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This article explores the ongoingCOVID-19 pandemic, asking how long itmight last. Focusing on
Bahrain, which has a finite population of 1.7M, it aimed to predict the size and duration of the
pandemic, which is key information for administering public health policy. We compare the
predictions made by numerical solutions of variations of the Kermack-McKendrick SIR epidemic
model and Tsallis-Tirnakli model with the curve-fitting solution of the Bass model of product
adoption. The results reiterate the complex and difficult nature of estimating parameters, and how
this can lead to initial predictions that are far from reality. The Tsallis-Tirnakli and Bassmodels yield
more realistic results using data-driven approaches but greatly differ in their predictions. The study
discusses possible sources for predictive inaccuracies, as identified during our predictions for
Bahrain, the United States, and the world. We conclude that additional factors such as variations
in social network structure, public health policy, and differences in population and population
density are major sources of inaccuracies in estimating size and duration.
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INTRODUCTION

This study seeks to answer questions regarding how long the COVID-19 pandemic will last in the
Kingdom of Bahrain and what will its final size be? Predicting size and duration is key to administering
public health policy. This is a challenging problem, especially for COVID-19, because of different
policies in different regions, differences is population/population density, and underlying network
effects. Classical models such as the Kermack-McKendrick model have proven to be inadequate.

We limit our study to Bahrain and the United States. Bahrain is an ideal laboratory for studying
epidemics because it is a comparatively isolated island with a small homogeneous population of 1.7
million people. In addition, it has collected reliable data on the outbreak of COVID-19 that can be
used by data-driven models. Restrictions are strictly enforced: people have to wear masks or be
ticketed for violating the law. The restaurants and coffee shops are closed and only takeout is allowed.
The mosques are closed too. Only five people are allowed to gather in one place.

The study examines three classes of models, including the classical Kermack-McKendrick (KM),
Tsallis- Tirnakli, Bass Model, which were chosen for their variety. KM, or variants of KM, provide a
baseline [1]. The novel Tsallis-Tirnakli model was chosen for its fresh complexity approach, and the
Bass model because it comes from an entirely different application: product adoptions. However, all
three classes share a basic premise - they assume spreading via contact, and mathematically, they all
assume curve fitting to obtain the model parameters.

This study examines which models perform the best in terms of providing accurate estimates of
size and duration so that we can have confidence in scientific predictions the next time an epidemic
or pandemic strikes. Mathematical models are used to investigate and understand the dynamics of
outbreaks of infectious diseases in humans, such as SARS, Ebola, and COVID-19. It is important to
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ensure that these models are accurate as they provide public
health sector policymakers with forecast information to help
them plan, including estimates relating to the medicines,
number of beds, and medical equipment required. Accurate
modeling is also essential in applying countermeasures to
control and end the pandemic. Therefore, it is imperative that
policymakers are able to predict the size and duration of an
epidemic with precision.

In an article published on April 26, 2020, researchers predicted
that the number of cases and deaths would exceed 60,000 in the
United States by July: “we estimate that through the end of July,
there will be 60,308 (34,063–140,381) deaths from COVID-19 in
the USA . . .” [13]. The number of deaths exceeded 100,000 by
April 26, 2020 and continued to climb, surpassing the upper
bound on the estimate by late June 6, 2020. This illustrates one
problem with existing models.

Problems with estimations often occur due to missing factors
that account for all impacts in the models. “Each model makes
different assumptions about properties of the novel coronavirus,
such as how infectious it is and the rate at which people die once
infected. They also use different types of math behind the scenes
to make their projections. And perhaps most importantly, they
make different assumptions about the amount of contact we
should expect between people in the near future.”1 See Table 1.

In this article, we claim that the problem of estimating size and
duration extends beyond assumptions about properties of the
disease and infectiousness. We show that, in addition to the
limitations expressed above, population, population density, social
network topology, andpublic sentiment impact the rate and size of the
spread of a disease.Mathematicalmodels based solely on properties of
the disease are likely to fail, whereas models based on curve-fitting of
data and social network theory and public sentiment aremore likely to
succeed. However, these models fail to accurately predict the size and
duration of the COVID-19 pandemic due to a number of technical,
social, and public policy issues.

MODEL FORMULATION

Most models assume a uniformly distributed population with the
same levels of immunity or susceptibility to infection and a
relatively immobile population. However, the modern world
does not always follow all of these conditions. For example,
populations are clustered, people of different ages and
economic conditions have different susceptibilities to diseases,
public opinion as to the dangers of contagion shift over time, and
people are extremely mobile.

Historically, epidemic spreading has been formulated as a rate
problem similar to the flow of a fluid or conduction of heat. One
must know the infection rate to model the spread of the contagion
and the removal rate to model deaths and cures. At this point,
models split into persistent and not. A persistent epidemic recurs
because the infection rate is larger than the removal rate. This is
considered SIS (susceptible-infected-susceptible). In contrast, the
SIR model is episodic (susceptible-infected-recovered). Once the
infection and recovery/removal rates are known, the equations take
over—no data from actual epidemics are used to make predictions.

Flow models are inadequate at representing what goes on in
modern society. Populations are more mobile, concentrated, and
social, making it difficult to model epidemics as flows. Instead,
modern models use diffusion equations and complexity
equations to represent the spread of a contagion. Moreover,
these models are much more data-driven because conditions
change. For example, social distancing, patterns of mobility,
and nonuniform mixing affect the contagion, causing it to
surge in some places and die out in other places, which can
only be represented in the data. However, flow models like the
Kermack-McKendrick (KM) model provide a benchmark for
comparison purposes. More recently, network-based models
have been used to relate the structure of a social network with
the spread of a contagion along social links [5].

In this research, we compare three models: the classic two-
parameter SIR model given by Kermack-McKendrick, the 5-
parameter Tsallis-Tirnakli complexity model, and the
3-parameter Bass model, which was developed to study the
diffusion of innovation in consumer products. While the Bass
model is designed for product adoption, its diffusion process is
similar to the diffusion of germs in epidemiology. We conclude
the study by identifying limitations and missing factors that need
to be considered by mathematical models in general.

KM Model Formulation
In 1927, W. O. Kermack and A. G. McKendrick (KM) developed
the first mathematical model describing the spread of epidemics
[2, 4]. Over the past 90 years, various derivatives of the KM
models have appeared, for example, the SEIR model that
separates susceptible populations from exposed, infected, and
recovered populations. In addition to historical interest, KM is a
simplistic model that provides a basis for comparison with newer
and more sophisticated models.

The basic KM model divides the fixed-size population into
three compartments: susceptible, infected, and recovered or
removed (SIR). The total population of M people is constant,
but the subject flows from one compartment to another:

TABLE 1 | Summary of contemporary models in the fight against COVID-19.1

Model Principle assumptions

Univ. Texas Uses mobile data collected from cell phones
Northeastern U Includes social distancing
UCLA Assumes current interventions continue indefinitely
U. Washington IHME Mobile data; social distancing
Univ. Mass Transmission effects remain similar going forward
MIT Assumes interventions continue indefinitely
Youyang Gu Assumes people obey stay-at-home policies and reopen

schedule
Georgia Tech Assumes effects of intervention are in observed data
Columbia U Assumes 20% reduction on contact followed by 5% in-

crease per week
Los Alamos Assumes stay-at-home orders followed
Univ. Arizona Assumes interventions (stay at home) remain for 4 weeks
John Hopkins Univ. Social distancing stay in effect decreasing by 25% after

order lifted

1Ryan Best, Jay Boice, Where The Latest COVID-19 Models Think We’re
Headed—And Why They Disagree (June 12, 2020). https://projects.
fivethirtyeight.com/covid-forecasts/?ex_cid�rrpromo
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M � S(t) + I(t) + R(t). (1)

The rate of flow into and out of each compartment is
determined by two constant parameters: ɣ � rate of infection
and ß � rate of recovery (or removal). The values of the two
parameters must be estimated quite carefully; otherwise, the
result will be inaccurate. In fact, small errors in the initial
conditions will result in large errors in the solution. This is the
Achilles heel of KM.

The rate of change in the number of people susceptible to the
disease over time is given by the following:

dS(t)
dt

� − β I(t) S(t). (2)

The rate of change of the number of people recovered over time is
as follows:

dR(t)
dt

� c I(t). (3)

The rate of change of the number of people infected is as follows:

dI(t)
dt

� β I(t) S(t) − c I(t). (4)

With the initial condition,

S(0) � S0 > 0, I(0) � I0 > 0, R(0) � 0,

where S is the number of susceptible people to COVID-19; I is the
number of people infected with COVID-19; R is the number of
people removed (or recovered); β is the infection rate; c is the rate
of recovery (removal).

Following [6], we use numerical methods to solve for S(t), I(t),
and R(t). Unfortunately, estimating β and c is problematic and
subject to different methods, which leads to different estimates of
size and duration. Hossain et al. [6] estimated the two parameters
in the KM model using initial conditions and death rate, but
abandoned them when the results were unsatisfactory. KM has a
tendency to grow the number of infected, I(t), without bound,
reaching nearly the whole population, M. Essentially, the number
of removed is underestimated by the model. Instead, Housain
et al. ended up guessing the parameters by trial and error.

Raissi et al. [9, 12] used filtering techniques to compute values
of the parameters by averaging over the data. The technique is
very sophisticated and introduces additional parameters. Our
goal is to reduce the number of parameters to a minimum.

The results reported in this article used curve-fitting to actual
data to estimate β and c; we found β � 2e-6 and c � 3.352 by
minimizing the optimal least-squares (OLS) best-fit to the
observed data. Figure 1 shows the results obtained on data as
of May 23, 2020.

In practice, one is typically interested in the total number of
infected cases, which simplifies the analysis and leads to a sigmoid
function first proposed by Pierre Francois Verhulst (1804–1849).
In this model, a population is separated into two compartments:
susceptible and infected. The differential equation reduces to the
following:

dI(t)
dt

� βI(t)[N − I(t)]. (5)

This equation has a three-parameter solution:

I(t) � N

(1 + Ke−βt),

where N is the size of the epidemic, to be determined or given; K,
β are parameters to be determined by OLS.

The Tsallis-Tirnakli Model
The Tsallis-Tirnakli model is based on a complexity theory and
statistical mechanics applied to stocks; “the time evolution of the
number I(t) of active cases (surely a lower bound of the unknown
actual numbers) showed a rather intriguing similarity with the
distributions of volumes of stocks [10].” It is derived from the
q-distribution, which is a fat-tailed pseudo-normal
distribution [11].

To estimate size and duration, one must plot I(t) vs. time using
the following equation:

I(t) � C (t − t0)α
[1 + β (q − 1)(t − t0)c]1/(q−1)

. (6)

The model depends on 5 parameters: “C > 0, a > 0, ß > 0, γ > 0,
q > 1, and t0 ≥ 0. The constant t0 indicates the first day of
appearance of the epidemic in that particular region; it is
conventionally chosen to be zero for China; for the other
countries, it is the number of days elapsed between the
appearance of the first case in China and the first case in
that country. The normalizing constant C reflects the total
population of that particular country. For a � 0, if γ � 1, we
recover the standard q-exponential expression; if γ � 2, it is
currently referred to in the literature as q-Gaussian; for other
values of c, it is referred to as stretched q-exponential. Through
the inspection of the roles played by the four nontrivial
parameters, namely (α, β, c, q), it became clear that (α, β)
depend strongly on the epidemiological strategy implemented
in that region in addition to the biological behavior of the
coronavirus in that geographical climate. In contrast, the
parameters (c, q) appear to be more universal, mainly
depending on the coronavirus. Therefore, we investigate
several countries that have not reached their peaks yet, with
the basic assumption that these two parameters would not
change much from one country to another, and we fixed
these values at the values that we determine for China, since
this country has already had nearly the full evolution of the
pandemic.”

The equation is deceptively simple, but the parameters are
difficult to come by because they are guesses. Parameters may
be reused from other epidemics; for example, two parameters
appear to be universal at approximately q � 1.26 and γ � 3. But,
values of C range from 10–3 to 10–8; t0 range from 10 days to 48,
etc. It is a tedious process to find the best-fit to time series
epidemic data.

Figure 2 shows the parameters used to fit the Bahrain COVID-
19 data obtained by trial and error. These values were obtained
after a few hours of experimentation by hand and running a
computer program to compute OLS.
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The Bass Model
An unrelated mathematical model developed by Frank M. Bass in
1969 is simple and precise in predicting sales of new products [3,
4]. The Bass model estimates the total size of themarket and when
peak sales occur, called the inflection point, from actual data
collected on sales [7]. The advantage of the Bass model is that the
parameters that determine size and duration are easily computed
by fitting a quadratic to the infection time series data.

As long as we accept diffusion of products as a suitable model
for the spread of a contagion, we can use the simple and elegant
solution provided by Bass. The Bass equation does not subtract
the recovered cases from the infected, so the Bass curve is a pure
logistics curve. But it can still be used to estimate N and time to
reach N.

The Bass differential equation, as defined in [7], gives the
cumulative number of infected people without removal. Since we
are interested in the size and duration of an outbreak, this is not a
limitation. Instead, it is a simplification.

s � dS
dt

� ( p + q
N
S)(N − S), (7)

which has the following closed-form solution:

S(t) � N ( 1 − e− at

1 + r e− at
) , (8)

where

a � p + q and r � q/p ,
s is the rate of spreading used in the differential equation [7]; S is
the cumulative number of cases infected in [7]; N is the ultimate
size of cumulative cases, not the susceptible population; p is the rate
of infection called the innovation parameter by Bass; q is the
secondary rate of infection called the imitation parameter by Bass.

The first attempt to apply the Bass model to infectious disease
was an extended model by Gupta [8]. He introduced an
additional parameter called the outcome rate for forecasting

FIGURE 1 | Bahrain KM OLS best fit and observed number of infected cases through 23 May 2020. Note that the curve predicts 50,000 cases.

FIGURE 2 | Parameters used by the authors to fit the COVID-19 data as of 23May 2020 (shown as black dots) to the Tsallis-Tirnakli distribution. Note that the curve
predicts 33,000 cases.
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the spread of the pandemic. The outcome rate consists of a cure
rate and a death rate, but does not help one to estimate size and
duration. However, the application of the Bass model is similar to
the method used here.

A later adaptation of the Bass model, called Bass-SIR, was
proposed by Ku, Ng, and Lin in January 2020 [19]. As the name
implies, it combines product adoption and infectious disease
spreading but does not answer the fundamental question
addressed here, which is the accuracy of size and duration.

The Quadratic Form of the Bass Model
The Bass model is data-driven and requires only three parameters
to estimate how long COVID-19 will last and its final size without
making assumptions about a particular disease or borrowing
parameters from previous outbreaks. It is not necessary to
solve the Bass equation in order to estimate the size and
duration of the outbreak. Instead, Eq. 7 can be rewritten in
quadratic form as follows:

s � N p + (q − p)S − q
N
S2 (9)

or

s � A + B S + C S2, (10)

where A � Np, B � q–p, and C � −q/N.
The parameters A, B, and C can be estimated using least-

squares fitting to the evolving data, as shown in Figure 3. That is,
Figure 3 plots s against S, where S is cumulative data and s is data
collected on a daily basis. The actual data are fit to a quadratic
equation to obtain A, B, and C. The parameters p, q, and N can be
determined from A, B, and C as follows:

N � − B ±
���������
B2 − 4AC

√
2 C

(11)

and

p �
∣∣∣∣∣∣∣AN

∣∣∣∣∣∣∣ (12)

q � B + p. (13)

In addition, since we know the solution to the Bass differential
equation a priori, we can find the time to reach the inflection
point, t*. This is the point in time when the new infections peak
and the curve begins to bend downward.

tp � Ln(r)/a. (14)
The Tsallis-Tirnakli model declines after reaching a peak

because it incorporates removed cases due to death or recovery,
whereas the Bass and KM model count only total infected
(including removed).

A second wave hit Bahrain on the third of September 2020
(day 193), as shown in Figure 4, where there is a steep increase in
the actual cases infected. All three models did not predict this
sudden increase accurately. In addition, there is a big difference
between the prediction and actual values. Figure 5 indicates that
the models either overestimated or underestimated. The interval
is between [−36,800, 8,350] cases infected – a very large
difference. See Table 2.

WHY SIZE AND DURATION ARE DIFFICULT
TO PREDICT?

There are many explanations for why epidemic models fail to
predict the size and duration of outbreaks. We list only a few here.
First, these models assume uniformmixing of the population, but
we know that human populations form clusters, which result in
surges of infection as it spreads from cluster to cluster. Second,
the models do not incorporate the effects of mitigation strategies
such as social distancing or quarantine. In addition, they all
assume that the infection rate is constant and the same for all
individuals, when we know that the infection rate varies with age
and occupation. Finally, they assume that people follow public
health policy advice, but we know that public sentiment often
overrides policy advice, as demonstrated in the United States by a
rise in cases after relaxing social distancing and the wearing
of masks.

Scalability
The models compared here are difficult to use because, in
addition to assumptions about uniform mixing and uniform
susceptibility to diseases, they require an accurate estimate of
parameters subject to adjustment as more data are collected. For
example, in [6], the researchers found that variation in the
estimate of initial conditions for the KM equations leads to
great inaccuracy in the resulting numerical solution. They had
to adjust the calculated values using curve-fitting to obtain
reasonable projections of the spread of Ebola. Yet, KM did as
well as the other two models for the Bahrain case study.

When applied to pandemic-scale contagions, these models
often fail to scale up. For example, for worldwide COVID-19
spreading, the Bass model predicted N � 35million on 23May; 14
million on 6 June; three million on 20 June; 4.6 million on July 4,
2020. On July 15, the actual number was 13.5 million and
increasing. The Tsallis-Tirnakli model does better but gives
only orders of magnitude estimates for N and fails to estimate
duration. For example, it estimated US cases would peak around
July at 106, but as of July, the number of actual cases surpassed 3.5
million and was accelerating. In Brazil, Tsallis-Tirnakli
underestimated the number of cases by millions. However,
Tsallis-Tirnakli accurately estimated the size of COVID-19 for
European nations as they reached 105 cases.

Generally, epidemic models do not scale well for estimating
the size and duration of pandemics because of diverse
populations, policies, and social structures. We examine three
impactful factors as follows: population, mobility, and social
network structure and quarantine policy.

Impact of Population and Population
Density
Large populations have more cases of infection than small
populations, but do large populations affect the number of
cases per capita more than small populations? To address this
question, the authors compared the population of the 50 states of
the United States with the number of infected cases known on
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July 4, 2020. The population of US states ranges from 528,000
(Wyoming) to 39.5 million (California).

A log-log plot of the frequency of infected cases vs. cases/
100,000 population is shown in Figure 6. The data are placed into
bins of equal size and a straight line fit to the log-log graph. The
slope of this line q is the exponent of a power law ∼1/xq. That is,
the number of cases per capita x obeys a power law rather than a
normal distribution, which suggests that cases were not random
across different regions of the US. Cirillo and Taleb observed a
similar “fat tail” distribution of epidemic [fatalities] throughout
recorded history. “We show that pandemics are extremely fat-
tailed in terms of fatalities, with a marked potentially existential
risk for humanity,” when examining data over the past
2,500 years [17].

Similar power law relationship exists for individual states at
one extreme and at a global level at the other extreme. The
exponents of the power laws obtained for all countries of the
globe, the US, and Texas are summarized in Table 3. This means
that size of the epidemic is unpredictable but not random. N
varies according to a long-tailed distribution.

Note that if cases per capita determined N alone, the curve in
Figure 6 would not fit a power law—the frequency distribution
would be a flat line with a slope of zero, assuming infections per
capita are constant. The fact that N is distributed according to a
power law indicates that public sentiment, different policies in
different regions, and different social structures all play a role in
determining N. It also suggests that N is an unpredictable
parameter.

Next, we examine the impact of size of social group with
random contacts on number of infections by simulating random
networks with 500 nodes and varying densities. We define density
as the average number of connections per node. That is, we vary
the number of random links from 1,000 to 24,000 and run 10,000
simulations each to arrive at an average number infected
assuming an infection rate of 5%. See Algorithm 1.

The results are shown in Figure 6(b) indicating an increasing
number of infections as the density increases, as expected. Social
distancing and small crowds are effective counter measures to

infection. Alternatively, increasing density has the same effect as
increasing the infection rate. The more contact people make, the
more likely it is that they will become infected. The simulation
merely quantifies common sense.

Impact of Mobility
Most populations of the countries of the world are fluid—they are
in constant motion. We can study this by analyzing transportation
networks and their weak ties to other regions. Transportation
networks link population clusters together to form larger “mega-
clusters” of people susceptible to disease. Transportation networks
introduce time delays and surges into the model.

Consider two transportation networks–—the global
commercial airline network called Openflight2 and a regional
network such as the Los Angeles Metro commuter system.
Openflight contains 3,425 airport nodes and 19,256 unique
routes connecting the airports. It is extremely interconnected

FIGURE 3 | Applying the quadratic Bass model to predict 28,360 total cases as of 23 May 2020.

TABLE 2 | Bahrain results for KM, Tsallis-Tirnakli, and Bass models show
Divergent size and duration estimates.

Date (2020) KM Bass Tsallis-
tirnakli

Actual infected I(t) t* N t* N t* N

23 May: I (90) � 8,802 120 48,820 114 28,360 201 27,145
6 June: I (104) � 14,383 121 48,890 136 90,540 201 27,145
20 June: I (118) � 21,331 122 47,900 118 41,600 203 32,573
4 July: I (132) � 28,857 122 47,900 118 46,885 193 42,527
18 July: I (146) � 36,004 122 47,900 114 48,758 193 42,527
1 Aug: I (160) � 41,190 122 47,900 115 49,183 314 66,691
15 Aug: I (174) � 46,430 122 47,900 114 57,280 314 66,691
29 Aug: I (188) � 51,391 122 47,900 114 59,769 314 66,691
15 Sep: I (205) � 61,643 122 47,900 133 76,184 314 66,691
15 Oct: I (235) � 76,954 122 47,900 154 94,229 314 66,691
1 Nov: I (252) � 81,923 122 47,900 155 99,082 314 66,691
15 Nov: I (266) � 84,703 122 47,900 155 102,297 317 66,691

2https://github.com/jpatokal/openflights/
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with a cluster coefficient of 0.48. The LA Metro network, in
contrast, contains 117 stations connected by 127 railroads,
with a cluster coefficient of 0.018. Openflight is “bushy,”
whereas LA Metro is “branchy,” so we expect them to
transmit viruses differently from one another. These
networks are shown in Figure 7. Bushy vs. branchy
networks are more formally defined as small diameter large
spectral radius (bushy) vs. large diameter small spectral radius
(branchy). Scale-free networks are extremely bushy with
relatively large spectral radius.

The authors simulated the spread of COVID-19 through both
networks starting at Wuhan with 66 connections for Openflight
and Union Station with 10 connections for LA Metro. Ten
thousand runs were averaged to determine the frequency of
occurrences of size, N. The simulated contagion algorithm is
given in Algorithm 1.

In each case, the first thing to notice is that N varies,
statistically, leading to histograms, as shown in Figure 8. The
branchy topology of the LA Metro network reduces its
susceptibility to infection, although peak N varies widely

FIGURE 4 | All three Bahrain models failed to detect the second wave on September 3rd.

FIGURE 5 | Underestimated/overestimated Model prediction for Bahrain data. However, the Bass model appears to converge to a better estimate of size than the
other two models.
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from 0 to 40%. Openflight, on the other hand, is more likely
to infect a higher fraction of the total due to population
clusters at each node. Assuming the number of infected is
equal to the degree of each node shifts the size of N from 75
to 95%.

Simulations of epidemics in hypothetical scale-free and
random networks with identical spectral radius illustrate
in a dramatic way how topology severely impacts
contagion. When the spread of a contagion in a random
network with a spectral radius of 9.0 is compared with a scale-
free network also of a spectral radius of 9.0, the random

network’s N ranged from 96 to 99% of nodes infected vs.
59–85% of scale-free nodes infected assuming an infection
rate of 50%.

FIGURE 6 | (A) The distribution of COVID-19 spreading obeys a power law vs. the number of cases per capita as shown in this log-log plot. (B). Simulation of
average number of infections in a random network of 500 actors and 5% infection rate shows that number of infections increases with density of network links.

TABLE 3 | Distribution of cases per capita obey power laws.

Region Power law exponent q

World (countries) 1.786
United States (states) 0.478
Texas 2.23

Algorithm 1. Contagion Spreading

v: infection rate

L: link

L.visited � false for all L

Repeat until there are no more infections

Set t � 0

For every link L that has not been visited already do

If one end of L is infected, infect the other end with probability v

Mark L as visited (One-shot exposure)

End for

Count the number of nodes infected

Increment t

End repeat
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FIGURE 7 | Two contrasting transportation networks: (a) the Openflight network with 3,425 airports and the LAMetro with 117 stations. Infection rate v � 50%. (A).
Openflight network in Wuhan, China. (B). LA Metro network in Union Station in downtown Los Angeles. (C). Distribution of nodes across levels differs greatly for bushy
Openflight vs. branchy LA Metro. This has a direct impact on the size and duration of epidemics.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org March 2021 | Volume 6 | Article 6118549

Lewis and Al Mannai Size and Duration of COVID-19

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


This wide variation in N due to topology can be seen in the
distribution of the number of nodes at different levels in Figure 7.
Openflight has over 50% of its nodes at three levels fromWuhan,
while LA Metro spreads 50% of its nodes over 10 levels—three
times as many as Openflight.

It is clear that network topology and clustering have a major
impact on the size of an epidemic. None of the models discussed
in this article consider topology or clustering and yet these are
factors that greatly affect size.

Impact of Quarantine
The authors added quarantining to Algorithm 1 to obtain
Algorithm 2: Quarantine. After each time step in the contagion
spreading algorithm, scan the network nodes looking for clusters of
size ≥ q, and when found, quarantine them. A cluster is defined as a

node and all of its nearest neighbors. A cluster of size≥ q is defined as
a cluster with at least q infected neighbors.

Applying Algorithm 2 to the LA Metro and Openflight
networks yields much better results. Instead of N � 5 and
75%, quarantining results in N � 2 and 20%, respectively,
when clusters of size q � 3 are quarantined and N � 5 and
30%, respectively, when q � 5. As the size of the cluster rises, the
effectiveness declines. This is due to allowingmore nodes to infect
other nodes as the contagion spreads. Clearly, quarantine
strategies are effective and impact size and duration in positive
ways that are not accounted for in most mathematical models.
These results are for an infection rate of 50%.

The approach here depends on a known network. An alternate
approach using machine learning techniques is proposed by
Dandekar and Barbastathis [16] to find a quarantine function
from outbreak data of COVID-19 in Italy, South Korea, and the
United States. Known data are used to train a neural network “by
training it from data in the January 24th till March 3rd window,
and then matching the predictions up to April 1st [16].”
Unfortunately, the neural network model is no better than
curve-fitting models described here, “In the case of the US,
our model captures well the current infected curve growth and
predicts a halting of infection spread by 20 April 2020.” As of 20
April 2020, the outbreak was still going full force and continued
its exponential growth into June.

A Surge Model Based on Waves
COVID-19 exhibits wave-like behavior—both in time and space.
In time, many regions exhibited multiple peaks and valleys in
recorded cases of infected people. In space, the peaks and valleys
occurred in different countries and regions, seemingly in no
apparent pattern. One explanation might be that peaks and

FIGURE 8 | Simulations of epidemics in travel networks Openflight and
LA Metro show vast differences in peak N for different assumptions about
population. (A). Openflight size of outbreak N varies depending on the
population at each node: one vs. the degree of the node. The horizontal
axis is the percentage of the total number of nodes. (B). LA Metro size of
outbreak N varies depending on the population at each node: 1 vs. the degree
of the node. In addition, the topology of the network–low clustering–vastly
reduces the size N. Infection rate v � 50%.

Parameter C N a b α

S. Korea 92.63 3,046 -0.3692 15.56 0.9692
Bahrain 0 54,857 0.0339 3.5979 1.8452

Algorithm 2. Contagion Spreading With Quarantine

v: infection rate
L: link
L.visited � false for all L
Repeat until there are no more infections
Set t � 0
For every link L that has not been visited already do
If one end of L is infected, infect the other end with probability v
Mark L as visited (One-shot exposure)
End for
Count the number of nodes infected
For every node j do
Count the number of neighbors infected, k
If k > q Quarantine(j) and its neighbors
End for
Increment t
End repeat
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valleys are caused by space and time shifts in terms of the start of
“mini-epidemics” that spread through weak ties. This is illustrated
in Figure 9A, which is based on high-frequency surges in Florida
during the summer of 2020 and on low-frequency or long waves in
California where there was a resurgence in the spread of COVID-
19, see Figure 9B.

Villalobos and Alberto modified the Verhulst sigmoid to
accommodate late-stage surges shown in Figure 9B [18].
Their 5-parameter model incorporates a time-dependent
spread of COVID-19 as follows:

I(t) � N + ct

(1 + e− at+bt)α. (15)

They argue, “if we have the lower part of the curve, that is, the first
values of the curve, we can obtain the parameters of the curve, and
obtain the complete curve. And with this it can be used to predict
population growth, in this case, for example, the total number of

cases by COVID-19 in a country or region and when the
inflection point is reached, that is, when that the number of
daily cases begins to decrease.”

The modification introduces additional parameters but gives
exceptionally accurate size estimates for China and South Korea,
which saw a slight resurgence on March 31, 2020. The
parameters that give the best-fit (R2 � 0.9999) are listed
below. But this model has no size or duration because I(t)
can go to infinity when c > 0!

It is worth mentioning the two-stage model proposed by
Katriel showing instabilities in social contagions that are
reminiscent of bursts and instabilities in the spread of
COVID-19 [20]. His novel solution introduces the idea of
multiple stages of infection and offers an alternative to the
explanations given here. The dynamic system model of
Katriel is in contrast to the network science model
given here.

FIGURE 9 | As COVID-19 encounters clusters of large populations, the estimate of size and duration increases. The error in these estimates may be caused by the
time shift and magnitude of the infected clusters or shifts in public sentiment, as illustrated by the two examples shown here. (A). High-frequency wave-like behavior in
Florida. The correlation coefficient between actual new cases and cosine waves is 0.95 for 5.3-day cycles. (B). Long wave-life surges in California caused by “mini-
epidemics” recurring with different start times and amplitudes.
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Are Epidemics Lévy Flights?
The authors speculate that the global spread of COVID-19 is a
Lévy Flight–a random walk with waypoints separated in space
and time by a distance that obeys a power law. Lewis [14]
estimated the exponent of the power law (1.6) that fit the
distances traveled by SARS from country to country,
confirming a theory of why SARS was stopped quickly [15]. If
the Lévy Flight theory is correct and N depends on topology, the
problem of estimating size and duration will remain until
topology, geography, public sentiment, and population density
are incorporated into our models.
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