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In this study, we are concerned with the effect of certain linear transformations of a signal f
on its phase. We are, in particular, interested in phase distortions caused by band-limiting
operations. The band-limiting operators serve as a motivation for studying the class of
phase-preserving operators. This class will be completely characterized.
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1. INTRODUCTION

In science and engineering, the problem of recuperating a square-integrable signal f from its
transformed version T(f ) is ubiquitous. The case where T is given by the Fourier transform is of
fundamental importance in signal analysis. A particular example which also served as a motivation
for our studies arises in the field of optics. In diffraction imaging, the so-called diffraction pattern of
the object f is measured usually (but not necessarily) in the far-field regime. In this regime, the
diffraction pattern is given by the Fourier transform of the object. If we have full access to the Fourier
transform of f the reconstruction of the signal is naturally no problem as the transform is one to one
on the signal space. Unfortunately, this is almost never the case in practice. Not only is the signal
corrupted with noise, experimental restrictions and more importantly physical limitations of the
devices used to perform themeasurement usually make it impossible to have full access to the Fourier
transform. For example, in diffraction imaging, the sensor is usually a Charged-Coupled Device
camera, which is, by construction, only able to measure the intensity of the incoming signal. As
mentioned before, in the far-field, the signal is nothing but the Fourier transform of the object.
Hence, the output of the measurement device is the squared modulus of the Fourier transform of the
object, which means the phase information is completely lost. This leads to the problem of phase
retrieval which is a notoriously difficult task. Even if we could solve this severe problem, there is yet
another problem coming from the signal recording process. No sensor can cover the full range in
frequency. Every recorder comes with a specific bandwidth characteristic, which means that the
measured signal becomes artificially a band-limited signal and this creates another source of
distortion in the signal recovery process. It is exactly this problem on which we are going to
concentrate in the present study. To make this more clear, let us describe the problem in a more
rigorous form.

Suppose the complex-valued signal f ∈ L2(R) is compactly supported and consider the
decomposition f (t) � ∣∣∣∣f (t)∣∣∣∣eiθ(t). The function θ(t) is called phase function, and it is well-
defined only for those t for which the signal f (t) is different from zero. Clearly, the Fourier
transform of f, defined on L1(R)∩L2(R) by

F f (ξ) � f̂ (ξ) � ∫
R

f (t) e−2πiξt dt

and on L2(R) via an usual extension argument, cannot have compact support. However, due to
sensor characteristics, the Fourier transform is restricted to a certain bandwidth. Assume that the
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sensor bandwidth is given by [−W,W]W > 0. Although a
restriction to different sets is mathematically possible, the
restriction to a symmetric interval is the most relevant case in
practice, where sensors usually act as low-pass filters. This will be
the case we will concentrate on in the present study. As a result,

not f̂ but f
∧

W � χ[−W,W] f
∧
is recorded during the measurement

process. Applying the inverse Fourier transform gives fW �
(χ[−W,W] f̂ )∨ which has the representation

fW(t) � ∣∣∣∣ fW(t)∣∣∣∣ eiθW(t). Note that since f is compactly

supported, its Fourier transform f̂ is an entire function and

thus uniquely determined by f̂ W . The before mentioned
approach seeks to recover f by applying the inverse Fourier
transform since the extension to the whole real line would be
numerically impractical. The band-limiting operator which sends
f to fW is actually an orthogonal projection of L2(R) onto the
Paley–Wiener space PW2W , and hence fW is the best
approximation of f by band-limited functions of bandwidth
2W with respect to the L2-norm. If we impose some moderate
assumptions on the smoothness of f, it is relatively easy to obtain a
bound for | | f (t)| − | fW(t)| |. An interesting question now is how
much the phase of f gets distorted by the band-limiting operation.
One problem which we will address in this study is to find an
estimate for the phase difference |θ(t) − θW(t)|. It will turn out
that again smoothness requirements are sufficient to get bounds
for the phase differences. Moreover, we will also demonstrate
under what conditions the phase is preserved by band-limiting
operations. This raises the question what type of operators will
leave the phase unchanged. We will present a characterization of
these phase-preserving operators (PPO). It is obvious that every
multiplication operator Tϕf � ϕ f with ϕ ∈ L∞(R) and ϕ≥ 0
almost everywhere is phase-preserving. However, it is not
obvious whether or not these are the only linear operators
with this property. We will demonstrate that this is indeed
the case.

The organization of the study is as follows. In Section 2, we
introduce our notations and provide some auxiliary results.
Section 3 is devoted to the study of the band-limiting
operation and its effect on the phase of a signal. Finally, in
Section 4, we will present a characterization of those operators
which will preserve the phase of the signal.

2. PRELIMINARIES

We start by introducing some notations used throughout our
presentation. Moreover, we will give some simple but
nevertheless important facts on complex numbers.

The set of complex numbers different from zero will be denoted
byC×, and by T , we denote the set of complex numbers of modulus
one. Any z ∈ C× has a unique representation z � |z|eiθ with
θ ∈ [0, 2π), and clearly, any ϑ congruent to θ modulo 2π results
into another representation z � |z|eiϑ. We will refer to θ as the phase
of z. We define a metric on R via∣∣∣∣∣∣∣θ − φ 2π :� min

k ∈ Z

∣∣∣∣ξ − η + 2πk
∣∣∣∣, θ,φ ∈ R.

∣∣∣∣∣∣∣

The following simple result will be of some significance
later.

Lemma 2.1. Let z,w ∈ C× with z � eiθ|z|, w � eiφ|w|. Then,

∣∣∣∣∣∣∣∣θ − φ 2π ≤ 2 arcsin(min{1, |z − w|
|z| })≤

π|z − w|
|z| .

∣∣∣∣∣∣∣∣
Proof. According to the definition of

∣∣∣θ − φ|2π , we obtain

sin(1
2

∣∣∣∣∣∣∣θ − φ 2π) � 1
2

∣∣∣∣eiθ − eiφ
∣∣∣∣,∣∣∣∣∣∣∣

which implies∣∣∣∣∣∣∣θ − φ 2π � 2arcsin(1
2

∣∣∣∣eiθ − eiφ
∣∣∣∣) � 2arcsin(min{1, 1

2

∣∣∣∣eiθ − eiφ
∣∣∣∣}).∣∣∣∣∣∣∣
(1)

With eiθ � z/|z| and eiφ � w/|w|, we obtain
∣∣∣∣eiθ − eiφ

∣∣∣∣ � ∣∣∣∣∣∣∣ z|z| − w

|w|
∣∣∣∣∣∣∣ �

∣∣∣∣∣∣∣(z − w)|w| + (|w| − |z|)w
|z||w|

∣∣∣∣∣∣∣
≤
|z − w|
|z| + ||w| − |z||

|z| ≤ 2
|z − w|
|z| .

Combining the previous estimate with Eq. 1 and the fact
that arcsin(x)≤ π

2 x for x ∈ [0, 1], it yields the following
statement.

The previous Lemma shows the intuitive fact that if the
distance between z and w is small and if one of the two
complex numbers stays sufficiently far away from zero
(relative to |z − w|), then the corresponding phase distance

∣∣∣θ −
φ|2π is small.

Let f be a complex-valued function defined on a subset X4R.
Then,

f (t) � ∣∣∣∣f (t)∣∣∣∣ eiθf (t),
where θf is a real-valued function which we will call in accordance
with our previous terminology the phase function of f. The phase
function θf is well-defined for all t ∈ X for which f (t) is different
from zero. Henceforth, we will denote this set by D(f ),
i.e., D(f ) :� {t ∈ X

∣∣∣∣ f (t)≠ 0}. If g : Y →C is a second function
with g(t) � ∣∣∣∣g(t)∣∣∣∣ eiθg(t) defined on Y4R, then we define θg and θf

to be equal if θg(t) � θf (t), for all t ∈ D(f )D∩(g). Note that this
relation is well-defined as for all t ∉ D(f )∩(g), the phase
functions can be considered to be equal anyway. With these
terminologies, we immediately get the following sequence from
Lemma 2.1 the following consequence.

Lemma 2.2. Let X4R and f , g : X→C be complex-valued
functions with f � eiθ

∣∣∣∣f ∣∣∣∣ and g � eiφ
∣∣∣∣g∣∣∣∣. Let 0≤ ε≤ 1 be fixed and

suppose that the inequality∣∣∣∣f (x) − g(x)|≤ ε|f (x)∣∣∣∣
holds pointwise for every x in some subsetJ4D(f )∩D(g). Then,∣∣∣∣θ(x) − φ(x) 2π ≤ 2 arcsin(ε)|
for every x in J .
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Throughout this work, the Lp-norm of a measurable function
f : E→C defined on some measurable set E4R is defined as
usual via

∣∣∣∣∣∣∣∣f ∣∣∣∣∣∣∣∣p �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(∫
E

∣∣∣∣ f (x)∣∣∣∣p dx)1
p

, 1≤ p<∞

ess supx ∈ E

∣∣∣∣f (x)∣∣∣∣, p � ∞.

3. PHASE DISTANCE AND TRUNCATED
MEASUREMENTS

In this section, we want to compare the phase function of a
compactly supported function f ∈ L2(R) with the phase function
of fW :� (χ[−W,W] f̂ )∨, i.e., fW originates from f by band limiting
the Fourier transform of f. We begin our consideration with some
facts about localization of functions. For an introduction to the
basic notions of Fourier analysis and operator theory see, for
instance, [7,9].

Let T ,W4R be measurable sets. We define the following two
operators acting on functions f ∈ L2(R)

RT f :� χT f , BW f � F −1(χW F f ),
where F denotes the Fourier operator on L2(R). In case
T � [−T ,T], W � [−W,W], T ,W > 0 we will write RT and BW

instead of RT and BW , respectively. Both operators are orthogonal
projections on L2(R), and their range is L2(T ) respective to those
functions in f ∈ L2(R) with Fourier transform supported inW. In
case T � [−T ,T] andW � [−W,W], we speak f as time-limited
or band-limited, respectively. The time- and band-limiting
operator BWRT was studied by Slepian and Pollak [5,6] in some
detail, and they showed that it has the representation

BWRTf (t) � ∫T

−T
sin(2πW(t − s))

π(t − s) f (s) ds. (2)

We now introduce the concept of time-frequency localization
of a function f ∈ L1(R).

Definition 3.1. Let f ∈ L1(R), T ,W4R be measurable sets,
and εT , εW > 0. Then, f is called εT -localized if���� f − RT f

����L1(R)≤ εT . Let
B1(W) :� {f ∈ L1(R)

∣∣∣∣∣ supp(f̂ )4W}.
The function f is called εW-band-limited if there is a function

g ∈ B1(W) such that
∣∣∣∣∣∣∣∣ f − g

∣∣∣∣∣∣∣∣L1(R) ≤ εW .
In what follows we are mainly interested in the case where

both W and T are symmetric intervals as introduced above. We
now aim for a pointwise estimate of the phase difference between
the compactly supported signal f ∈ L2(R) and its band-limited
version fW . To be more precise, suppose that
f ∈ L2(R), supp(f )4[−T ,T] and let fW :� BWf for some
W > 0. Then, both the phase function θ(t) of f and the phase
function θW(t) of fW are well-defined almost everywhere. We

would like to have an estimate for |θ(t) − θW(t)|. To this end, we
define the following class of functions. For n ∈ N and K ≥ 0, let

Gn,K :� {f ∈ Cn(R) : supp(f )4[−T ,T], ‖ f (n)‖BV ≤K},
where ‖ ·‖BV denotes the total variation norm.

Theorem 3.2. Assume that f ∈ Gn,K with K ≤ nπn+1 and let
fW � BWf . Then, for every t ∈ D(f ) with ∣∣∣∣f (t)∣∣∣∣≥W−n, we have

|θ(t) − θW(t)|≤ 2arcsin( 1
2n
).

Proof. Since f ∈ Cn(R) with supp(f )4[−T ,T], we have
f (k) ∈ L1(R), for all 0≤ k≤ n. Hence, for all ξ ∈ R, we get∣∣∣∣∣∣∣∣∣(2πiξ)n+1 f̂ (ξ)| � |2πiξ f̂ (n)(ξ)

∣∣∣∣∣∣∣∣∣≤
����f ����BV ,

where we used the elementary inequality ĥ(ξ)≤ ‖h‖BV
∣∣∣∣∣2πξ|−1

which holds for functions h ∈ BV(R) (see, for instance, [3, pp.
33–34]). If ξ ≠ 0, this yields the estimate:

∣∣∣∣∣f̂ (ξ)∣∣∣∣∣≤
����f (n)����BV
(2πξ)n+1.

Since f and fW are pointwise-defined and f ∈ Gn,K , we obtain

∣∣∣∣f (t) − fW(t)∣∣∣∣ � ∣∣∣∣∣∣∣∣∫R

f̂ (ξ)e2πiξt dξ

− ∫ W

−W
f̂ (ξ)e2πiξt dξ

∣∣∣∣∣∣∣∣≤∫[−W,W]c

∣∣∣∣∣f̂ (ξ)∣∣∣∣∣ dξ ≤ 2
∣∣∣∣∣∣∣∣f (n)∣∣∣∣∣∣∣∣BV
(2π)n+1 ∫  ∞

W

1

ξn+1
dξ

�
∣∣∣∣∣∣∣∣f (n)∣∣∣∣∣∣∣∣BV

2nWnπn+1n
≤

1
2nWn

,

for all t ∈ R. We defineJ :� {t ∈ supp(f ) :
∣∣∣∣ f (t)∣∣∣∣≥W−n}. Then,∣∣∣∣ f (t) − fW(t)∣∣∣∣∣∣∣∣ f (t)∣∣∣∣ ≤

1
2n
,

for all t ∈ J . Now, Lemma 2.2 yields

|θ(t) − θW(t)|≤ 2arcsin( 1
2n
)

on J .
An immediate consequence of this result shows that, for a

certain class of C∞-functions, we get the equality of the phase
functions. More precisely, we have the following.

Corollary 3.3. Let W > 1 and let f ∈ C∞(R) with
supp(f )4[−T ,T]. Assume there exists N ∈ N such that∣∣∣∣∣∣∣∣ f (n)∣∣∣∣∣∣∣∣BV ≤ nπn+1 (3)

for every n≥N. Then, θ � θW everywhere on D(f ).
Proof. The assumptions on f imply that

f ∈ ∩ 

n≥N
Gn,Kn,

with Kn � nπn+1. According to Theorem 3.2, we have |θ(t) −
θW(t)|≤ 2arcsin(2− n) on J n: � {t ∈ supp(f ) : ∣∣∣∣f (t)∣∣∣∣≥W−n}, for
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every n≥N. Since W > 1, we have W−n → 0 as n→∞. We
observe that arcsin(2−n)→ 0 as n→∞ yields the following
statement.

Corollary 3.3 shows, in particular, that if f ∈ C∞(R) has
compact support and if the sequence (f (n))n satisfies the
growth condition ���� f (n)����BV � O(πn+1),
then θ � θW everywhere on D(f ). Moreover, one can weaken
Corollary 3.3 by requiring estimate 3 not to hold for all n≥N but
just for a subsequence (nk)k ⊂ N with the property nk →∞ as
k→∞. We further observe that, for a compactly supported
function f ∈ C∞(R), the BV-norm of f (n) can indeed grow
exponentially in n. To see this, we take, for instance, the
function f (t) � ee

t
and smooth it down to zero at the

boundary of [−1, 1]. In this case, the sequence
���� f (n)����1 grows

exponentially and so does
���� f (n)����BV .

Let us briefly discuss the case of real-valued functions. First, we
observe that, according to identity 2 the operator BW acts as an
integral operator with a real-valued kernel on the space of time-
limited functions. This implies that fW is real-valued.
Consequently, |θ(t) − θW(t)| ∈ {0, π}, for every
t ∈ D(f )∩D(fW), and θ � θW if and only if sgn (f ) � sgn (fW).
Therefore, to obtain the equality of θ(t) and θW(t) at
t ∈ D(f )∩D(fW), it suffices that |θ(t) − θW(t)|< π. For a real-
valued function f, an ε[−W,W]-localization of its Fourier transform
automatically implies equality of the phases on a suitable subset of
D(f ). More precisely we have the following.

Theorem 3.4. Let f ∈ L2(R) be a real-valued function with
supp(f )4[−T ,T]. If f̂ ∈ L1(R) and f̂ is ε[−W,W]-localized, then

θ(t) � θW(t),
for every t ∈ [−T ,T] with ∣∣∣∣f (t)∣∣∣∣> εW .

Proof. Note that f ∈ L1(R), and the assumption f̂ ∈ L1(R)
implies that both f and fW are continuous. Hence, we have the
pointwise estimate:∣∣∣∣∣∣∣∣ f (t) − fW(t)| � |∫

[−W,W]c
f̂ (ξ) e2πiξt dξ

∣∣∣∣∣≤ ∣∣∣∣∣∣∣∣∣∣ f̂ − RWf̂
∣∣∣∣∣∣∣∣∣∣L1(R).

Since f̂ is ε[−W,W]-localized and t ∈ D(f ) with ∣∣∣∣f (t)∣∣∣∣> εW , we
obtain

b :�
∣∣∣∣∣∣∣∣∣∣ f̂ − RWf̂

∣∣∣∣∣∣∣∣∣∣L1(R)∣∣∣∣f (t)∣∣∣∣ < 1.

Now, Lemma 2.1 gives |θ(t) − θW(t)|≤ 2arcsin(b)< π and
since f is real-valued, this implies |θ(t) − θW(t)| � 0.

In a similar fashion as before, we could add in Theorem 3.4 a
certain regularity assumption (C1-regularity suffices) to ensure
the integrability of f̂ . The latter statement reveals the interaction
between localization in time and frequency. The smaller the εW
is, the better the result is, which means the better f is localized in
the frequency domain. However, εW cannot be made arbitrarily
small as this would contradict the Heisenberg uncertainty
principle. The relation to an uncertainty principle due to

Donoho and Stark is, however, more natural in our context.
It reads as follows.

Theorem 3.5 (2, Theorem 7). Let f ∈ L1(R) with ���� f ����L1(R) � 1.
If f is εL-localized and εW-bandlimited, then

|W| |L|≥ 1 − εL − εW
1 + εW

, (4)

where |W| and |L| denote the Lebesgue measure of W and L,
respectively.

In the setting of Theorem 3.4, inequality 4 leads to

W ≥
1 − εW
4T

. (5)

for every f ∈ L2(R), supp(f )4[−T ,T] with
���� f ����L1(R) � 1 such

that f̂ ∈ L1(R) and localization ���� f̂ − RWf̂
����L1(R)≤ εW . Inequality 5

can be seen as a necessary condition on the band-limiting
operator BW , for which a bound on |θ − θW | is possible.

Remark 3.6. Consider the band-limiting operator BW acting
on the space of time-limited functions L2(T ), where
T � [−T ,T]. The eigenfunctions {ψj : j ∈ N} of BW are the so-
called prolate spheroidal wave functions (PSWFs) which are
highly oscillating for big n. Suppose that the corresponding
real eigenvalues {λn : n ∈ N} are ordered by λ1 > λ2 >/≥ 0.
One can show that the amplitudes of the PSWFs ψj satisfy a
polynomial growth, while the eigenvalues λj decay to zero
exponentially [4]. Hence, a perturbation of a signal f ∈ L2(T )
by a PSWF ψn causes a significant pointwise distortion of the
original signal f (and therefore, of the phase θf ). If we define
hn :� f + ψn, then the band-limited version of hn is given by

BWhn � fW + λnψn.

Observing that
����λnψn����∞→ 0 exponentially as n→∞, we

conclude that the distortion is negliglible after band limiting
the perturbed signal hn. In particular, this implies that, in general,
one cannot expect a bound on the phase of hn and BWhn. This
effect is visualized in Figure 1.

4. PHASE-PRESERVING OPERATORS

In Section 3, it has been shown under which conditions the
phase of f is invariant under the action of the band-limiting
operator, i.e., θf � θBWf . Moreover, we demonstrated that the
equality of the two phases is not always possible, and we gave
explicit examples for θf ≠ θBWf by using perturbations by
PSWFs. Therefore, the following question now comes up
naturally.

Which operators T : L2(R)→ L2(R) satisfy θf � θTf , for every
f ∈ L2(R)? Can we characterize those operators T?

In this section, we will give a precise characterization of
operators on L2(R) which leave the phase invariant. The
results will also be generalized to operators on
Lp(R), 1≤ p<∞. We start with a definition of a class of
operators which we will call phase-preserving operators (PPO
for short).
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Definition 4.1. We call a bounded linear operator T :
L2(R)→ L2(R) to be phase-preserving if

θf � θTf ,

for every f ∈ L2(R).
The following statement is an immediate consequence of the

previous definition.
Lemma 4.2. If T : L2(R)→ L2(R) is phase-preserving, then,

for every f ∈ L2(R) with f ≠ 0 a.e., there exists an a.e. unique
function pf ≥ 0 such that Tf � pf f .

Proof. Let f ∈ L2(R) with f (t)≠ 0, for a. e. t ∈ R. Then, for all
t ∈ R such that f (t)≠ 0 and f (t)≠∞, we have

Tf (t) � eiθTf (t)
∣∣∣∣Tf (t)∣∣∣∣ � eiθTf (t)

∣∣∣∣Tf (t)∣∣∣∣
eiθf (t)

∣∣∣∣ f (t)∣∣∣∣ f (t) �
∣∣∣∣Tf (t)∣∣∣∣∣∣∣∣ f (t)∣∣∣∣ f (t),

which implies

pf (t) �
∣∣∣∣Tf (t)∣∣∣∣∣∣∣∣ f (t)∣∣∣∣ .

Since {t ∈ R: f(t) � 0}∪ {t ∈ R: f(t) � ∞} is a zero set, the
function pf is unique almost everywhere.

For ϕ ∈ L∞(R), let the multiplication operator Mϕ :
L2(R)→ L2(R) be defined by

Mϕf � ϕf .

The function ϕ is called the symbol of the multiplication
operator Mϕ. Clearly, Mϕ is bounded with ‖M‖ϕ � ����ϕ����∞. It is
obvious that if ϕ is real-valued with ϕ≥ 0 a.e., then Mϕ is phase-
preserving. In the following, we will prove that the converse of
this statement is true as well, i.e., for every PPO T, there exists a
ϕ ∈ L∞(R) with ϕ≥ 0 a.e. such that

T � Mϕ.

In other words, the function pf from Lemma 4.2 is
independent of f. To show this statement, we start by
investigating the map f1pf , where pf is defined as in Lemma 4.2.

Definition 4.3. Let f : R→C be measurable functions. We call
f and g pointwise linear-independent if (Re f (t), Im f (t)) and
(Re g(t), Im g(t)) are linear-independent vectors in R2, for a.e.
t ∈ R.

Lemma 4.4. Let T : L2(R)→ L2(R) be phase-preserving,
f ∈ L2(R) with f ≠ 0 a.e., and λ ∈ C×. Then,

pf � pλf .

Moreover, if g ∈ L2(R) is a second function which is pointwise
linear independent of f, then

FIGURE 1 | Perturbation of a signal f by a prolate spheroidal wave function ψn before and after applying the band-limiting operator. To obtain the above
visualization, we made use of approximation techniques of PSWFs as described in [1]
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pf+g � pf � pg .

Proof. If f ≠ 0 a.e., then λf ≠ 0 a.e. Due to linearity, we have

λpf f � T(λf ) � pλf λf .

Therefore, pλf � pf . Now assume that g ∈ L2(R) is pointwise
linear independent of f. Then, f + g ≠ 0 a.e. since otherwise f (t)
and g(t)would be pointwise linear-dependent on a set of measure
greater than zero. Let t ∈ R s.t. f (t) and g(t) are linear-
independent. Due to the linearity of T, we obtain

T(f + g)(t) � pf+g(t)(f + g)(t) � pf (t)f (t) + pg(t)g(t).

Linear independence implies pf+g(t) � pf (t) � pg(t). This
equation holds for a.e. t ∈ R.

Suppose that V � {f1, f2, . . .}4L2(R) is a system of functions
with the property that, for every n ∈ N, there exists a k ∈ N with
k≤ n such that fn is pointwise linear independent of fk. In this
case, Lemma 4.4 implies that a PPO T : L2(R)→ L2(R) is a
multiplication operator on spanV. As a consequence, if V would
be complete in L2(R), then T would be a multiplication operator
by a simple extension argument. In the following, we will
construct a system which satisfies exactly the conditions above.
To do so, we consider the system of exponentials E defined by the
functions χc(t) � e2πict , c ∈ R. The set E has the following
property.

Lemma 4.5. Let χc1, . . . , χcn, χcn+1 ∈ E be n + 1 distinct
exponentials and let λ1, . . . , λn ∈ C. We define ℓ : R→C to be
a nonzero linear combination of the first n exponentials:

ℓ :� ∑n
j�1

λjχcj.

Then, ℓ is pointwise linear independent of χcn+1
Proof.Without loss of generality, wemay assume that λj ≠ 0 for

j � 1, . . . , n. Let λj � aj + ibj with aj, bj ∈ R. Then,

Re ℓ(t) � ∑n
j�1

ajcos(2πcjt) − bjsin(2πcjt) (6)

and

Im ℓ(t) � ∑n
j�1

bjcos(2πcjt) + ajsin(2πcjt). (7)

We define the matrix

M(t) � ( Re ℓ(t) cos(2πcn+1t)
Im ℓ(t) sin(2πcn+1t) ).

Then, ℓ and χcn+1 are pointwise linear-independent if
detM(t)≠ 0, for almost every t ∈ R. Plugging Eqs 6 and 7
into M(t) and using the definition of the determinant as well
as elementary trigonometric identities, we arrive at

detM(t) � ∑n
j�1

ajsin(rjt) − bjcos(rjt)

with rj :� 2π(cn+1 − cj). In particular, rj ≠ 0, for every j, since cj
was assumed to be distinct. We observe that t1detM(t) can be
extended to an entire function. Since zeros of entire functions
form a discrete set with no accumulation point, it suffices to show
that t1detM(t) is not the zero function. To do so, we fix
k ∈ {1, . . . , n} and let R> 0. By using trigonometric identities,
we observe that, for j≠ k, the term

(ajsin(rjt) − bjcos(rjt))(aksin(rkt) − bkcos(rkt)) (8)

is a sum of terms of the form

αsin((rj ± rk)t + β)
with some α, β ∈ R. Due to periodicity, this implies that there
exists a C > 0 such that∣∣∣∣∣∣∣∣ ∫

R

−R
(ajsin(rjt) − bjcos(rjt))(aksin(rkt) − bkcos(rkt)) dt

∣∣∣∣∣∣∣∣≤C,

(9)

for every R> 0 and a constant C > 0 independent of R. In case
j � k, Eq. 8 becomes

(aksin(rkt) − bkcos(rkt))2,
which is a nonzero periodic function. Hence,

∫R

−R
(aksin(rkt) − bkcos(rkt))2 dt→∞ (10)

as R→∞. Combining Eq. 9 with Eq. 10, it yields

∫R

−R
detM(t)(aksin(rkt) − bkcos(rkt)) dt→∞

as R→∞ In particular, detM(t) is not the zero function.
We now give a characterization of PPO.
Theorem 4.6. Let T : L2(R)→ L2(R) be a bounded linear

operator. Then, T is phase-preserving if and only if there exists
ϕ ∈ L∞(R) with ϕ≥ 0 such that

Tf � ϕf ,

for every f ∈ L2(R). In other words, T � Mϕ.
Proof. The fact that every multiplication operator Mϕ with

ϕ≥ 0 is phase-preserving was discussed above. It remains to show
the converse. We fix f (t) � e−πt2 ; then, f ∈ L2(R) and F f (ξ)≠ 0,
for every ξ ∈ R. Wiener’s Tauberian theorem [8] implies that
span{f (· − c) ∣∣∣∣ c ∈ R} is dense in L2(R). Since the Fourier
transform is an isometry and F f � f , the set

Q :� span{M−cf
∣∣∣∣ c ∈ R}

is dense in L2(R). Let g, h ∈ Q with g ≠ h. Then,

g � ⎛⎝∑
j ∈ A

λjχ−cj
⎞⎠f

and

h � ⎛⎝∑
i ∈ B

μiχ−ci
⎞⎠f
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for some cj, ci ∈ R, λj, μi ∈ C, and finite subsets A,B ⊂ N. We
choose an exponential χ−ck with k ∉ A and k ∉ B. Since f is positive
everywhere, Lemma 4.5 implies that χ−ck f is pointwise linear
independent of both g and h. Lemma 4.4 implies that ph � pg .
Since g and h are arbitrary, we obtain a function ϕ ∈ L∞(R) with

Tg � ϕg

for every g ∈ Q.We show that ϕ ∈ L∞(R). Assume the contrary,
i.e., ϕ is not essentially bounded. Then, for every n ∈ N the set

An :� {t ∈ R:
∣∣∣∣ϕ(t)∣∣∣∣≥ n}

has a positive Lebesgue measure. We now choose fn ∈ L2(R) with
fn � 0 on R,An and

∣∣∣∣∣∣∣∣ fn∣∣∣∣∣∣∣∣2 � 1. Furthermore, we choose qn ∈ Q
such that ���� fn − qn

����2≤ 1
n
.

which is possible due to density of Q in L2(R). We estimate the
L2-norm of qn as follows:

∣∣∣∣qn∣∣∣∣2L2(An) �
����qn‖2L2(R) − ∣∣∣∣qn∣∣∣∣2L2(R,An)

≥(1 − 1
n
)2

− (fn − q2nL2(R) − fn − q2nL2(An))≥ 1 − 2
n

With this choice of qn, we obtain the following estimate:

T2
∣∣∣∣qn∣∣∣∣22 ≥ ∣∣∣∣ϕqn∣∣∣∣22 ≥ n2∫

An

∣∣∣∣qn∣∣∣∣2 ≥ n2(1 − 2
n
)

Because qn2 ≤ 1 + 1
n, we see that

T ≥ ndn

where (dn) is a sequence with dn → 1. This is a contradiction to
the boundedness of T. Consequently, ϕ ∈ L∞(R) and

T � Mϕ

on Q. Since Q is a dense subset of L2(R), we have T � Mϕ on the
closure of Q, i.e., on L2(R).

The characterization of PPOs in Theorem 4.6 was stated in
the space L2(R). The first property we used in the proof was
the pointwise linear independence of exponentials. This
condition is purely algebraic and does not depend on the
structure of Lp(R). The second crucial property we needed was
the density of modulations of a positive function f ∈ L2(R) (in
our case, f was a Gaussian) which was based on Wiener’s
Tauberian theorem. Equivalently, this means that the set of
exponentials

E :� {e2πic ∣∣∣∣ c ∈ R} (11)

is complete in L2(R, μ), where μ � fdx. In view of this
reformulation, the characterization of PPOs can be generalized
to operators on Lp(R)which provided that the set of exponentials
E is complete in Lp(R, μ). It is well known that this is true for
every Borel measure µ on R which is positive and finite.

Theorem 4.7. Let µ be a positive, finite Borel measure onR. We
denote by E the set of exponentials as defined in Eq. 11. Then, E is
complete in Lp(R, μ) for every p ∈ [1,∞).

Proof. Assume by contradiction that E is not complete in
Lp(R, μ). Then, there exists an 0≠ f ∈ Lp(R, μ), span E. Moreover,
the Hahn–Banach theorem implies that there is a continuous
linear functional ℓ ∈ Lp(R, μ)* such that

ℓ span E � 0, ℓ(f ) � dist(f , span E)≠ 0.
∣∣∣∣∣ (12)

By the Riesz representation theorem, the functional ℓ has the
form

ℓ(g) � ∫
R

g(t)m(t) dμ(t)

for some m ∈ Lq(R, μ) and every g ∈ Lp(R, μ), where q is the
Hölder conjugate exponent of p. The identities in Eq. 12 imply
that

∫
R

m(t)e2πict dμ(t) � 0

for every c ∈ R. Let τ :� mμ. Then, τ is a finite signed measure on
R with the property that its Fourier–Stieltjes transform is zero:

τ̂ � 0.

By the uniqueness theorem of the Fourier–Stieltjes transform
of measures, we have τ � mμ � 0 which implies that ℓ � 0,
contradicting Eq. 12.

Corollary 4.8. Let p ∈ [1,∞) and T : Lp(R)→ Lp(R) a
bounded linear operator. Then, T is phase-preserving if and
only if T is a multiplication operator with nonnegative symbol
ϕ≥ 0.

Proof. It is clear that a multiplication operator on Lp(R)with a
nonnegative symbol is a PPO. For the other directions, we fix
f (t) � e−πt2 . Since f is a Schwartz function, it lies in Lp(R), for
every 1≤ p≤∞. Consider the measure

μ � fdx

where dx stands for the Lebesgue measure. Clearly, µ is a finite,
positive Borel measure on R. Theorem 4.7 implies that the set of
exponentials is complete in Lp(R, μ), which is equivalent to say that

Q � span {Mcf
∣∣∣∣ c ∈ R}

is dense in Lp(R). The proof now follows the lines of the proof of
the characterization theorem in L2(R) by replacing the L2-norm
by the Lp-norm.

We finish this section by establishing a relation between the
previous characterization theorems and Section 3, where we
obtained bounds on the phase of a compactly supported
function f and the phase of its band-limited version fW .

Assume that ϕ ∈ L1(R) is nonnegative with Fϕ ∈ L1(R). Let
Mϕ be the corresponding multiplication operator and for W > 0,
let BW be the band-limiting operator. By Young’s inequality, the
operator Sϕ : L2(R)→ L2(R),

Sϕh � Fϕ*h

is well-defined and bounded. It follows that
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Mϕf � F −1(Fϕ*F f) � F −1SϕF f .

Similar to Definition 3.1, we say that a function f ∈ L2(R) is
(strictly) εW-localized with respect to the L2-norm if∣∣∣∣∣∣∣∣ f − RWf

∣∣∣∣∣∣∣∣2< εW . As defined before, W denotes the interval
[−W,W]. Now, suppose that the Fourier transform of a given
compactly supported function f ∈ L2(T ) is (strictly) εW-localized
with respect to the L2-norm, i.e.,∣∣∣∣∣∣∣∣F f − RWF f

∣∣∣∣∣∣∣∣2< εW .

We define δ :� εW − F f − RWF f2 > 0 and choose ϕ in such a
way that ∣∣∣∣∣∣∣∣Fϕ*F f

∣∣∣∣∣∣∣∣2 ≤ δ.
The existence of such a ϕ easily follows from the fact that the

Gauss kernel is an approximate identity. Combining the two
previous inequalities, we obtain the bound∣∣∣∣∣∣∣∣Mϕf − BWf

∣∣∣∣∣∣∣∣2 � ����SϕF f − RWF f
����2≤ εW .

This proves the following statement.
Corollary 4.9. Let f ∈ L2(T ) be such that its Fourier transform

is (strictly) εW-localized in the L2-sense. Then, there exists a
nonnegative function ϕ ∈ L1(R)∩L∞(R), for which∣∣∣∣∣∣∣∣Mϕf − BWf

∣∣∣∣∣∣∣∣2≤ εW . (13)

Note that an L2-localization of f can be achieved in an analogous
manner to Section 3. Suppose that f ∈ Cn+1(R) and that we have
control over the total variation norm of f (n). We then obtain an
εW-localized function (in the L1-sense), and from the control over the
BV-norm, we can assume that

∣∣∣∣∣ f̂ (ξ)∣∣∣∣∣≤1, for every |ξ|≥W. This yields∣∣∣∣∣∣∣∣∣∣ f̂ − RWf̂
∣∣∣∣∣∣∣∣∣∣2≤ ���� f̂ − RWf̂

����1≤ εW .

We conclude that if f satisfies the assumptions derived in
Section 3 (regularity and control over the total variation norm)
which yielded a bound on the phase distance |θ − θW |, then the
band-limiting operator BW is close to a multiplication operator
(in the L2-sense).

5. CONCLUSION

In this article, we were concerned with phase distortions
caused by band limiting a compactly supported signal. This
problem naturally arises in the field of optics such as
diffraction imaging. Precise localization and regularity
conditions were derived for which a bound on the phase of
the input signal and the band-limited signal is achievable. The
class of operators which leave the phase of any input signal
invariant was characterized as multiplication operators with
nonnegative symbol.
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