AUTHOR=Bui Kevin , Park Fredrick , Zhang Shuai , Qi Yingyong , Xin Jack TITLE=Structured Sparsity of Convolutional Neural Networks via Nonconvex Sparse Group Regularization JOURNAL=Frontiers in Applied Mathematics and Statistics VOLUME=6 YEAR=2021 URL=https://www.frontiersin.org/journals/applied-mathematics-and-statistics/articles/10.3389/fams.2020.529564 DOI=10.3389/fams.2020.529564 ISSN=2297-4687 ABSTRACT=
Convolutional neural networks (CNN) have been hugely successful recently with superior accuracy and performance in various imaging applications, such as classification, object detection, and segmentation. However, a highly accurate CNN model requires millions of parameters to be trained and utilized. Even to increase its performance slightly would require significantly more parameters due to adding more layers and/or increasing the number of filters per layer. Apparently, many of these weight parameters turn out to be redundant and extraneous, so the original, dense model can be replaced by its compressed version attained by imposing inter- and intra-group sparsity onto the layer weights during training. In this paper, we propose a nonconvex family of sparse group lasso that blends nonconvex regularization (e.g., transformed