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The coefficient of determination, the R2, is often used to measure the variance explained by
an affine combination of multiple explanatory covariates. An attribution of this explanatory
contribution to each of the individual covariates is often sought in order to draw inference
regarding the importance of each covariate with respect to the response phenomenon. A
recent method for ascertaining such an attribution is via the game theoretic Shapley value
decomposition of the coefficient of determination. Such a decomposition has the desirable
efficiency, monotonicity, and equal treatment properties. Under a weak assumption that
the joint distribution is pseudo-elliptical, we obtain the asymptotic normality of the Shapley
values. We then utilize this result in order to construct confidence intervals and hypothesis
tests for Shapley values. Monte Carlo studies regarding our results are provided. We found
that our asymptotic confidence intervals required less computational time to competing
bootstrap methods and are able to exhibit improved coverage, especially on small
samples. In an expository application to Australian real estate price modeling, we
employ Shapley value confidence intervals to identify significant differences between
the explanatory contributions of covariates, between models, which otherwise share
approximately the same R2 value. These different models are based on real estate
data from the same periods in 2019 and 2020, the latter covering the early stages of
the arrival of the novel coronavirus, COVID-19.

Keywords: variable importance ranking, SHapley Additive exPlanations, R square, variance explained, linear
regression, asymptotic distribution, model explanations, explainable machine learning

1. INTRODUCTION

When conducting statistical estimation and computation, the assumption of randomness of data
necessitates that we address not only the problem of point estimation, but also variability
quantification. In Ref. 1, variability for the coefficient of determination Shapley values were
quantified via the use of bootstrap confidence intervals (CIs). Combined with the usual
computational intensiveness of bootstrap resampling (see, e.g., Refs. 2 and 3; Ch. 12)), the
combinatory nature of the computation of Eq. 5 (notice that |P| � d!) compounds the time
complexity of such a method, which is already of order O(2d). In this article, we seek to
provide an asymptotic method for computing CIs for the Shapley values.

Our approach uses the joint asymptotic normality result of the elements in a correlation matrix,
under an elliptical assumption, via [4], combined with asymptotic normality results concerning the
determinants of a correlation matrix, of Refs. 5 and 6. Using these results, we derive the asymptotic
joint distribution for the R2(Zn) Shapley values, which allows us to construct CIs for each of the
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values and their contrasts. We assess the finite sample properties
of our constructions via a comprehensive Monte Carlo study and
demonstrate the use of our CIs via applications to real estate
price data.

The remainder of the article proceeds as follows. In Section 3,
we present our main results regarding the asymptotic distribution
of the coefficient of determination Shapley values, and their CI
constructions. In Section 4, we present a comprehensive Monte
Carlo study of our CI construction method. In Section 5, we
demonstrate how our results can be applied to real estate price
data. Conclusions are lastly drawn in Section 6. All data and
scripts to reproduce the analyses are available at https://github.
com/ex2o/shapley_confidence.

2. BACKGROUND

2.1. The Coefficient of Determination
The multiple linear regression model (MLR) is among the most
commonly applied tools for statistics inference; see Refs. 7 and 8;
Part I) for thorough introductions to MLR models. In the usual
MLR setting, one observes an independent and identically
distributed (IID) sample of data pairs Zu

i � (Yi,Xu
i )∈Rd+1,

where i∈[n] � {1, . . . , n}, and d, n∈N. The MLR model is then
defined via the linear relationship

(Yi|Xi � xi) � β0 +∑d
j�1

βjXij,

where βu � (β0, . . . , βn)∈Rd+1, and Xu
i � (Xi1, . . . ,Xid). We

shall also write Zu
i � (Zi0,Zi1, . . . ,Zid), when it is convenient

to do so. Here, (·)u is the transposition operator.
The usual nomenclature is to call the Yi and Xi elements of

each pair, the response (or dependent) variable and the
explanatory (or covariate) vector, respectively. Here, the jth
element of Xi: Xij (j∈[d]), is referred to as the jth explanatory
variable (or the jth covariate). We may put the covariate and
response pairs into a dataset Zn � {Zi}ni�1.

Let Rjk(Zn) denote the sample correlation coefficient

Rjk(Zn) �
∑​ n

i�1(Zij − Zj)(Zik − Zk)�������������∑​ n
i�1(Zij − Zj)2√ �������������∑​ n

i�1(Zik − Zk)2√ , (1)

for each j, k∈ {0}∪[d]. Here Zj � n−1∑​ n
i�1Zij is the sample

mean of variable j. Write U4{0}∪ [d] be a nonempty
subset, where U � {u1, . . . , u|U|}, where |U| is the cardinality
of U . We refer to the matrix of correlations between the
variables in U as

Cn(U) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Ru1u2(Zn) / Ru1u|U |(Zn)
Ru2u1(Zn) 1 / Ru2u|U|(Zn)

« « 1 «
Ru|U|u1(Zn) Ru|U|u2(Zn) / 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

A common inferential task is to determine the degree to which the
response can be explained by the covariate vector, in totality. The
usual device for addressing this question is via the coefficient of

determination (or squared coefficient of multiple correlation),
which is defined as

R2(Zn) � 1 − |Cn({0}∪[d])|
|Cn([d])| , (3)

where |C| is the matrix determinant of C (cf. Ref. 9). Intuitively,
the coefficient of determination measures the proportion of the
total variation in the response variable that is explained by
variation in the covariate vector. See Ref. 7; Sec. 4.4) and Ref.
8; Sec. 3.5) for details regarding the derivation and interpretation
of the R2(Zn) coefficients.

2.2. The Shapley Value
A refinement to the question that is addressed by the R2(Zn)
coefficient, is that of eliciting the contribution of each of the
covariates to the total value of R2(Zn).

In the past, this question has partially been resolved via the use
of partial correlation coefficients (see, e.g., Ref. 8; Sec. 3.4).
Unfortunately, such coefficients are only able to measure the
contribution of each covariate to the coefficient of determination,
conditional to the presence of other covariates that are already in
the MLR model.

A satisfactory resolution to the question above, is provided by
Refs. 10 and 11, and Ref. 1, who each suggested and argued for the
use of the Shapley decomposition of Ref. 12.

The Shapley decomposition is a game-theoretic method for
decomposing the contribution to the value of a utility function in
the context of cooperative games.

Let πu � (π1, . . . , πd) be a permutation of the set [d]. For each
j∈[d], let

Sj(π) � {k : πk < πj, k∈[d]}
be the elements of [d] that appear before πj when [d] is permuted
by π. We may define R2

Sj(π)(Zn) and R2
{j}∪ ​Sj(π)(Zn) in a similar

manner to Eq. 3, using the generic definition

R2
S(Zn) � 1 − |Cn({0}∪S)|

|Cn(S)| , (4)

for nonempty subsets S4[d], and R2
{ }(Zn) � 0 for the empty set.

Treating the coefficient of determination as a utility function,
we may conduct a Shapley partition of the R2(Zn) coefficient by
computing the jth Shapley value, for each of the d covariates,
defined by

Vj(Zn) �
∣∣∣∣P∣∣∣∣−1∑

π∈P
[R2{j}∪Sj(π)(Zn) − R2

Sj(π)(Zn)], (5)

where P is the set of all possible permutations of [d].

2.3 Uniqueness of the Shapley Value
Compared to other decompositions of the coefficient of
determination, such as those considered in Refs. 13 and 14,
the Shapley values, obtained from the partitioning above, have
the favorable axiomatic properties that were well exposed in Ref.
1. Specifically, the Shapley values have the efficiency,
monotonicity, and, equal treatment properties, and the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org December 2020 | Volume 6 | Article 5871992

Fryer et al. Shapley Value Confidence Intervals

https://github.com/ex2o/shapley_confidence
https://github.com/ex2o/shapley_confidence
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


decomposition is provably the only method that satisfies all three
of these properties (cf. Ref. 15; Thm. 2)). Here, in the context of
the coefficient of determination, efficiency, monotonicity, and
equal treatment are defined as follows:

Efficiency: The sum of the Shapley values across all covariates
equates to the coefficient of determination, that is

∑d
j�1

Vj(Zn) � R2(Zn).

Monotonicity: For pairs of samples Zm and Zn, of sizes
m, n∈N,

R2{j}∪Sj(π)(Zn) − R2
Sj(π)(Zn)≥R2{j}∪Sj(π)(Zm) − R2

Sj(π)(Zm),

for every π∈P, implies that Vj(Zn)≥Vj(Zm), for each j∈[d].
Equal treatment: If covariates j, k∈[d] are substitutes in the

sense that

R2{j}∪Sj(π)(Zn) � R2
{k}∪Sk(π)(Zn),

for each π∈P such that k ∉ Sj(π) and j ∉ Sk(π), then the Shapley
decomposition is such that Vj(Zn) � Vk(Zn).

We note that equal treatment is also often referred to as
symmetry in the literature. The uniqueness of the Shapley
decomposition in exhibiting the three described properties is
often used as the justification for its application. Furthermore,
there are numerous sets of axiomatic properties that lead to the
Shapley value decomposition as a solution (see, e.g., Ref. 16). In
the statistics literature, it is known that the axioms for
decomposition of the coefficient of determination that are
proposed by Ref. 17 correspond exactly to the Shapley values
(cf. Ref. 18).

3. THEORETICAL RESULTS

3.1. The Correlation Matrix
Let Z∈Rd+1 be a random variable with mean vector μ∈Rd+1 and
covariance matrix Σ∈R(d+1)×(d+1). Then, we can define the
coefficient of multivariate kurtosis [19] by

κ � 1

(d + 1)(d + 3)[(Z − μ)uΣ−1(Z − μ)]2.
Let ρjk � cor(Zj,Zk), for j, k∈ {0}∪[d] such that j≠ k. Assume

that Z arises from an elliptical distribution (cf. Ref. 20; Ch. 2)) and
letZn be an IID sample with the same distribution as Z. Then, we
may estimate ρjk using the sample correlation coefficient Eq. 1.
Upon writing acov to denote the asymptotic covariance, we have
the following result due to Corollary 1 of Ref. 4.

Lemma 1. If Z arises from an elliptical distribution and has
coefficient of multivariate kurtosis κ, then the normalized
coefficients of correlation ζ jk � n1/2(Rjk − ρjk) (j, k∈ {0}∪[d];
j≠ k) converge to a jointly normal distribution with
asymptotic mean and covariance elements 0 and

acov(ζgh, ζ jk) � κ[ρghρjk(ρ2gj + ρ2hj + ρ2gk + ρ2hk)/2 + ρgjρhk + ρgkρhj]
−κ[ρgh(ρhjρhk + ρgjρgk) + ρjk(ρgjρhj + ρgkρhk)].

(6)

Remark 1. We note that the elliptical distribution assumption
above can be replaced by a broader pseudo-elliptical assumption,
as per Refs. 21 and 22. This is a wide class of distributions that
includes some that may not be symmetric. Due to the complicated
construction of the class, we refer the interested reader to the
source material for its definition.

Remark 2. We may state a similar result that replaces the
elliptical assumption by a fourth moments existence assumption
instead, using Proposition 2 of Ref. 4. In order to make practical
use of such an assumption, we require the estimation of
(d + 1)!/[(d − 3)!4!] fourth order moments instead of a single
kurtosis term κ. Such a result may be useful when the number of
fourth order moments is small, but become infeasible rapidly, as d
increases.

Let ν4{0}∪[d], where ν � {v1, . . . , v|ν|}. Define Cn(ν) in the
same manner as Eq. 2, and let

R(U) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρu1u2 / ρu1u|U|
ρu2u1 1 / ρu2u|U|
« « 1 «

ρu|U|u1 ρu|U|u2 / 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

R(ν) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ρv1v2 / ρv1v|ν|
ρv2v1 1 / ρv2v|ν|
« « 1 «

ρv|ν|v1 ρv|ν|v2 / 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.
The following theorem is adapted from a result of Ref. 5 (also

appearing as Theorem 1 in Ref. 23). Our result expands upon the
original theorem, to allow for inference regarding elliptically
distributed data, and not just normally distributed data. We
further fix some typographical matters that appear in both
Refs. 5 and 23.

Lemma 2. Assume the same conditions as in Eq. 1. Then, the
normalized covariance determinant δ(U) �
n1/2(|Cn(U)| − |R(U)|) (where U and ν are nonempty subsets of
{0}∪[d]) converges to a jointly normal distribution, with
asymptotic mean and covariance elements 0 and

acov(δ(U), δ(ν)) � ∑
g,h∈U

∑
j,k∈ν

rU(g, h)rν(j, k)acov(ζgh, ζ jk), (7)

where acov(ζgh, ζ jk) is as per Eq. 6,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
rU(u1, u1) rU(u1, u2) / rU(u1, u|U|)
rU(u2, u1) rU(u2, u2) / rU(u2, u|U|)

« « 1 «
rU(u|U|, u1) rU(u|U|, u2) / rU(u|U|, u|U|)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� |R(U)|R−1(U),

and rν(j, k) (j, k∈ ν) is defined similarly.
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Proof. The result is due to an application of the delta method
(see, e.g., Ref. 24; Thm. 3.1)) and the fact that for anymatrixR, the
derivative of its determinant is z|R|/zR � |R|R−u [25]; Sec.
17.45). Notice that we use the unconstrained case of the
determinant derivative, since we sum over each pair of
coordinates, where g ≠ h or j≠ k, twice. ∎

Remark 3. If R is symmetric, then z|R|/zR � |R|[2R−1 −
diag(R−1)] [25]; Sec. 17.45). Using this fact, we may write Eq.
7 in the alternative, and more computationally efficient form

acov(δ(U), δ(ν)) � ∑
g≤h

g,h∈U

∑
j≤k

j,k∈ν

r*U(g, h)r*ν(j, k)acov(ζgh, ζ jk),
where

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
rpU(u1, u1) rpU(u1, u2) / rpU(u1, u|U|)
rpU(u2, u1) rpU(u2, u2) / rpU(u2, u|U|)

« « 1 «
rpU(u|U|, u1) rpU(u|U|, u2) / rpU(u|U|, u|U|)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 2|R(U)|R−1(U)
−|R(U)|diag(R− 1(U)),

and r*ν(j, k) (j, k∈ ν) is defined similarly.

3.2. The Coefficient of Determination
Let plim denote convergence in probability, so that for any
sequence {Xn}, and any random variable X, the statement

lim
n→∞

Pr(|Xn − X|> ε) � 0 ,

for every ε> 0, can be written as plimn→∞Xn � X.
Now, recall definition Eq. 4, and further let

ρ2S � plimn→∞R2
S(Zn). We adapt from and expand upon [23];

Thm. 2) in the following result. This result also fixes
typographical errors that appear in the original theorem, as
well as in Ref. 5.

Lemma 3. Assume the same conditions as in Eq. 1. Then, the
normalize coefficient of determination λ(S) � n1/2(R2

S(Zn) − ρ2S)
(where S and T are nonempty subsets of [d]) converges to a jointly
normal distribution, with asymptotic mean and covariance
elements 0 and

acov(λ(S), λ(T )) � 1

|R(S)||R(T )| acov(δ({0}∪S), δ({0}∪T ))

+ |R({0}∪S)||R({0}∪T )|∣∣∣∣R(S)|2|R(T ) 2 acov(δ(S), δ(T ))|

− |R({0}∪S)|∣∣∣∣R(S) 2|R(T )| acov(δ(S), δ({0}∪T ))|

− |R({0}∪T )|
|R(S)|∣∣∣∣R(T ) 2 acov(δ({0}∪S), δ(T )).|

(8)

Proof. We apply the delta method again, using the functional
form Eq. 4, and using the fact that

z

z(x, y) (1 − x
y
) � ( − 1

y
,
x
y2
).

Remark 4. When S � T , Eq. 8 yields the usual form for the
asymptotic variance of R2

S(Zn): 4κρ2S(1 − ρ2S)2 (cf. Ref. 22).

3.3. A Shapley Value Confidence Interval
For every j∈[d] and S4Sj � [d] − {j}, there are |S|!(d − |S| − 1)!
elements of π∈P such that Sj(π) � S. Thus, we may write

Vj(Zn) � ∑
S4Sj

ω(S)[R2{j}∪​S(Zn) − R2
S(Zn)], (9)

where ω(S) � |S|!(d − |S| − 1)!/d!, and define vj � plim
n→∞

Vj(Zn).
Using this functional form Eq. 9, we may apply the delta method
once more, in order to derive the following joint asymptotic normal
distribution result regarding the Shapley values Vj(Zn), for j∈[d].

Remark 5. The form Eq. 9 is a useful computational trick that
reduces the computational time of form Eq. 5 and results in more
efficient computations for fixed d. It is unclear whether other
formulations such as that of Ref. 26 can make the computation
time even faster. Unfortunately, however, there is no formulation
that reduces the O(2d) scaling, as d increases.

Theorem 1.Assume the same conditions as in Eq. 1. Then, the
normalized Shapley values ξj � n1/2(Vj(Zn) − vj) (where
j, k∈[d]) converge to a jointly normal distribution, with
asymptotic mean and covariance elements 0 and
acov(ξj, ξk) � ajk + bjk − cjk − djk. Here,

ajk � ∑
S4Sj

∑
T 4Sk

ω(S)ω(T )acov(λ({j}∪​ S), λ({k}∪​ T )),
bjk � ∑

S4Sj

∑
T 4Sk

ω(S)ω(T )acov(λ(S), λ(T )),

cjk � ∑
S4Sj

∑
T 4Sk

ω(S)ω(T )acov(λ(S), λ({k}∪​ T )),

and

djk � ∑
S4Sj

∑
T 4Sk

ω(S)ω(T )acov(λ({j}∪​ S), λ(T )),
where λ(S) is as defined in Eq. 3, for nonempty subsets S4[d].

Using the result above, wemay apply the delta method again in
order to construct asymptotic CIs or hypothesis tests regarding
any continuous function of the d Shapley values for the coefficient
of determination. Of particular interest is the asymptotic CI for
each of the individual Shapley values and the hypothesis test for
the difference between two Shapley values.

The asymptotic 100(1 − α)% CI for the jth expected Shapley
value vj has the usual form

⎛⎜⎜⎝Vj(Zn) − Φ−1(1 − α

2
) �������

avar(ξj)
n

√
,Vj(Zn)

+ Φ−1(1 − α

2
) �������

avar(ξ j)
n

√ ⎞⎟⎟⎠,
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where avar(ξj) � acov(ξj, ξj) denotes the asymptotic variance of ξj
and Φ−1 is the inverse cumulative distribution function of the
standard normal distribution. The z-statistic for the test of the
null and alternative hypotheses

H0 : vj � vk and H1 : vj ≠ vk, (10)

for j, k∈[d] such that j≠ k, is

Δn �
��
n

√ (Vj(Zn) − Vk(Zn))����������������������������
avar(ξ j) + avar(ξk) − 2acov(ξ j, ξk)√ ,

where Δn has an asymptotic standard normal distribution.
Remark 6. In practice, we do not know the necessary elements

κ and ρjk (j, k∈ {0}∪​ [d]; j≠ k) that are required in order to specify
the asymptotic covariance terms in Eqs 1–3 and Eq. 1. However,
by Slutsky’s theorem, we have the usual result that any acov (or
avar) term can be replaced by the estimator âcovn (or âvarn),
which replaces κ by the estimator of Ref. 19

κ̂(Zn) �
∑​ n

i�1[(Zi − Z)uΣ̂
− 1

n
({0}∪​ [d])(Zi − Z)]2

n(d + 1)(d + 3) ,

and replaces ρjk by Rjk(Zn), where Z
u � (Z0, . . . ,Zd). Here,

Σ̂n(U) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Σ̂u1u1(Zn) Σ̂u1u2(Zn) / Σ̂u1u|U|(Zn)
Σ̂u2u1(Zn) Σ̂u2u2(Zn) / Σ̂u2u|U|(Zn)

« « 1 «
Σ̂u|U|u1(Zn) Σ̂u|U|u2(Zn) / Σ̂u|U |u|U |(Zn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
where Σ̂jk(Zn) is the sample covariance between the jth and kth
dimension of Z (j, k∈ {0}∪​ [d]). For example, the estimated test
statistic

Δ̂n �
��
n

√ (Vj(Zn) − Vk(Zn))�����
âvarn

√ (ξ j) + âvarn(ξk) − 2âcovn(ξ j, ξk), (11)

for the hypotheses Eq. 10, retains the property of having an
asymptotically standard normal distribution.

The confidence interval calculation is summarized in
Algorithm 1.

Algorithm 1: A Shapley value confidence interval
1. Input: dataset Zn, significance level α, and feature index j
2. Compute the estimate Vj(Zn) of the Shapley value vj, via

Eq. 9
3. Compute ajj, bjj, cjj, djj from Theorem 1, taking care to

replace ρjk in Lemmas 1–3 by the estimate Rjk(Zn) (see Remark 6)
4. Compute âvarn(ξj) � ajj + bjj − cjj − djj
5. Output: a 100(1 − α)% confidence interval for vj is then

given by

⎛⎜⎜⎝Vj(Zn) − Φ−1(1 − α

2
) ��������

âvarn(ξ j)
n

√
,Vj(Zn)

+Φ−1(1 − α

2
) ��������

âvarn(ξj)
n

√ ⎞⎟⎟⎠

4. MONTE CARLO STUDIES AND
BENCHMARKS

In each of the following three Monte Carlo studies, we simulate a
large number N of random samples Z(i)

n , i∈[N], of size n, from a
chosen distribution D. For each sample, we apply Eq. 1 to
calculate an asymptotic 95% CI for the first Shapley value v1,
producing a set of N observed intervals IN � {[ℓi, ui] : i∈[N]},
as realisations of the CI [L,U] for v1. The coverage probability
covrv1([L,U]) :� Pr(v1 ∈[L,U]) is then estimated as the
proportion of intervals in IN containing the population
Shapley value

ĉovrv1([L,U]) � |{[ℓi, ui]∈IN : v1 ∈[ℓi, ui]}|
N

. (12)

Here, the population Shapley value v1 has the form:

v1 � ∑
S4S1

ω(S)[R2
{1}∪S − R2

S],
where R2

S is defined by replacing Cn in Eq. 4 by the known
population correlation matrix cor(Z), as determined by the
chosen distribution D. In Studies A and B, this population
correlation matrix is the (d + 1) × (d + 1) matrix Σ, with
diagonal elements equal to 1 and off-diagonal elements equal
to a constant correlation c∈[0, 1). That is,

Σ � c Jd+1 + (1 − c) Id+1, (13)

where Jd+1 denotes a (d + 1) × (d + 1) matrix with all entries
equal to 1. Note that, for fixed variance, larger magnitudes of c
map to larger regression coefficients. Thus, these simulations can
be viewed as assigning equal regression coefficients to each
covariates that are increasing for increasing values of c.

In Study C, we are concerned with covariance matrices with
off-diagonal elements deviating from c. We aim to capture a case
where the off-diagonal elements of cor(Z) are not uniform, and
where some may be negative. This is achieved by sampling Z(i)

n
from a multivariate normal distribution Di, with a symmetric
positive definite covariance matrix Σi that is sampled at random
from a Wishart distribution with scale matrix Σ; see Section 4.3.
Accordingly, the population Shapley value v(i)1 is unique to
sample i, and thus we adjust the coverage estimator
ĉovrv1([L,U]) by replacing v1 on the RHS of Eq. 12 by v(i)1 .

To accompany our estimates of ĉovrv1([L,U]), we also provide
Clopper-Pearson CIs [27] for the coverage probability. We also
report the average CI widths, and middle 95% percentile intervals
for the widths. For comparison, we estimate coverage
probabilities of non-parametric bootstrap confidence intervals
in each of the three studies. To obtain the bootstrap CIs, we set
some large number Nb and take random resamplesR(r)

n , r∈[Nb],
of size n, with replacement, from Z(i)

n . From these resamples, we
calculate the set of estimated Shapley values
Li � {V1(R(r)

n ) : r∈[Nb]}. The ith 95% bootstrap CI is then
taken as the middle 95% percentile interval of L, and the
coverage is estimated as in Eq. 12.
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To obtain results for each pair (n, c)∈N × C, where N �
{5, 10, . . . , 50}∪{100, 200, . . . , 2000} and C � {0, 0.1, 0.2, 0.3,
0.6, 0.9, 0.99}, we performed 30 × 7 � 210 simulations for each
of the three studies. We use N � Nb � 1000 and d � 3, in
all cases.

4.1. MC Study A
Here, we choose D � Nd+1(0, Σ), so that each sample Z(i)

n , for
i∈[N], is drawn from a multivariate normal distribution, with
covariance Σ given in Eq. 13.

The simulation results in Figure 1 (and in Supplementary
Figure S12) show very similar coverage and width performance
between the two assessed CIs for moderate and high correlations
c> 0.3. For lower correlations c≤ 0.2, coverage convergence
appears to be slower in n than the bootstrap CI for large
sample sizes (n≥ 100). The opposite trend seems to hold for
small sample sizes (n≤ 50), see the discussion under MC Study C.
Also, for the highest correlation c � 0.99, coverage performance
of the asymptotic CI is overall slightly better than the
bootstrap CI.

4.2. MC Study B
Here, we choose D � t](0, Σ) where t](μ, Σ) is the multivariate
Student t distribution with ]∈(0,∞) degrees of freedom, mean
vector μ and scale matrix Σ. Specifically, the ith sample Z(i)

n , for
i∈[N], we set ] � 100 degrees of freedom, and set Σ as the
(d + 1) × (d + 1) covariance matrix in Eq. 13.

For all sample sizes n and correlations c, coverage and width
performances are similar to MC Study A (see Supplementary
Figures S13 and S14). Of particular interest, in both MC Studies
A and B (but not in MC Study C), we observe that for c � 0, the
estimated coverage probability of the asymptotic CI is almost
equal to 1, for all sample sizes greater than 10, while the
corresponding bootstrap CIs have estimated coverage equal to
0 (Figure 2 left). Despite this, the average CI widths, though large
under small samples, are somewhat smaller than those for
bootstrap (Figure 2 right).

4.3. MC Study C
Here, we set Di � Nd+1(0, Σi), so that the sample Z(i)

n , for i∈N , is
drawn from a multivariate normal distribution, with covariance

FIGURE 1 | Comparisons of coverage (left column) and mean width (right column), between the bootstrap CIs (dashed lines with triangular markers) and the
asymptotic CIs (solid lines with circular markers) in MC Study A. Rows represent correlations c, increasing from 0.1 on the top row to 0.99 on the bottom row. The
horizontal axes display the sample sizes n � 100,200, . . . ,2000.
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FIGURE 2 | Comparisons of coverage (left column) and mean width (right column) between bootstrap CIs (dashed lines with triangular markers) and the
asymptotic CIs (solid lines with circular markers) in MC Study B, for correlation c � 0. The horizontal axes display the sample sizes n � 5, 10, . . . , 50.

FIGURE 3 | Comparisons of coverage (left column) and mean width (right column), between the bootstrap CIs (dashed lines with triangular markers) and the
asymptotic CIs (solid lines with circular markers) in MC Study C. Rows represent correlations c, increasing from 0.1 on the top row to 0.99 on the bottom row. The
horizontal axes display the sample sizes n � 5,10, . . . ,50.
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FIGURE 4 | Comparisons of coverage (left column) and mean width (right column) between bootstrap CIs (dashed lines with triangular markers) and the
asymptotic CIs (solid lines with circular markers) in MC Study C, for correlation c � 0. The horizontal axes display the sample sizes n � 5,10, . . . , 50.

FIGURE 5 | Comparisons of coverage (left column) and mean width (right column) between bootstrap CIs (dashed lines with triangular markers) and the
asymptotic CIs (solid lines with circular markers) in MC Study C, for correlation c � 0. The horizontal axes display the sample sizes n � 100, 200, . . . , 2000.

FIGURE 6 | Computational benchmark metric ratios of confidence interval estimation using the naïve bootstrap over the asymptotic normality approach.
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matrix Σi realized from a Wishart distribution Wd+1(Σ, ]) with
scale matrix Σ and ν degrees of freedom. This set up is different
from Studies A and B in that the distributions Di, and therefore
the population Shapley values v(i)1 , are allowed to differ between
samples.

The distribution Wd+1(Σ, ]) can be understood as the
distribution of the sample covariance matrix of a sample of
size ] + 1 from the distribution Nd+1(0, Σ) (cf. Ref. 28). This
implies that each covariance matrix Σi can have non-uniform
and negative off-diagonal elements, with variability between the

off-diagonal elements increasing as ν decreases. For this study, we
set ] � 100.

Aside for the case c � 0, coverage and width statistics are again
similar to MC Studies A and B, for all n and c (see Supplementary
Material). Interestingly, in all three Studies, for small sample sizes
(n≤ 50), coverage is often higher than for the bootstrap CI, with
slightly smaller average widths, as seen in Figure 3 (and in
Supplementary Figures S12, S13). For the c � 0 case, the observed
behavior differs fromMC Studies A and B, with bootstrap performing
comparatively well for large sample sizes (Figures 4, 5).

FIGURE 7 | Estimated coverage probability versus correlation c, for small samples sizes n � 15,20, . . . ,50, in MC Study A. The same patterns can be observed for
Studies B and C.

FIGURE 8 | Average confidence interval width versus correlation c, for small sample sizes n � 15,20, . . . , 50 (left) and large sample sizes n � 1000, 1200, . . . , 2000
(right), in MC Study A. The same patterns are present in MC Study B and C.
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4.4. Computational Benchmarks
From Figure 6, we see that the memory usage (left) and mean
execution time (right) for the bootstrap CIs are both higher than
that for the asymptotic CIs, and that the ratio increases with sample
size given the benchmarking parameters in Table 1. As n increases,
asymptotic CIs become increasingly efficient, compared to the
bootstrap CIs. On the other hand, as d increases, with n fixed, we
expect an increase in the relative efficiency of the bootstrap, since
the complexity of calculating acov(ξj, ξk) in Eq. 1 grows faster in d
than the complexity of the bootstrap procedure.

4.5. Summary of Results and
Recommendations for Use
The most relevant observation is that the widths all appear to
shrink at a rate that is comparable to the expected

��
n

√
convergence dictated by asymptotic normality. The remaining
observations below are focused on computational time, sample
size, and correlation, in comparison with bootstrap intervals.
Below follows a summary of the general tendencies and
observations from our results, and recommendations regarding
when to use the asymptotic CIs.

• For all correlations c in all three Studies, the estimated
coverage probability of asymptotic intervals is above 0.85 for
all sample sizes n≥ 10.

• For smaller correlations and sample sizes, in particular
c≥ 0.2 and n> 15, the lower bound of the confidence
interval for coverage never drops below 0.85.

• For all correlations c≥ 0.3 and sample sizes n> 100, the
lower bound of the confidence interval for coverage never
drops below 0.9.

• For small correlations, in particular c≤ 0.1 and sample sizes
10≤ n≤ 100, the lower bound of the confidence interval for
the coverage of the asymptotic CIs never drops below 0.91.

• For c � 0 and n≥ 15, the lower bound of the asymptotic CI
for coverage never drops below 0.95 in Studies A and B,
while in Study C the lower bound is at least 0.88.

• For sample sizes 15≤ n≤ 50, the coverage of the asymptotic
CI tends to be higher when c is closer to the boundaries of
[0, 1], as shown in Figure 7.

• The average asymptotic CI width is lower when c is nearer to
the boundaries of [0, 1], see Figure 8.

We now make some general observations which apply to all
three Studies. As sample size increases, the estimated coverage
initially increases rapidly, as can be seen, for example, in the left
column of Figure 3. For small sample sizes between n � 5 and
n � 50, the asymptotic CIs typically outperform bootstrap CIs,

FIGURE 9 | Map of Melbourne suburbs included in this study, with
greyscale shading to represent sample sizes. Pink dashed polygon borders
contain suburbs classified as near to the Central Business District
(i.e., ≤ 25 km), and blue solid polygon borders represent those classified
as far (> 25 km). The solid red diamond represents the location of the CBD.

FIGURE 10 | Bar plot of sales per day between 1 January and 18 July in
2019 and 2020. Vertical dashed red lines indicate 1 February and 1 April,
between which a spike in sales is observed.

TABLE 1 | Parameters for computational benchmarking.

Parameter Value(s)

Number of features (d) 3
Sample sizes (n) 1,000, 5,000, 10,000
Number of bootstrap resamples (Nb) 1,000
Number of simulation repetitions (N) 1,000

TABLE 2 | The four subgroups and their sample sizes after partitioning by distance
(where near:� within 25 km of CBD), and year of sale in the period 1 February
to 1 April 2019 and 2020.

Subgroup Near (2019) Far (2019) Near (2020) Far (2020)

Sample size 1,203 953 1824 1,130
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especially when c lies farther from 0.5; there is a clear drop in
coverage as c approaches 0.5, for small samples, as can be seen in
Figure 7. In many cases, the estimated coverage is above 0.9 for
n≥ 10. However, empirical coverage does not appear to be an
increasing function of sample size in general. On the top row in
the left column of Figure 1, we observe one example of a clear and
extended dip in coverage for n in [100, 1000]. This gives rise to
the general observation that the asymptotic intervals have
preferable coverage statistics over bootstrap for small samples,
but not for a certain range of large samples, depending on c.

We further observe that, for all n, there is a general increase in the
averageCIwidth as c approaches 0.5 fromeitherdirection, as inFigure8.
In all Studies, over all sample sizes and correlations, the bootstrap CI
average widths were smaller than the asymptotic CI widths by at most
0.0289, and vice versa by at most 0.0667. In general, the asymptotic
intervals display favourable widths, though less so near c � 0.5.

4.6. Recommendations for Use
Based on these observations, we recommend using asymptotic
CIs over bootstrap CIs under the following conditions:

(i) Computational time is relevant (e.g., estimating a large
number of Shapley values).

(ii) The sample size is small (e.g., n≤ 50).
(iii) The correlation between explanatory variables and the

response variable is expected to be beyond ±0.2 from
0.5, or when this is where the highest precision is desired.

We note that our observations are made from an incomplete
albeit comprehensive set of simulation scenarios. There are of
course an infinite number of combinations of simulation cases
and thus we cannot guarantee that our observation applies to all
possible DGPs.

TABLE 3 | Shapley values and asymptotic CIs for the covariates of the real estate data.

Feature Near (2019) Far (2019) Near (2020) Far (2020)

CBD 0.19 (0.15,0.23) 0.03 (0.02,0.05) 0.20 (0.17,0.23) 0.10 (0.06,0.12)
Images 0.00 (−0.00,0.00) 0.01 (0.00,0.02) 0.06 (0.00,0.01) 0.02 (0.01,0.03)
Land 0.09 (0.06,0.12) 0.14 (0.10,0.18) 0.09 (0.07,0.11) 0.13 (0.10,0.17)
School 0.00 (−0.00,0.00) 0.00 (−0.01,0.01) 0.00 (−0.00,0.00) 0.00 (−0.00,0.00)
Station 0.02 (0.01,0.04) 0.00 (−0.00,0.00) 0.03 (0.02,0.04) 0.00 (0.00,0.01)
Room 0.07 (0.05,0.09) 0.19 (0.15,0.23) 0.07 (0.05,0.08) 0.12 (0.09,0.16)

FIGURE 11 | Shapley values and associated asymptotic 95% confidence intervals (labelled as CI type “asym”) for each of the six covariates, within the four real
estate data subgroups (near/far and 2019/2020). Blue bands and triangle markers represent the near subgroup (i.e., ≤25 km from Central Business District) and red
bands with circular markers represent the far subgroup (> 25 km). Beside the asymptotic CIs, the corresponding bootstrap CIs are shown with dashed lines (labeled as
CI type “boot”).
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5. Application: Real Estate and COVID-19
For an interesting application of our methods, in this section we
identify significant changes in the behavior of the local real estate
market in Melbourne, Australia, between the period 1 February
2019 to 1 April 2019 and the period 1 February 2020 to 1 April
2020. In 2020, this corresponds to an early period of growing
public concern regarding the novel coronavirus COVID-19. We
obtain the Shapley decomposition of the coefficient of multiple
correlation R2 between observed house prices and a number of
property features. We also find significant differences in behavior
between real estate near and far from the Central Business
District (CBD), where near is defined to be within 25 km of
Melbourne CBD, and far is defined as non-near (see Figure 9).

Note that the nature of this investigation is exploratory and
expository; our conclusions are not intended to be taken as
evidence for the purposes of policy or decision making.

On 1 February the Australian government announced a
temporary ban on foreign arrivals from mainland China, and
by 1 April a number of social distancing measures were in place.
We scraped real estate data from the AUHousePrices website
(https://www.auhouseprices.com/), to obtain a data set of 13, 291
(clean) house sales between 1 January and 18 July in each of 2019
and 2020. We then reduced this date range to capture only the
spike in sales observed between 1 February and 1 April (see
Figure 10), giving a remaining sample size of 5,110, which was
partitioned into the four subgroups in Table 2. By capturing this

FIGURE 12 | Comparisons of coverage (left column) and mean width (right column), between the bootstrap CIs (dashed lines with triangular markers) and the
asymptotic CIs (solid lines with circular markers) in MC Study A. Rows represent correlations c, increasing from 0:1 on the top row to 0:99 on the bottom row. The
horizontal axes display the sample sizes n � 5;10;50.
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spike in sales, we hope to detect a significant change in the
Shapley values between the same period in 2019 and 2020.Within
each of the four subgroups we perform a Yeo-Johnson
transformation [29] to reduce any violation of the assumption
of joint pseudo-ellipticity.

We decompose R2 among the covariates: distance to CBD
(CBD); images used in advertisement (images); property land size
(land); distance to nearest school (school); distance to nearest
station (station); and number of bedrooms + bathrooms + car
ports (room); along with the response variable, house sale price
(price). We expect the room covariate to act as a proxy for house
size. Thus we decompose R2 for the linear model,

(price) � β0 + β(CBD, images, land, school, station, room)T ,
β0 ∈R, β∈R

6. (14)

Fitted to each of the four subgroups, we obtain R2 � 0.37 for
model Eq. 14, for each subgroup except for the near (2020)
subgroup, for which R2 � 0.39. The resulting Shapley values and
95% confidence intervals are listed in Table 3, and shown
graphically in Figure 11. Also in Figure 11, the corresponding
bootstrap CIs are given for completeness, and are almost identical
to the asymptotic CIs. From these results we make the following
observations regarding attributions of the total variability in
house prices explained by model Eq. 14:

FIGURE 13 | Comparisons of coverage (left column) and mean width (right column), between the bootstrap CIs (dashed lines with triangular markers) and the
asymptotic CIs (solid lines with circular markers) in MC Study B. Rows represent correlations c, increasing from 0:1 on the top row to 0:99 on the bottom row. The
horizontal axes display the sample sizes n � 5; 10;50.
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(i) In both 2019 and 2020, the attribution for distance to CBD
was significantly higher for house sales near to the CBD,
compared to house sales farther from the CBD.
Correspondingly, the attribution for roominess was
significantly lower for house sales near to the CBD.

(ii) Among sales that were near to the CBD, distances to the
CBD received significantly greater attribution than both land
size and roominess in 2019. Unlike the case for sales that
were far from the CBD, these differences remained
significant in 2020.

(iii) Distances to stations and schools, as well as images used in
advertising, have apparently had little overall impact. In all four
subgroups, the attribution for distance to the nearest school is

not significantly different from 0.However, distance to a station
does receive significantly more attribution among houses that
are near to the CBD, compared to those farther away.

(iv) Interestingly, while not a significant result, the number of
images used in advertising did appear to receive greater
attribution among house sales that were far from the CBD,
compared to those near to it.

(v) Among sales thatwere far from theCBD, land size and roominess
both received significantly more attribution than distance to the
CBD, in 2019. However, this difference vanished in 2020, with
distances to the CBD apparently gaining more attribution, while
roominess and land size apparently lost some attribution, in a
relative leveling out of these three covariates.

FIGURE 14 | Comparisons of coverage (left column) and mean width (right column), between the bootstrap CIs (dashed lines with triangular markers) and the
asymptotic CIs (solid lines with circular markers) in MC Study B. Rows represent correlations c, increasing from 0:1 on the top row to 0:99 on the bottom row. The
horizontal axes display the sample sizes n � 100; 200;2000.41
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Item (i) is perhaps unsurprizing: distances were less relevant
far from the city, where price variability was influenced more by
roominess and land size. Indeed, we can assume we are less
likely to find small and expensive houses far from the CBD.
However, the authors find Item (v) interesting: near the city, the
behavior did not change significantly during the 2020 period.
However, far from the city, the behavior did change
significantly, moving toward the near-city behavior. Distance
to the city became more important for explaining variability in
price, while land size and roominess both became less
important, compared with their 2019 estimates. Our initial
guess at an explanation was that near-city buyers, with near-
city preferences, were temporarily motivated by urgency to buy

farther out. However, according to Table 2, the observed ratio of
near-city buyers to non-near buyers actually increased in this
period, from 1.26 in 2019 to 1.61 in 2020. We will not take this
expository analysis further here, but we hope that the interested
reader is motivated to take it further, and to this end we have
made the data, as well as R and Julia scripts, available at https://
github.com/ex2o/shapley_confidence.

6. DISCUSSION

In this work, we focus on regression Shapley values as a means for
attributing goodness of fit. There has also been much recent

FIGURE 15 | Comparisons of coverage (left column) and mean width (right column), between the bootstrap CIs (dashed lines with triangular markers) and the
asymptotic CIs (solid lines with circular markers) in MC Study C. Rows represent correlations c, increasing from 0:1 on the top row to 0:99 on the bottom row. The
horizontal axes display the sample sizes n � 100; 200; 2000.
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interest in the machine learning literature in using Shapley values
to attribute predictions. These approaches, such as SHAP [30],
TreeExplainer [31], and Quantitative Input Influence [32] are
focused on providing local explanations that depend on the
behavior of a fitted model. For more on the differences
between prediction, estimation and attribution, see the recent
exposition of Ref. 33.

Research into the attribution of goodness of fit using
the Shapley value, predates research into attributing
predictions. As described in Section 2, regression Shapley
values were first introduced in Ref. 10. Then, Ref. 1
advocated for decompositions among exogenously grouped
sets of explanatory variables using the both the Shapley and
Owen values, where the Owen values are a generalization that
permits group attributions.

Our work is the first to determine the asymptotic distribution
of the regression Shapley values. In Section 3, we show that under
an elliptical (or pseudo-elliptical) joint distribution assumption,
the Shapley value decomposition of R2(Zn) is asymptotically
normal. This involved correcting a number of errors that
appeared in the expositions of Lemmas 2 and 3 in prior
sources, and stating those results in a notation conforming to
the language of cooperative games and set-valued functions. Our
result regarding the asymptotic distribution leads immediately to
Shapley value confidence intervals and hypothesis tests.

In Section 4, we use Monte Carlo simulations to examine the
coverage and width statistics of these asymptotic CIs. We
compare the coverage and width statistics for different data
generating processes, correlations and sample sizes. In Section
4.5 we provide recommendations for when asymptotic CIs
should be used rather than bootstrap CIs. We find that the
asymptotic CIs have estimated coverage probabilities of at
least 0.85 across all studies, are preferable over the bootstrap
CIs for small sample sizes (n≤ 50), and are often (although not
always) favourable for large sample sizes. We discuss the
generality of our findings that asymptotic CIs are
computationally much more efficient than bootstrap CIs.

In Section 5, we derive asymptotic CIs to Melbourne house
prices during a period of altered consumer behavior in the initial
stages of the arrival of COVID-19 in Australia. Using the CIs, we
identify significant changes in model behavior between 2019 and

2020, and attribute these changes among features, highlighting an
interesting direction of future research into the period.
Implementations of our methods as well as data sets are
openly available for use at https://github.com/ex2o/shapley_
confidence.

We aim to use our developments to derive the asymptotic
distributions of variance inflation factors and their generalizations
[34], as well as the closely related Owen values decomposition of
the coefficient of determination for exogenously grouped sets of
features [1]. We will also investigate calculating Shapley values
capable of uncovering non-linear dependencies and their
confidence intervals in future work.
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