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Word2vec introduced by Mikolov et al. is a word embedding method that is widely used in
natural language processing. Despite its success and frequent use, a strong theoretical
justification is still lacking. The main contribution of our paper is to propose a rigorous analysis
of the highly nonlinear functional of word2vec. Our results suggest that word2vec may be
primarily driven by an underlying spectral method. This insight may open the door to obtaining
provable guarantees for word2vec. We support these findings by numerical simulations. One
fascinating open question is whether the nonlinear properties of word2vec that are not
captured by the spectral method are beneficial and, if so, by what mechanism.
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1 INTRODUCTION

Word2vec was introduced by Mikolov et al. [1] as an unsupervised scheme for embedding
words based on text corpora. We will try to introduce the idea in the simplest possible terms
and refer to [1–3] for the way it is usually presented. Let {x1, x2, . . . , xn} be a set of elements for
which we aim to compute a numerical representation. These may be words, documents, or
nodes in a graph. Our input consists of an n × n matrix P with non-negative elements Pij,
which encode, by a numerical value, the relationship between the set {xi}ni�1 and a set of context
elements {cj}nj�1. The meaning of contexts is determined by the specific application, where in
most cases the set of contexts is equal to the set of elements (i.e. ci � xi for any
i ∈ {1, . . . , n}) [2].

The larger the value of Pij, the larger the connection between xi and cj. For example, such a
connection can be quantified by the probability that a word appears in the same sentence as another
word. Based on P, Mikolov defined an energy function which depends on two sets of vector
representations {w1, . . . ,wn} and {v1, . . . , vn}. Maximizing the functional with respect to these sets
yields {w*

1, . . . ,w
*
n} and {v*1, . . . , v*n} which can serve as a low dimensional representations for the

words and contexts respectively. Ideally, this embedding should encapsulate the relations captured
by the matrix P.

Assuming a uniform prior over the n elements, the energy function L : Rn × Rn →R, introduced
by Mikolov et al. [1] can be written as

L(w, v) � 〈w, Pv〉 −∑n
i�1

log⎛⎝∑n
j�1

exp(wivj)⎞⎠. (1)
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The exact relation between 1 and the formulation in [4] appears
in Supplementary Material. Word2vec is based on maximizing
this expression over all (w, v) ∈ Rn × Rn(w*, v*) � argmax

(w,v)
L(w, v).

There is no reason to assume that the maximum is unique. It has
been observed that if xi and xj are similar elements in the data set
(namely, words that frequently appear in the same sentence), then
v*i , v

*
j or w

*
i ,w

*
j tend to have similar numerical values. Thus, the

values {w*
1, . . . ,w

*
n} are useful for embedding {x1, . . . , xn}. One

could also try to maximize the symmetric loss that arises from
enforcing w � v and is given by L : Rn →R

L(w) � 〈w, Pw〉 −∑n
i�1

log⎛⎝∑n
j�1

exp(wiwj)⎞⎠. (2)

In Section 5 we show that the symmetric functional yields a
meaningful embedding for various datasets. Here, the
interpretation of the functional is straight-forward: we wish to
pick w ∈ Rn in a way that makes 〈w, Pw〉 large. Assuming P is
diagonalizable, this is achieved for w that is a linear combination
of the leading eigenvectors. At the same time, the exponential
function places a penalty over large entries in w.

Our paper initiates a rigorous study of the energy functional
L(w), however, we emphasize that a complete description of the
energy landscape L(w) remains an interesting open problem. We
also emphasize that our analysis has direct implications for
computational aspects as well: for instance, if one were
interested in maximizing the nonlinear functional, the
maximum of its linear approximation (which is easy to
compute) is a natural starting point. A simple example is
shown in Figure 1: the underlying dataset contains 200 points
in R10 where the first 100 points are drawn from a Gaussian
distribution, and the second 100 points are drawn from a
second Gaussian distribution. The matrix P is the row-

stochastic matrix induced by a Gaussian kernel Kij �
exp(−����xi − xj

����2/α) where α is a scaling parameter discussed in
Section 5. We observe that, up to scaling, the maximizer of the
energy functional (black) is well approximated by the spectral
methods introduced below.

2 MOTIVATION AND RELATED WORKS

Optimizing over energy functions such as 1 to obtain vector
embeddings is done for various applications, such as words [4],
documents [5] and graphs [6]. Surprisingly, very few works
addressed the analytic aspects of optimizing over the word2vec
functional. Hashimoto et. al. [7] derived a relation between
word2vec and stochastic neighbor embedding [8]. Cotterell
et al. [9] showed that when P is sampled according to a
multinomial distribution, optimizing over 1 is equivalent to
exponential family PCA [10]. If the number of elements is
large, optimizing over 1 becomes impractical. As an efficient
alternative, Mikolov et al. [4] suggested a variation based on
negative sampling. Levy and Goldberg [11] showed that if the
embedding dimension is sufficiently high, then optimizing
over the negative sampling functional suggested in [4] is
equivalent to factorizing the shifted Pointwise Mutual
Information matrix. This work was extended in [12], where
similar results were derived for additional embedding
algorithms such as [3, 13, 14]. Decomposition of the PMI
matrix was also justified by Arora et al. [15], based on a
generative random walk model. A different approach was
introduced by Landgraf [16], that related the negative
sampling loss function to logistic PCA.

In this work, we focus on approximating the highly nonlinear
word2vec functional by Taylor expansion. We show that in the
regime of embedding vectors with small magnitude, the
functional can be approximated by the spectral decomposition
of the matrix P. This draws a natural connection between
word2vec and classical, spectral embedding methods such
as [17, 18]. By rephrasing word2vec as a spectral method
in the “small vector limit,” one gains access to a large number
of tools that allow one to rigorously establish a framework
under which word2vec can enjoy provable guarantees, such as
in [19, 20].

3 RESULTS

We now state our main results. In Section 3.1 we establish that
the energy functional L(w, v) has a nice asymptotic expansion
around (v,w) � (0, 0) ∈ Rn × Rn and corresponds naturally to a
spectral method in that regime. Naturally, such an asymptotic
expansion is only feasible if one has some control over the size of
the entries of the extremizer. We establish in Section 3.2 that the
vectors maximizing the functional are not too large. The results in
Section 3.2 are closely matched by numerical results: in
particular, we observe that ||w|| ∼ ��

n
√

in practice, a
logarithmic factor smaller than our upper bound. The proofs
are given in Section 4 and explicit numerical examples are shown

FIGURE 1 | Illustration of point set drawn from two distinct Gaussian
distributions. The result of maximizing over the word2vec functional (black) is
closely tracked (up to scale) by the optimizer of the spectral method (blue) and
the eigenvector (red). In Figure 7, we present a scatter plot comparing
the values of ŵ and

���
λn

√
u.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org December 2020 | Volume 6 | Article 5934062

Jaffe et al. The Spectral Underpinning of word2vec

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


in Section 5. In Section 6 we show empirically that the relation
between word2vec and the spectral approach holds also for
embedding in more than one dimension.

3.1 First Order Approximation for Small Data
The main idea is simple: we make an ansatz assuming that the
optimal vectors are roughly of size ||w||, ||v|| ∼ 1. If we assume
that the vectors w, v are fairly “typical” vectors of size ∼ 1, then
each entry is expected to scale approximately as ∼ n−1/2. Our
main observation is that this regime is governed by a regularized
spectral method. Before stating our theorem, let ( denote the
inequality up to universal multiplicative constants.

Theorem 3.1 (Spectral Expansion). If ||v||∞, ‖w‖∞(n−1/2,
then

L(w, v) � 〈w, Pv〉 − 1
n
⎛⎝∑n

i�1
wi
⎞⎠⎛⎝∑n

j�1
vj⎞⎠ − 1

n
∑n
i,j�1

w2
i v

2
j

2
− n log n

+O(n−1).
Naturally, since we are interested in maximizing this quantity, the
constant factor nlogn plays no role. The leading terms can be
rewritten as

〈w, Pv〉 − 1
n
⎛⎝∑n

i�1
wi
⎞⎠⎛⎝∑n

j�1
vj⎞⎠ � 〈w,(P − 1

n
1)v〉,

where 1 is the matrix all of whose entries are 1. This suggests that
the optimal v,w maximizing the quantity should simply be the
singular vectors associated to the matrix P − 1

n 1. The full
expansion has a quadratic term that serves as an additional
regularizer. The symmetric case (with ansatz v � w) is
particularly simple, since we have

L(w) � 〈w, Pw〉 − 1
n
⎛⎝∑n

i�1
wi
⎞⎠2

− ||w||4
2n

− n log n +O(n−1).
Assuming P is similar to a symmetric matrix, the optimal w

should be well described by the leading eigenvector of (P − 1
n 1)

with an additional regularization term ensuring that ||w|| is
not too large. We consider this simple insight to be the main
contribution of this paper, since it explains succinctly why an
algorithm like word2vec has a chance to be successful. We
also give a large number of numerical examples showing that
in many cases the result obtained by word2vec is extremely
similar to what we obtain from the associated spectral
method.

3.2 Optimal Vectors Are Not Too Large
Another basic question is as follows: how large is the norm of the
vector(s) maximizing the energy function? This is of obvious
importance in practice, however, as seen in Theorem 3.1, it also
has some theoretical relevance: if w has large entries, then clearly
one cannot hope to capture the exponential nonlinearity with a

polynomial expansion. Assuming ||P||≤ 1, the global maximizer
w* of the second-order approximation

L2(w) � 〈w, Pw〉 − 1
n
⎛⎝∑n

i�1
wi
⎞⎠2

− ‖w‖4
2n

− nlogn, (3)

satisfies

‖w‖* ≤ ���
2n

√
.

This can be seen as follows: if ||P||≤ 1, then 〈w, Pw〉≤ ‖w‖2.
Plugging in w � 0 shows that the maximal energy is at least size
−nlogn. For any vector exceeding

���
2n

√
in size, we see that the

energy is less than that establishing the bound. We obtain similar
boundedness properties for the fully nonlinear problem for a
fairly general class of matrices.

Theorem 3.2 (Generic Boundedness.). Let P ∈ Rn×n satisfy
‖P‖< 1. Then

w � argmax
w

〈w, Pw〉 −∑n
i�1

log⎛⎝∑n
j�1

exp(wiwj)⎞⎠,

satisfies

‖w‖2 ≤ nlogn
1 − ‖P‖.

While we do not claim that this bound is sharp, however it does
nicely illustrate that the solutions of the optimization problem
must be bounded. Moreover, if they are bounded, then so are their
entries; more precisely, ||w||2(n implies that, for ‘flat’ vectors,
the typical entry is of size (1 and thus firmly within the
approximations that can be reached by a Taylor expansion. It
is clear that a condition such as ||P||< 1 is required for
boundedness of the solutions. This can be observed by
considering the row-stochastic matrix

P � ( 1 − ε ε
ε 1 − ε

).
Writing w � (w1,w2), we observe that the arising functional is
quite nonlinear even in this simple case. However, it is fairly easy
to understand the behavior of the gradient ascent method on the
w1−axis since

z

zw1
L(w1,w2)|w2�0 � 2w1(1 − ε − ew

2
1

1 + ew
2
1
),

is monotonically increasing until w1 ∼ ±
�����
logε−1

√
. Therefore it is,

a priori, unbounded since ε can be arbitrarily close to 0.
In practice, one often uses word2vec for matrices whose

spectral norm is ‖P‖ � 1 and which have the additional
property of being row-stochastic. We also observe empirically
that the global optimizer w* has a mean value close to 0 (the
expansion in Theorem 3.1 suggests why this would be the case).
We achieve a similar boundedness theorem in which the only
relevant operator norm is that of the operator restricted to the
subspace of vectors having mean 0.
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Theorem 3.3 (Boundedness for row-stochastic matrices). Let
P ∈ Rn×n be a row-stochastic matrix and let

PS : {w ∈ Rn : w1 + . . . + wn � 0}→Rn,

denote the restriction of P to that subspace and suppose that
‖PS‖< 1. Let

w � argmax
w

〈w, Pw〉 −∑n
i�1

log⎛⎝∑n
j�1

exp(wiwj)⎞⎠.

If w has a mean value sufficiently close to 0,∣∣∣∣∣∣∣∣〈w,
1��
n

√ 〉
∣∣∣∣∣∣∣∣≤ 1 − ||PS||

3
‖w‖,

where 1 � (1, 1, 1, . . . , 1), then

‖w‖2 ≤ 2nlogn
1 − ‖PS‖.

The 2 × 2matrix given above, illustrates that some restrictions are
necessary, in order to obtain a nicely bounded gradient ascent.
There is some freedom in the choice of the constants in Theorem
3.3. Numerical experiments show that the results are not merely
theoretical: extremizing vectors tend to have a mean value
sufficiently close to 0 for the theorem to be applicable.

3.3 Outlook
Summarizing, our main arguments are as follows:

(1) The energy landscape of the word2vec functional is well
approximated by a spectral method (or regularized spectral
method) as long as the entries of the vector are uniformly
bounded. In any compact interval around 0, the behavior of
the exponential function can be appropriately approximated
by a Taylor expansion of sufficiently high degree.

(2) There are bounds that suggests that the energy of the
embedding vector scale as

�����
nlogn

√
; this means that, for

“flat” vectors, the individual entries grow at most like����
logn

√
. Presumably this is an artifact of the proof.

(3) Finally, we present examples in Section 4 showing that in
many cases the embedding obtained by maximizing the
word2vec functional are indeed accurately predicted by
the second order approximation.

This suggests various interesting lines of research: it would be
nice to have refined versions of Theorems 3.2 and 3.3 (an
immediate goal being the removal of the logarithmic
dependence and perhaps even pointwise bounds on the entries
of w). Numerical experiments indicate that Theorems 3.2 and 3.3
are at most a logarithmic factor away from being optimal. A
second natural avenue of research proposed by our paper is to
differentiate the behavior of word2vec and that of the associated
spectral method: are the results of word2vec (being intrinsically
nonlinear) truly different from the behavior of the spectral
method (arising as its linearization)? Or, put differently, is the
nonlinear aspect of word2vec that is not being captured by the
spectral method helpful for embedding?

4 PROOFS

Proof of Theorem 3.1. We recall our assumption of ||w||∞(n−1/2
and ‖v‖∞(n−1/2 (where the implicit constant affects all
subsequent constants). We remark that the subsequent
arguments could also be carried out for any ||w||∞, ‖v‖∞(n−ε
at the cost of different error terms; the arguments fail to be
rigorous as soon as ||w||∞ ∼ 1, since then, a priori, all terms in the
Taylor expansion of ex could be of roughly the same size. We start
with the Taylor expansion

∑
j�1

n

ewivj � ∑
j�1

n (1 + wivj +
w2

i v
2
j

2
+O(n−3))

� n +∑
j�1

n (wivj +
w2

i v
2
j

2
) +O(n−2).

In particular, we note that∣∣∣∣∣∣∣∣∣∣∑nj�1(wivj +
w2

i v
2
j

2
)∣∣∣∣∣∣∣∣∣∣(1.

We use the series expansion

log(n + x) � log n + x
n
− x2

2n2
+O(|x|

n3
)3

to obtain

log⎛⎝∑
j�1

n

ewivj⎞⎠ � log n + 1
n
∑
j�1

n (wivj +
w2

i v
2
j

2
)

− 1
2n2

⎛⎝∑
j�1

n

wivj +
w2

i v
2
j

2
⎞⎠2

+O(n−3).
Here, the second sum can be somewhat simplified since

1
2n2

⎛⎝∑
j�1

n

wivj +
w2

i v
2
j

2
⎞⎠2

� 1
2n2

⎛⎝∑
j�1

n (wivj +O(n− 2))⎞⎠2

� 1
2n2

⎛⎝O(n−1) +∑
j�1

n

wivj⎞⎠2

� 1
2n2

⎛⎝∑
j�1

n

wivj⎞⎠2

+O(n−3)
� w2

i

2n2
⎛⎝∑

j�1

n

vj⎞⎠2

+O(n−3)
Altogether, we obtain that

∑
i�1

n

log⎛⎝∑
j�1

n

ewivj⎞⎠ � ∑
i�1

n ⎛⎝log n + 1
n
∑
j�1

n (wivj +
w2

i v
2
j

2
)

− w2
i

2n2
⎛⎝∑

j�1

n

vj⎞⎠2

+O(n−3)⎞⎠
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� n log n + 1
n
∑
i,j�1

n

wivj + 1
n
∑
i,j�1

n w2
i v

2
j

2

− 1
n2

⎛⎝∑
i�1

n w2
i

2
⎞⎠⎛⎝∑

j�1

n

vj⎞⎠2

+O(n− 2).
Since ||w||∞, ||v||∞(n−1/2, we have

1
n2

⎛⎝∑n
i�1

w2
i

2
⎞⎠⎛⎝∑n

j�1
vj⎞⎠2

(n−1

and have justified the desired expansion.
Proof of Theorem 3.2. Setting w � 0 results in the energy

L(w) � −nlogn.
Now, let w be a global maximizer. We obtain

−n log n≤ 〈w, Pw〉 −∑
i�1

n

log⎛⎝∑
j�1

n

ewiwj⎞⎠
≤ ‖P‖‖w‖2 −∑

i�1

n

log(ew2
i )≤ (‖P‖ − 1)‖w‖2

which is the desired result.
Proof of Theorem 3.3. We expand the vector w into a multiple

of the constant vector of norm 1, the vector

1��
n

√ � ( 1��
n

√ ,
1��
n

√ , . . . ,
1��
n

√ ),
and the orthogonal complement via

w � 〈w,
1��
n

√ 〉 1��
n

√ + (w −〈w,
1��
n

√ 〉 1��
n

√ ),
which we abbreviate as w � ~w + (w − ~w). We expand,

〈w, Pw〉 � 〈~w, P~w〉 + 〈~w, P(w − ~w)〉 + 〈w − ~w, P~w〉 + 〈w
− ~w, P(w − ~w)〉.

Since P is row-stochastic, we have P~w � ~w and thus
〈~w, P~w〉 � ‖~w‖2. Moreover, we have

〈w − ~w, P~w〉 � 〈w − ~w, ~w〉 � 0

since w − ~w has mean value 0. We also observe, again because
w − ~w has mean value 0, that

〈~w, P(w − ~w)〉 � 〈~w, PS(w − ~w)〉.
Collecting all these estimates, we obtain

〈w, Pw〉
||w||2 ≤

‖~w‖2
‖w‖2 +

‖~w‖
‖w‖

||w − ~w||
‖w‖ ‖PS‖ + ||w − ~w||2

‖w‖2 ‖PS‖.
We also recall the Pythagorean theorem,

‖~w‖2 + ||w − ~w||2 � ||w||2.
Abbreviating x � ||~w||/w, we can abbreviate our upper bound as

〈w, Pw〉
‖w‖2 ≤ x2 + x

�����
1 − x2

√ ||PS|| + (1 − x2)||PS||.
The function,

x→ x
�����
1 − x2

√ + (1 − x2)
is monotonically increasing on [0, 1/3]. Thus, assuming that

x � ||~w||
||w||≤

1 − ‖PS‖
3

,

we get, after some elementary computation,

〈w, Pw〉
‖w‖2 ≤(1 − ‖P‖S

9
)2

+ 1 − ||PS||
9

��������������
1 − (1 − ||PS||

9
)2

√√
||PS||

+(1 − (1 − ‖PS‖
9

)2)||PS||≤ 0.2 + 0.8||PS||.

However, we also recall from the proof of Theorem 3.2 that

∑n
i�1

−log⎛⎝∑n
j�1

ewiwj⎞⎠≤ − ‖w‖2.

Altogether, since the energy in the maximum has to exceed the
energy in the origin, we have

−n log n≤ 〈w, Pw〉 −∑
i�1

n

log⎛⎝∑
j�1

n

ewiwj⎞⎠≤ (0.2 + 0.8||PS||)||w||2

− ||w||2
and therefore,

||w||2 ≤ 2nlogn
1 − ‖PS‖.

5 EXAMPLES

We validate our theoretical findings by comparing, for various
datasets, the representation obtained by the following methods: i)
optimizing over the symmetric functional in 1, ii) optimizing over
the spectral method suggested by Theorem 3.1 and iii) computing
the leading eigenvector of P − 1

n 1. We denote by w, ŵ and u be the
three vectors obtained by (i)–(iii), respectively. The comparison is
performed for two artificial datasets, two sets of images, a seismic
dataset and a text corpus. For the artificial, image and seismic
data, the matrix P is obtained by the following steps: we compute
a pairwise kernel matrix

K(xi, xj) � exp( −
����xi − xj

����2
α

),
where α is a scale parameter set as in [21] using a max-min scale.
The max-min scale is set to

α � max
j
[min

i,i≠ j
(����xi − xj

����2)], i, j � 1, . . . n. (4)
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This global scale guarantees that each point is connected to at
least one other point. Alternatively, adaptive scales could be used
as suggested in [22]. We then compute P via

Pij � Kij/∑
l�1

N

Kil.

The matrix P can be interpreted as a random walk over the data
points, (see for example [18]). Theorem 3.1 holds for anymatrix P
that is similar to a symmetric matrix, here we use the common
construction from [18], but our results hold for other variations
as well. To support our approximation in Theorem 3.1, Figure 7
shows a scatter plot of the scaled vector u vs. ŵ. In addition, we
compute the correlation coefficient between u and ŵ by

ρ(u, ŵ) � (u − μ)T(ŵ − μ̂)����u − μ
��������ŵ − μ̂

����,
where μ and μ̂ are the means of u and ŵ respectively. A similar
measure is done for w and u. In addition, we illustrate that the
norm ‖w‖ is comparable to

��
n

√
, which supports the upper bound

in Theorem 3.3.

5.1 Noisy Circle
Here, the elements {x1, . . . , x200 ∈ R2} are generated by adding
Gaussian noise with mean 0 and σ2 � 0.1 to a unit circle (see the
left panel of Figure 2). The right panel shows the extracted
representations w, ŵ along with the leading eigenvector u scaled
by

��
λn

√
where λ is the corresponding eigenvalue. The correlation

coefficients ρ(w, u) and ρ(ŵ, u) are equal to 0.98, 0.99
respectively.

5.2 Binary MNIST
Next, we use a set of 300 images of the digits 3 and 4 from the
MNIST dataset [23]. Two examples from each category are
presented in the left panel of Figure 3. Here, the extracted
representations w and ŵ match the values of the scaled
eigenvector u (see right panel of Figure 3). The correlation
coefficients ρ(w, u) and ρ(ŵ, u) are both higher than 0.999.

5.3 COIL100
In this example, we use images from Columbia Object Image
Library (COIL100) [24]. Our dataset contains 21 images of a cat
captured at several pose intervals of 5 degrees (see left panel of
Figure 4). We extract the embedding w and ŵ and reorder them
based on the true angle of the cat at every image. In the right

FIGURE 2 | Left: 200 elements on the noisy circle data set. Points are generated by adding noise drawn from a two dimensional Gaussian with zero mean and a
variance of 0.1.Right: The extracted representations based on the symmetric lossw, second order approximation ŵ and leading eigenvector u. In Figure 7, we present
a scatter plot comparing the values of ŵ and

���
λn

√
u.

FIGURE 3 | Left: handwritten digits from the MNIST dataset. Right: The extracted representations w, ŵ and
����
λnu

√
, the leading eigenvector of P − 1

n 1. In Figure 7,
we present a scatter plot comparing the values of ŵ and

���
λn

√
u. In Figure 7, we present a scatter plot comparing the values of ŵ and

���
λn

√
u.
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panel, we present the values of the reordered representations w, ŵ
and u overlayed with the corresponding objects. The values of all
representations are strongly correlated with the angle of the
object. Moreover, the correlation coefficients ρ(w, u) and
ρ(ŵ, u), are 0.97 and 0.99 respectively.

5.4 Seismic Data
Seismic recordings could be useful for identifying properties of
geophysical events. We use a dataset collected in Israel and Jordan,
described in [25]. The data consists of 1632 seismic recordings of
earthquakes and explosions from quarries. Each recording is
described by a sonogram with 13 frequency bins, and 89 time
bins [26] (see the left panel of Figure 5). Events could be
categorized into 5 groups using manual annotations of their
origin. We flatten each sonogram into a vector, and extract
embeddings w, ŵ, and u. In the right panel of this figure, we
show the extracted representations of all events. We use dashed

FIGURE 4 | Left: 21 samples from COIL100 dataset. The object is captured at several unorganized angles. Right: The sorted values of the representations w,ŵ
and u, along with the corresponding object. Here, the representation correlates with the angle of the object. In Figure 7, we present a scatter plot comparing the values of
ŵ and

���
λn

√
u.

FIGURE 5 | Left: 4 samples from the sonogram dataset, of different event types. Right: The values of the representations w, ŵ and u. Dashed lines annotate the
different categories of the events (based on event type and quarry location). Within each category the representations are ordered based on the value of u.

FIGURE 6 | Word representation based on “Alice in Wonderland.” The
values of the representations w, ŵ and v are sorted based on the singular
vector v. We normalized all representations to unit norm.
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lines to annotate the different categories and sort the values within
each category based on u. The coefficient ρ(w, v) is equal to 0.89,
and ρ(ŵ, v) � 1.

5.5 Text Data
As a final evaluation we use a corpus of words from the book
“Alice in Wonderland” as processed in [27]. To define a co-
occurrence matrix, we scan the sentences using a window size
covering 5 neighbors before and after each word. We subsample
the top 1000 words in terms of occurrences in the book. The
matrix P is then defined by normalizing the co-occurrence
matrix. In Figure 6 we present centered and normalized
versions of the representations w, ŵ and the leading left
singular vector v of P − 1

n 1. The coefficient ρ(w, v) is equal to
0.77, and ρ(ŵ, v) � 1.

6 MULTI-DIMENSIONAL EMBEDDING

In Section 3 we have demonstrated that under certain
assumptions, the maximizer of the energy functional in 2 is

governed by a regularized spectral method. For simplicity, we
have restricted our analysis to a one dimensional symmetric
representations, i.e. w � v ∈ RN . Here, we demonstrate
empirically that this result holds even when embedding n
elements x1, . . . , xn in higher dimensions.

Let wi ∈ Rd be the embedding vector associated with xi, where
d≪ n is the embedding dimension. The symmetric word2vec
functional is given by

L(W) � Tr(WTPW) −∑n
i�1

log⎛⎝∑n
j�1

exp(wT
i wj)⎞⎠, (5)

whereW � [w1, . . . ,wn]T ∈ Rn×d. A similar derivation to the one
presented in Theorem 3.1 (the one dimensional case) yields the
following approximation of 5,

L2(W) � Tr(WT(P − 1
n
1)W) −

����WTW
����2F

2n
− nlogn. (6)

Note that both the symmetric functional in 5 and its
approximation in 6 are invariant to multiplying W with an

FIGURE 8 | Word2vec embedding of a collection of Gaussians. We use 2,500 points generated according to five distinct Gaussians N (r · i · 1, 2 · I), where 1 is a
10− dimensional all ones vector, and r is scalar that controls the separation between the Gaussian centers. The figure shows the absolute correlation between u1 , . . . , u4
and ψ1 , . . . ,ψ4 for r � 8, 9, and 10. For each value of r, we compute the sum of diagonal elements in the correlation matrix. This results demonstrate the strong
agreement between word2vec embedding and the spectral representation based on P − 1

n 1.

FIGURE 7 | Scatter plots of the scaled eigenvector of P − 1
n 1, denoted by u, and theminimizer of the approximated functional (in Eq. 3), denoted by ŵ. From top left

to bottom right, results based on data from: two Gaussian clusters, a circle, binary MNIST images and COIL100.
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orthogonal matrix. That is,W andWR produce the same value in
both functionals, where R ∈ O(d).

To understand how the maximizer of 5 is governed by a
spectral approach, we perform the following comparison. i) We
obtain the optimizerW of 5 via gradient descent, and compute its
left singular vectors, denoted u1, . . . , ud . ii) We compute the right
singular vectors of P − 1

n 1, denoted by ψ1, . . . , ψd . iii) Compute the
pairwise absolute correlation values ρ(ui, ψj).

We experiment on two datasets: 1) A collection of 5 Gaussians,
and 2) images of hand written digits fromMNIST. The transition
probability matrix P was constructed as described in Section 5.

6.1 Data from Distinct Gaussians
In this experiment we generate a total of 2,500 samples, consisting
of five sets of size 500. The samples in the i-th set are drawn
independently according to a Gaussian distributionN (r · i · 1, 2 · I),
where 1 is a 10− dimensional all ones vector, and r is scalar that
controls the separation between the Gaussian centers.

Figure 8 shows the absolute correlation value of the pairwise
correlation between u1, . . . , u4 and ψ1, . . . , ψ4 for r � 8, 9, and 10.
The correlation between the result obtained via the word2vec
functional 5 and the right singular vectors of P − 1

n 1 increase
when the separation between the Gaussians is high.

6.2 Multi-Class MNIST
The data consists of 10, 000 samples from theMNIST hand-written
dataset with 1, 000 images from each digit (0 − 9). We compute a
10−dimensional word2vec embedding W by optimizing (5).

Figure 9 shows the absolute correlation between the
u1, . . . , u10 and ψ1, . . . , ψ10. As evident from the correlation
matrix, the results obtained by both methods span similar
subspaces.
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