signal u→n ∈ RNu and a
constant bias bin are fed. Secondly, the intermediate reservoir
consists of N nonlinear units and its state is given by s→n ∈ RN .
And lastly, the output layer provides the output signal y→n ∈ RNy .
Here, n denotes the discrete time steps n � 1, . . . ,T .

The concatenated bias-input vector [bin; u→n] is fed into the
reservoir through the input matrix Win ∈ RN×(1+Nu). Inside the
reservoir connections are given by the weight matrix W ∈ RN×N ,
where N is the reservoir size. Together with the input matrix it is
possible to determine the state of the reservoir at time n through
the update rule

s→n � (1 − α) s→n−1 + αfin(Win[bin; u→n] +W s→n−1) , (14)

in which [·; ·] denotes a concatenated vector. The input bias bin, as
well as the later introduced output bias bout were both set to 1 in the
following. The parameter α ∈ (0, 1] in Eq. (14) represents the
leaking rate which controls how much of a neuron’s activation is
carried over to the next time step and can be used as a parameter to

enhance predictions. As for the transfer function fin(·) we use
tanh(·) and the network dynamics used has no feedback loop. Only
the weights Wout providing the output signal

y→n � Wout x
→

n with x→n � [bout ; s→n; u
→

n] (15)

are adapted during the training process by minimizing the cost
function [34]

C(Wout) � ∑
n

∣∣∣∣∣∣
∣∣∣∣∣∣ y→ true

n −Wout x
→

n

∣∣∣∣∣∣
∣∣∣∣∣∣2 + λTr(WoutW

T
out) (16)

where Tr denotes the trace of a matrix and λ controls the impact
of the regularization term that prevents overfitting [35]. The final
output matrix is given by the minimum of the cost function at
Wout � YXT(XXT + λ1)− 1 where X and Y are matrices whose
columns are given by the vectors x→n and y→ true

n , respectively.
Both matrices Win and W, are initialized with random values

from the interval [−0.5, 0.5]. Since in experiments it turned out
that more diverse dynamics could be modelled using networks in
which only a small percentage ϵ of weights inside the reservoir
remained non-zero [32], the weight matrixW is made sparse with
only a portion ϵ of its values remaining non-zero. Furthermore, it is
scaled by a factor ρ

|μmax| where
∣∣∣∣μmax

∣∣∣∣ denotes here the largest
eigenvalue of W and ρ is a hyperparameter for optimizing the
performance (by ensuring the so-called echo state property [36]).
To reduce the probability of drawing an dysfunctional set of matrix
entries the randomly generated matricesWin andW were selected
from four different realisations. To optimize the performance of
the ESN five hyperparameters (N , ϵ, ρ, α and λ) are tuned.

TABLE 3 | Comparison of the MAE obtained when applying the CAE method and the ESN method to the test data set.

CAE (MAE ± STD)

Case Blurred data Noisy data Undersampled data

1 0.01644 ± 0.00136 0.00794 ± 0.00096 0.00432 ± 0.00020
2 0.02076 ± 0.00170 0.00835 ± 0.00097 0.00782 ± 0.00053
3 0.02667 ± 0.00227 0.00856 ± 0.00104 0.01613 ± 0.00119
4 0.03450 ± 0.00318 0.00900 ± 0.00096 0.04727 ± 0.00393
5 0.04532 ± 0.00407 0.00919 ± 0.00099 0.12190 ± 0.01061
6 0.06137 ± 0.00585 0.00961 ± 0.00110 0.27821 ± 0.02823
7 0.08913 ± 0.00864 0.01210 ± 0.00103 0.42401 ± 0.02800
8 0.14018 ± 0.01261 0.01156 ± 0.00120 -
9 0.24689 ± 0.01898 0.01873 ± 0.00136 -
10 0.37214 ± 0.02408 - -

ESN (MAE ± STD)

Case Blurred data Noisy data Undersampled data

1 0.05220 ± 0.00347 0.06193 ± 0.00264 0.00362 ± 0.00031
2 0.05910 ± 0.00365 0.07193 ± 0.00288 0.01682 ± 0.00110
3 0.06245 ± 0.00394 0.08070 ± 0.00299 0.03516 ± 0.00242
4 0.07318 ± 0.00469 0.09052 ± 0.00312 0.08491 ± 0.00561
5 0.08476 ± 0.00536 0.09344 ± 0.00341 0.20439 ± 0.01105
6 0.09959 ± 0.00644 0.11136 ± 0.00370 n.A.
7 0.12325 ± 0.00813 0.11889 ± 0.00391 n.A.
8 0.18129 ± 0.01323 0.14548 ± 0.00596 -
9 0.27925 ± 0.01628 0.18259 ± 0.00720 -
10 0.39927 ± 0.01717 - -
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Reservoir computing using ESNs for predicting chaotic
dynamics has already been demonstrated in 2004 by Jaeger
and Haas [37]. Since then many studies appeared analyzing
and optimizing this approach (see, for example [38–44], and
references cited therein). In particular, it has been pointed out
how reservoir computing exploits generalized synchronization of
uni-directionally coupled systems [45, 46].

Recently, applications of ESNs to spatio-temporal time series
have been presented [18, 47] employing many networks
operating in parallel at different spatial locations based on the
concept of (reconstructed) local states [48]. In particular, using
this mode of reservoir computing it was possible to perform a
cross-prediction between the four different variables of the BOCF
model [18]. Therefore, for the current task of reconstructing data
from impaired observations we build on the previous ESN design
and modelling procedure. For each pixel an ESN is trained
receiving input from neighboring pixels, only, representing the
local state at the location of the reference pixel as illustrated in
Figure 5. This design introduces two new hyperparameters σ and
Δσ to the default ESN, where σ is the size of the stencil to define
the local state and Δσ specifies the spatial distance of adjacent
pixels included in the local state. Optimal values for all
hyperparameters are determined by a grid search.

2.3.2 Convolutional Autoencoder
A convolutional autoencoder [33] is a special architecture of a
feed forward network (FFN) with convolutional layers similar to

convolutional neural networks (CNNs) [49]. Generally a CAE
learns a representation of the training set D with the purpose of
dimensionality reduction. For each pair Zi � (Xi,X′

i) ∈ D the
CAE is trained to perform a nonlinear transformation from the
input representation ofXi to the output representation ofX′

i . Like
CNNs a CAE is a partially locally connected feed forward
network, which is typically composed of the following layers:

Convolutional layers: Convolution of the input by a kernel sliding
over the input. The number of rows and columns of the kernel
are hyper-parameters, in this work they are set to be 3 × 3.
Batch normalization layer: Normalization of the activations of
the previous layer during training and for each batch. Batch
normalization allows the use of higher learning rates, being
computationallymore efficient, and also acts as a regularizer [50].
Leaky ReLU [51] layer: Leaky version of a rectified linear unit
(ReLU) [52], such that:

](x) � { αx for x < 0
x for x ≥ 0.

Max pooling layer: Sample-based operation for discretization
based on a kernel that slides over the input like the convolutional
operator but only the maximum value of the kernel is passed
to the next layer. Width and height of the kernel are hyper-
parameters (in this work 2 × 2). In contrast to the convolutional
layer a pooling layer is not trainable.

FIGURE 10 | Exemplary visualization of the input and output for both networks, CAE and ESN, when recovering the original data from blurred measurements.
(A)–(F) corresponds to case one, where m � 20, (G)–(L) to case six with m � 14 and (M)–(R) to seven, m � 8. Comparing the absolute differences between the
prediction and the ground truth [(D), (J), (P) for the CNN and (F), (L), (R) for the ESN] one recognizes that the CAE and ESN exhibit different patterns. The errors of the
CAE are rather pointwise distributed at some locations [see (D), (J)] on the front while they aremore evenly distributed when using ESNs (F), (L). This pattern is even
more pronounced in (P) vs. (R).
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Dropout layer: Regularizationmethod to prevent overfitting where
during training someweights are set randomly to zero [53]. In this
work the probability of setting the weights to zero is 0.05.

The eponymous part of the CAEs are the convolutional layers,
a convolution of A � (aij) ∈ Kn×n with a kernel F � (fij) ∈ Kk×k,
where k< n, is given by:

(ApF)xy � ∑k/2
i�−k/2

∑k/2
j�−k/2

axyf(i−x)(j−y), (17)

with x, y ∈ 1, . . . , n. If i − x− or j − y exceeds the range of A zero-
padding is applied [54].

In this work two architectures are used. The first one
employed to reconstruct the data from noisy, blurred and
inverse modelling data is illustrated in Figure 6. The
architecture is the same for the tasks in Section 2.1.2 and
Section 2.2.3 but the sizes of X and X′ are different, with
X,X′ ∈ R512×512 and X,X′ ∈ R100×100, respectively. Due to the
smaller input size, the data for the inverse modelling
reconstruction is transformed into a latent space with the size
of 25 × 25. The second architecture is sketched in Figure 7 and
deals with the undersampled data reconstruction.

3 RESULTS

In the following both machine learning methods will be applied to
two tasks: (i) Reconstructing electrical excitation waves from noisy
blurred and under sampled data (Section 3.1) and (ii) Predicting
electrical excitation from mechanical contraction (Section 3.2).

3.1 Recovering Complex Spatio-Temporal
Wave Patterns From Impaired Observations
To benchmark both reconstruction methods, using ESNs and
CAEs, we use time series generated by the BOCF model
introduced in Section 2.1.1. The same data were used for both
methods, consisting of 5,002 samples in the training data set,
2,501 samples in the validation data set, and 2,497 samples in the
test data set. The sampling time of all time series equalled
10Δt � 1. We considered nine cases of noisy data (with
different noise levels), ten cases of (differently) blurred data
and seven examples of (spatially) undersampled time series.

For the implemention of the ESN we used the software package
easyesn [56]. To determine the optimal ESN hyperparameters a
grid search is performed as described in [18] using the training and
validation subsets of the data. This search consists of two stages:
first, for each combination of the local states’ hyperparameters σ
and Δσ as listed in Table 2 a grid search is performed to find the
optimal five hyperparameters of the ESN resulting in 37 sets of
optimal hyperparameters. To make these grid searches more
feasible, they were performed just for a single input patch (area
covered by the stencil, see Figure 5) in the spatial center of the
training set and thus not using the full spatial data.

In the second stage, for each of the 37 sets of optimal
hyperparameters determined before (for each combination of σ
and Δσ), an ESN is trained on a larger subset of the training data
and not just on a single patch. Ideally, this step should be
performed on the entire spatial domain of the training set,
however, as we did not notice significant differences in the
results when the ESNs were trained on a spatial subset of size 250 ×
250 to speed up the training process. Following the same
methodology as in [18], for each pixel from this spatial subset a
single ESN is trained and then the obtained output matrices Wout

of these ESNs are averaged over all pixels. Compared to the
procedure used in [18], the handling of boundary values has
been changed. As for boundary pixels fewer adjacent pixels exist
than for those inside, the creation of local states is obstructed, and
boundary pixels require special treatment. In our previous work
[18] individual ESNs have been trained for the boundary pixels
using local states of lower dimensionality. In the following we use
an alternative approach based on padding the boundary pixels by
mirroring their values (motivated by the no-flux boundary
conditions used). In this way, local states can be formally
defined for boundary pixels in the same way as for inner pixels.

Next, the different optimal ESNs obtained for different stencils
(σ,Δσ) were evaluated by comparing their performance on the
validation subset. In this way optimal values for σ and Δσ
were selected by choosing the combination (σ,Δσ) with the
lowest ℓ2 difference between the prediction and ground truth
on the validation set. This process yields an ESN whose

FIGURE 11 | (A) Mean absolute errors of reconstructions using CAE or
ESN from data blurred with different values of the low-pass filter parameterm.
Like in Figure 9B boxes are horizontally shifted for better visibility. A tabular
overview of the values can be found in Table 3. (B) Evolution of the loss
function values over the training epochs for blurred data. Training was always
terminated by reaching the early stopping criterion, defined in Section 3.1.
One epoch trained approximately 108 s on a GTX 1080 Ti.
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hyperparameters and weights are optimized to yield minimal ℓ2
error. Finally, without training the network again on the entire
training set, the optimal ESN found before is used to perform the
prediction on the entire test set. As a pre-processing step, both the
input and target data of the training, validation and test set are
rescaled with min-max scaling, where the minimal and maximal
value are determined over all pixels of the training set.

The CAE was trained using the ADAM optimizer [57],
implemented with TensorFlow [58] in version 2.3, with early
stopping when the validation loss has not improved at least by
10− 6 for 20 epochs. The learning rate was reduced by a factor of
0.2 when the loss metric stopped improving at least by 10− 5 for
ten epochs. Dropout was set to be 0.05 in all cases. As loss
function the mean absolute error (MAE) was chosen:

MAE � 1
N

∑N
i�1

∣∣∣∣X̂i − X′
i

∣∣∣∣, (18)

where N is the number of elements in the data set, X̂i the network
output, X′

i desired ground-truth and |.| stands for the absolute values.

3.1.1 Noisy Data
Figure 8 shows snapshots of the noisy input data, the
corresponding ground truth, the outputs provided by the CAE
and the ESN, respectively, and the absolute values of their
prediction errors with respect to the ground truth.

The evolution of the loss function during the training epochs is
shown in Figure 9A. In all cases the error decreases and the

training converges, but the duration of the training depends on
the complexity of the case.

Figures 9B shows a comparison of the performance of the CAE
and the ESN for noisy data with nine different noise levels
p � 0.1, . . . , 0.9. While the mean absolute error of the CAE
remains below 0.02, the reconstruction error of the ESN increases
from 0.06 for p � 0.1 to 0.18 for p � 0.9, the associated ESN
hyperparameter can be found in Table 4.

3.1.2 Blurred Data
To evaluate the performance of CAE and ESN for recovering full
resolution (ground truth) data from blurred observations we
consider nine cases where the radius m of Fourier low-pass
filtering ranges from m � 2 to m � 18 (in steps of 2). Figure 10
shows snapshots of reconstructions of the u-variable of the
BOCF model using CAE and ESN with filter parameters m �
20 (A-F), m � 14 (G-L), and m � 8 (M-R). Similar to Figure 8
the errors are largest at fronts of the excitation waves, but
in contrast to noisy images the performances of CAE and
ESN differ not much for blurred data. This observation is
also confirmed by a systematic comparison of the mean
absolute errors of both methods for different manhatten
distances m given in Figure 11A. The errors decrease with m
because the larger m the less blurred are the input data of the
CAE or ESN (for hyperparameter see Table 5). Figure 11B
shows the evolution of the loss function during training of
the CAE.

FIGURE 12 | Exemplary visualization of the reconstruction of the u-field of the BOCFmodel from undersampled data. (A)–(F) corresponds to a sampling parameter
i � 1 resulting in X ∈ R256×256, (G)–(L) to case i � 3, X ∈ R64×64 and (M)–(R) to i � 5, X ∈ R16×16. With downsampling by a factor of 21 reconstructions by both networks,
CAEs and ESNs, are both very successful and the absolute differences shown in (D) and (F) are nearly zero. Similar to reconstructions from noisy or blurred data errors
occur mainly at the fronts of the waves, and reconstruction errors of the CAE appear to be more localized compared to ESN results.
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3.1.3 Undersampled Data
Figure 12 shows examples of data reconstructed from
undersampled data. In total we considered seven cases of
undersampling by 2i pixels, where i ranges from i � 1 to i � 7.
For i � 1 input images have a resolution of X ∈ R256×256 and for
i � 7, X ∈ R4×4. In all cases the desired output (ground truth) X′

has a size of 512 × 512 pixels. The used hyperparameter for the ESN
can be found in Table 6). Figure 13B shows the evolution of the
corresponding loss function.

3.2 Predicting Electrical Excitation From
Mechanical Contraction
Echo state networks as well as convolutional autoencoders have
been trained with time series generated by the electromechanical
model introduced in Section 2.2 to predict the membrane
voltage u(x, t) Eq. (4) from the local contraction ΔA(x, t)
given in Eq. (13). The sampling time of all time series
equalled 6Δt � 0.48. Since for periodically rotating spiral
waves this cross-prediction task is quite straightforward we
focus here on the much more demanding case of an example
exhibiting spatio-temporal chaos (corresponding to atrial or
ventricular fibrillation). Figure 14 shows at three instants of
time snapshots of the observed contraction ΔA (first column),
the ground truth of the voltage u (second column), the
prediction of the CAE uCAE and its absolute error |u − uCAE|
(third and fourth column) and the prediction of the ESN uESN
and the corresponding absolute error |u − uESN| (columns five
and six, respectively). Both, the ESN and the CAE were trained

and tested with the same spatio-temporal time series (lengths of
training, validation and test sets are 15,000, 2000 and 2000
samples, respectively). Hyperparameters of the ESN are N �
600, α � 0.5, ρ � 1.1, ϵ � 0.05, λ � 5 · 10− 3, σ � 7 and Δσ � 1. To
make the ESN more robust normally distributed noise with zero
mean and a variance of 10− 4 was added to the arguments of the
activation function.

As illustrated in Figure 14 both networks can solve the
inverse problem and reconstruct the electrical potential
field u from Eq. (4). However, the reconstruction of the CAE
is more precise, which is particularly noticeable at the edges of
the reconstructed electrical potential field. Considering the
median of the MAE over the entire test data the ESN

TABLE 4 | Selected ESN hyperparameters for the case of noisy data.

ESN hyperparameters for the case of noisy data

Case N ρ α ε L2 regularisation

1 500 1.25 0.5 0.05 10
2 500 0.50 0.2 0.05 10
3 250 1.00 0.2 0.2 10
4 250 0.05 0.2 0.2 10
5 250 3.00 0.2 0.1 10
6 250 1.25 0.2 0.1 10
7 250 3.00 0.2 0.05 10
8 500 1.25 0.05 0.2 10
9 500 3.00 0.05 0.05 10

TABLE 5 | Selected ESN hyperparameters for the case of blurred data.

ESN hyperparameters for the case of noisy data

Case N ρ α ε L2 regularisation

1 250 0.30 0.01 0.1 10
2 250 1.25 0.05 0.05 10
3 500 2.00 0.05 0.1 10
4 500 0.75 0.2 0.2 5
5 250 1.50 0.2 0.2 10
6 250 1.50 0.2 0.2 10
7 250 1.25 0.2 0.2 10
8 500 0.90 0.2 0.2 5
9 250 1.50 0.5 0.2 10
10 500 0.75 0.7 0.2 10

TABLE 6 | Selected ESN hyperparameters for the case of undersampled data.

ESN hyperparameters for the case of noisy data

Case N ρ α ε L2 regularisation

1 250 0.30 0.01 0.1 5
2 500 0.05 0.05 0.2 0.5
3 250 1.50 0.05 0.2 10
4 250 2.00 0.5 0.2 10
5 500 0.30 0.05 0.1 5
6 500 0.75 0.2 0.05 10
7 250 1.50 0.05 0.1 10

FIGURE 13 | (A) SameasFigures9Bbut for the case of the undersampled
data. A tabular overview of the values can be found in Table 3. (B) Evolution of the
loss function values over the epochs for undersampled input data.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org March 2021 | Volume 6 | Article 61658412

Herzog et al. Reconstructing Cardiac Excitation Waves

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


approach achieves an error of 0.1963 ± 0.0260 while the median
error of the CAE equals 0.0164 ± 0.0028.

4 CONCLUSION

Using synthetic data generated with conceptual models describing
complex cardiac dynamics we have demonstrated possible applications
of machine learning methods to complete and enhance experimental
observations. It was shown that echo state networks as well as
convolution autoencoders provide promising results, where the
latter turned out to be the method of choice in terms of more
faithful reconstructions. At this point, however, we would like to
stress, that we didn’t try to fully optimize the algorithms employed.
One could, for example, increase the size of the ESNs used or extend
and refine the grid search of hyperparameters. Also with the CAE
several options exist to improve the performance evenmore. Instead of
the MAE in the loss function one could use an adaptive robust loss
function [59] or the Jensen-Shannon divergence [19]. The weights of
the CAE could be optimized with a stochastic gradient descend
approach instead of the ADAM algorithm [57]. But we expect such
modificationswould showonlyminor improvements (if at all) [60, 61].

A comparison of the computing times with ESNs and CAEs is
unfortunately not immediately possible. For the CAE the
training time depends on the convergence, as illustrated in
Figures 9A, 11B and 13B. In contrast to this, for ESNs
training times depend strongly on the search for optical
hyperparameters, especially the size of the reservoir, and this
search is strongly dependent on the search space size and the

number of parameters. For the task where electrical excitation is
predicted from mechanical contraction our computations took
3,382 s on two Intel Xeon CPU E5-4620. While the CAE
simulations have been run on GPUs the training and
application of the ESN was on CPUs which makes a direct
comparison difficult. Furthermore, the runtime of the
programmes used is highly dependent on the libraries used
and how well they have been adapted to special system
architectures. In general we would estimate that in this work
the effort to train and search hyperparameters for an ESN was a
bit less demanding, in the sense of computational resources,
compared to the training of the CAE. However, we would not
consider the difference big enough to be an advantage for the
ESN approach. Once trained both approaches need comparable
execution times when applied to new data and executed on a
CPU. In future work, using more realistic numerical simulations
(and experimental data) such an optimization should be
performed to achieve the best possible result for the intended
medical application. Since here we used only data from
conceptual models we refrained from fully optimizing the
machine learning methods applied. The fact that already a
straight-forward application of known algorithms and
architectures provided very good results for the considered
reconstruction tasks is very promising and encourages to
address in future work extended tasks (including other
variables, like calcium concentration, mechanical stress and
strain, etc.) and reconstruction tasks with more realistic
synthetic data (from 3D models, for example) combined with
experimental measurements.

FIGURE 14 | Exemplary visualization of the input and output for both networks for the inverse reconstruction of the membrane voltage u Eq. (4) based on the
mechanical deformation ΔA Eq. (13). (A)–(F) corresponds to t � 1,000, (G)–(L) to t � 1, 500 and M-R to t � 2, 000 of the test data set. The input is the mechanical
deformation given by Eq. (13) caused by the electrical potential u from Eq. (4).
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APPENDIX 1: SOLUTION OF THE
ELECTRO-MECHANICAL DYNAMICS

The differential equations from the extended Aliev-Panfilov
model in Eqs. A1–A3 have been integrated using the forward
Euler method yt+Δti � yti + Δt · f (y) +O(Δt2), in which y is a
place holder for the model variables u, v and Ta; f (y)
represents the right-hand side of the respective equation. The
diffusion tensor D in Equation (4) was set to a scalar constant D
and the diffusion term was approximated with a nine-point
stencil [60]

∇(D · ∇uij) � D · ∇2uij � D
6h2

(4ui+1,j + 4ui−1,j

+ 4ui,j+1 + 4ui,j−1+ ui+1,j+1 + ui+1,j−1
+ ui−1,j+1 + ui−1,j−1 − 20uij) +O(h4) (A1)

where i, j are the indices of the grid points and h denotes the
spacing constant between the cells.

For the excitation variable u in the electrical part of the simulation,
no-flux boundary conditions have been used which were imposed by
setting the two outermost cells to the same value, i.e., u0,j � u1,j. In the
mechanical part of the simulation, numerical calculations were carried
out according to the following scheme for each time step: (1) update of
the position of the centre of mass xcm, (2) calculation of all four points
of attachment qi for each cell, (3) computing of forces from structural
and axial springs for each particle xi, (4) update of the positions of all
particles using the Verletmethod and (5) determine change of area for
each cell. Here the Verlet method refers to the standard Verlet
algorithm which is given as [61]

x→ t+Δt
i � 2 x→ t

i − x→ t−Δt
i + 1

mi
F
→ t

i Δt2 +O(Δt4) , (A2)

with the total force F
→t

i acting on the particle. Because the total
force includes the damping term, it is convenient to rewrite Eq.

A2 with F
→

i � f
→
i − ] d x→i

dt to

x→ t+Δt
i � 2 x→ t

i − x→ t−Δt
i (1 − ]

2mi
Δt) + 1

mi
f
→ t

i Δt2

1 + ]
2mi

Δt +O(Δt4) . (A3)

A padding layer of ten electrically inactive cells was
implemented outside the electrical grid to account for
boundary effects in the mechanical network. In addition, the
active stress variable Ta from Eq. (6) of the last row of cells just at
the edge of the simulation grid was mirrored to the two padding
layers just outside the simulation grid which proved to
dramatically reduce mechanical boundary effects. This is likely
due to the fact that a proper contraction of an electrically active
cell is not guaranteed if one of its sides is connected to an inactive
cell. Lastly, the outermost padding cell’s positions were fixed to
prevent the grid as a whole from moving away from its original
position.

To improve numerical accuracy for each time step Δt of the
electrical equations (Euler method) five time steps of size Δt/5
were computed for the mechanical system (3). All computations
have been performed on a spatial grid of 100 × 100 elements. The
parameter values of the dynamical equations used are given in
Table A1.

TABLE A1 | Parameters of the electro-mechanical model.

u0 0.1 a 0.05 b 0.05 μ1 0.2 μ2 0.3 k 8 ϵ0 0.002
D 0.22 Δt 0.08 kT 3 kij 13 kpadij 23 kj 2 ka 9
kpada 23 ca 10 mi 0.2 ν 6.86 ϵT ,0 1 ϵ∞ 0.1 ξT 30
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