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Some aspects of the brain change volume at a fairly constant rate across the life span,

i.e., linear maturation rate with respect to age, whereas other aspects of the brain change

volume at different rates for younger vs. older age ranges, i.e., non-linear changes.

Various forms of non-linear maturation likely reflect different biological mechanisms

such that theoretical distinctions between maturation patterns ought to be considered.

Simulated data with known maturation patterns and a single critical age characterizing a

qualitative change in maturation were used to establish the validity of a non-parametric

fitting method, the smoothing spline, combined with processing steps for determining

the form of the pattern and the associated critical age. Multiple classes of models were

assessed, including model-free, bottom up approaches. Three categories of maturation

patterns were explored: U-shaped, with a change in direction; sigmoidal, with an isolated

period of change; accelerating, with changes in amplitude but not direction. As noise is

a limiting factor in curve fitting, smoothing splines were fit to data with idealized low and

realistic noise levels. The smoothing spline was shown to contain the relevant information

to extract the critical ages of all maturation patterns in the form of derivative zero points,

but the previously proposed method of using third derivative zero points worked only for

the accelerating category. Therefore, an additional classification step was included to first

determine the category of maturation pattern. Classification accuracy and identification

of the calculated critical age within 5 years of the actual critical age was found to be

perfect for low noise and high for realistic noise levels. To demonstrate the applicability

of the method, a reevaluation of published biological data previously analyzed using

third derivative zero points to determine critical ages was carried out for 17 aspects

of MRI scans from 1,100 subjects. For a majority of non-linear areas, new critical ages

were identified. Further modifications to the analysis procedure could include a wider

set of maturation patterns and the inclusion of multiple critical ages to help determine

distinctions between brain areas in the timing of developmental or degenerative events

that influence their volume.

Keywords: MRI, validation, critical ages, zero points, smoothing spline

INTRODUCTION

It has previously been shown that many areas of the brain change non-linearly with age [1–3]. A
critical age in development, therefore, can be defined as a point of transition between qualitatively
different rates of change. The rates of change have often been compared to a linear and
quadratic function of age with a significant contribution of the quadratic component indicating
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a non-linear change [4–6]. The magnitude of the rates of change
have shown clear magnitude differences [2, 3, 7], but direct
comparison between areas has been hampered by the fits used.
Generally, regression procedures have been used to compare
contributions of linear and quadratic components on fits to all
the data (e.g., [1, 4]) which do not directly represent the rate of
change for any particular age. However, more piecemeal, non-
parametric spline fits have been used [2, 3, 6, 8, 9] that represent
the specific rate of change for each age. Still, a validated procedure
has yet to be demonstrated for both precisely determining the
way a brain area changes with age and accurately determining
when critical ages in development occur. Such a procedure
can be shown theoretically for data with low noise levels but
must also work for realistic noise levels. Since validation can
only be determined in relation to a ground truth, here we test
the procedures with simulated data before applying them to
observed data.

The raw data from observed brain area volume is a
combination of underlying developmental processes with
individual variability in the timing and degree of those processes
along with random measurement noise [10, 11]. Therefore,
extracting the time course and structure of the development
process for a particular brain area is non-trivial and likely
requires multiple intermediate steps. Here the goal is to validate
a set of steps that can result in a successful identification of the
type of brain maturation that a particular brain area undergoes
as well as the critical age that best indicates the key reflection
point of the maturation. Validation of this model and falsification
of other models will be based on the ability to extract ground
truth measures. Invalid model performance can occur either by
being mathematically inappropriate for a particular task or by
a mismatch between the generated values and the ground truth
values. For instance, one of the steps of the current procedure
will be extracting derivatives of a smoothing spline. If it is shown
that no particular derivative successfully extracts the critical age
for a representative set of non-linear maturation patterns than
any model that utilizes only a single derivative can be expected to
misidentify the critical ages for certain patterns. However, it is not
clear a priori how far off from the actual critical age suchmethods
would be nor how often they may correctly apply to non-
linear brain maturation patterns when they are only applied to
experimentally observed data. Also, the smoothing spline is used
here as a particular unbiased means of representing the curve to
extract the critical ages [6]. Other bottom up approaches, such as
PCA [12, 13], may be able to represent consistent components
of the developmental time course, but may not be reliable in
differentiating the maturation patterns, which would make them
also insufficient to extract specific critical ages. Before discussing
the new approach and validation of a method using smoothing
splines, we will first discuss issues with using parabolic fits.

Adult brain maturation that proceeds at different rates across
the lifespan has generally been indicated by acceleration of tissue
loss in later life in particular brain areas (e.g., [14]). Though non-
linear maturation can be demonstrated through the presence of
a quadratic component in a parametric fit, parametric fits with
quadratic components are unreliable as they are impacted by
the range of ages used in the fit and therefore are likely to be
inaccurate [6]. The inclusion of higher order parametric fits,

such as cubic equations as done by Coupé et al. [15], would
not necessarily resolve the reliability issues as they would also
be impacted by the range of ages used in the fit. The benefit of
their inclusion is that they can add new features, such as the
presence and timing of plateaus in the maturation of gray matter.
Non-parametric smoothing splines are more reliable across the
range of ages used in a fit [6] and allow for the determination
of critical ages where the rate of brain maturation changes [3].
Fjell et al. [3], put forth points of maximum change in maturation
rate as the critical ages, which mathematically is equivalent to
the zero points of the third derivative of the regional brain size.
However, this process of determining critical ages has not yet
been validated and can be shown to work well for only a subset of
maturation patterns.

Here we will start with simulated data where the critical
ages are specified mathematically so that the precise critical ages
are known, then the reliability and accuracy of using different
components of the fits will be compared. Theoretically different
patterns of brainmaturation can occur that have been empirically
demonstrated. Linear volume change is typically shown as a
constant decrease in size, such as in the nucleus accumbens [5].
The maturation rate, i.e., first derivative of regional brain size,
is a constant non-zero value across age and therefore the higher
derivatives are all a constant zero value (see Figure 1, “Curve
Type 0”). Non-linear volume changes have derivatives with at
least some non-zero values across age.

One non-linear trajectory is a U-shaped pattern with a switch
from decreasing size early in adulthood to increasing size later in
adulthood, as in the caudate nucleus [3], or similarly an inverse
U-shaped pattern with a period of increasing size followed by
decreasing size, such as in global white matter [1, 15, 16]. The
maturation rate increases or decreases linearly as a function of
age. The point of inflection where the direction of change in size
reverses would be reflected as a zero point of the first derivative.
Higher derivatives fluctuate with age and typically have more
than one zero point (see Figure 1, “Curve Type 1”). A second type
of pattern involves a sigmoidal shape, where there is a restricted
age period with a lot of change though there is little to no change
before and after this period, or a basic cubic function, which
has a plateau in the middle with very little change or constant
change before and after the plateau, such as in the pallidum [3]
or global gray matter [15]. The maturation rate would be in
the shape of a Gaussian curve with a clear peak or trough. The
location of the maximum or minimum maturation rate would
be reflected as a change in direction of the maturation rate,
which is a zero point of the second derivative. As smoothing
splines tend to be locally curvy, zero points would exist for first
and third derivatives also, though they may occur at different
ages (see Figure 1, “Curve Type 2”). A third type of pattern is
where there is a transition from one rate of change to another
though the direction of change remains the same, such as an
acceleration in the rate of brain maturation shown in the lateral
ventricles [3]. The maturation rate would be sigmoidal with a
sharp discontinuity at the point of change, which is a change
in concavity of the rate of change, i.e., a zero point of the third
derivative. Though there would not likely be first derivative zero
points due to the maturation rate always being of the same
sign, second derivative zero points could occur for age regions
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FIGURE 1 | Simulated data along with the first three derivatives of the best fit smoothing spline (gray dashed lines). The actual curve (black solid line) that the

simulated data is based on is shown in the first derivative row. A medium level of noise (σ = 0.5) was used. The critical age for all non-linear curves is 65. Curve Type 0

has a constant first derivative, aka maturation rate, with no critical age. Curve Type 1 has a linear maturation rate with a critical age at the 1st derivative zero point.

Curve Type 2 has a Gaussian maturation rate with a critical age at a 2nd derivative zero point. Curve Type 3 has a sigmoidal maturation rate with a critical age at a 3rd

derivative zero point.

with a constant maturation rate due to imperfect, curvy fits (see
Figure 1, “Curve Type 3”).

Given that different components of the rate of brain
maturation would most directly apply to the different patterns
of brain maturation, i.e., the zero points of the first, second,
or third derivative of the regional size, here we will explore
various questions in regards to how well the critical age can be
determined based on a single derivative for each pattern. For
instance, can the third derivative of the regional brain size, as
proposed by Fjell et al. [6], and used by Fjell et al. [3] and
Zeigler et al. [8], accurately and reliably determine the critical
age for each pattern of brain maturation? If not, can the type
of pattern be consistently determined such that the appropriate
component can be applied? If the appropriate component is
applied, how accurately can the actual critical age be determined?
And finally, does a re-evaluation of the Fjell et al. [3], data using
the component that best matches the type of brain maturation
pattern indicate the same or different critical ages for the various
regions analyzed?

METHODS

Types of Data
Biological Data
For this study, de-identified and z-scored cross-sectional data
was provided by Anders Fjell under a data processing agreement.
The collection and processing of the data is discussed in
Fjell et al. [3]. Briefly, it consisted of 1,100 data points for
each of 17 brain measures from adults ranging in age from
18 to 94 years old (mean age = 47.7, standard deviation
= 19.7). More specifically, the data is for the 12 non-linear
measures of the brain shown in Figure 9 and five linear brain
areas (plots of these measures can also be found in Figures
1, 2 of [3]). The smoothing spline fits used to determine
their reported critical ages were not provided. The variability
in the data was determined by first fitting a smoothing
spline and then calculating the standard deviation of the
residuals from the actual z-scored magnitude in relation to the
spline fit.
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FIGURE 2 | Simulated data created based on three different curves for two different levels of noise (Low Noise, σ = 0.075, and Realistic Noise, σ = 0.75). Top rows

represent volume (z-score) and the bottom rows show the actual instantaneous slope (maturation rate: ẏ). Dotted gray lines show the smoothing spline fit. The critical

age for all three low noise curves is 60. The critical age for all three realistic noise curves is 53.

Generated Data
Simulated data with known brain maturation patterns was
generated in order to test the validity of using particular
derivatives of the smoothing spline for estimating critical ages
in various patterns. Four particular patterns were examined, one
linear function with no critical age and three non-linear functions
that each had a single critical age corresponding to different
derivatives of the smoothing spline.
1) A linear function of age (see Figure 1, “Curve Type 0”) has a
constant derivative, or slope, and is represented by the function

y= ax, (1)

with x as the age, y as the z-scored brain area size, and a constant
brain maturation rate, i.e., first derivative or slope, of

ẏ= a. (2)

2) A quadratic non-linear function of age (see Figures 1–3,
“Curve Type 1”),

y = b (x− xcrit)
2 , (3)

represents an accelerating non-linearity which has a linearly
changing slope such that the brain maturation rate varies
with age,

ẏ= 2b (x− xcrit) , (4)

and a clear critical age at xcrit . For such a U-shaped function,
this would be equivalent to the maturation rate switching from
positive to negative or negative to positive and the critical age is
the zero point of the first derivative.
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FIGURE 3 | Simulated maturation patterns for multiple noise levels based on

three non-linear curve types. Solid black lines show the actual maturation

pattern. Green lines show the 1st derivative of the smoothing spline fit to data

of various noise levels. The critical age for all curves is 50.

3) A sigmoidal non-linear function of age (see Figures 1–3,
“Curve Type 2”),

y =
c

1− e−(x−xcrit)
, (5)

represents developmental patterns with a temporally restricted
period of change. The slope is a Gaussian function,

ẏ = y
(

1− y
)

, (6)

with the center of the sigmoid, xcrit , having a local maximum
or minimum in slope, ÿ = 0, and neighboring points having
a change in concavity,

...
y = 0. Therefore, the zero point of the

second derivative uniquely defines the critical age as the center of
the temporal period of change.
4) A temporally isolated non-linearity (see Figures 1–3, “Curve
Type 3”) has a change in the magnitude of an otherwise constant
maturation rate,

y = d1 (x− xcrit) + f1 for x ≤ xcrit, (7)

y = d2 (x− xcrit) + f2 for x > xcrit, (8)

whose continuous slope can be approximated by a
sigmoidal function,

ẏ = d1 +
d2 − d1

1− e−(x−xcrit)
. (9)

The center of the sigmoid, xcrit , is the critical age of the
non-linearity and corresponds to a change in concavity of the
maturation rate, which is the zero point of the third derivative.

Each curve was simulated 250 times for each of two values of
random noise. The specific ages of each data point corresponded
to the observed ages in the biological data and the “realistic
noise” level of 0.75 was determined based on the average standard
deviation of the observed data points from the best fit smoothing
spline (see “Determination of Noise Levels” for more details). A
separate set of “realistic noise” data was created using uniformly
distributed ages in order to test the performance of the method
without the impact of a lower distribution of data at the oldest
ages. A second “low noise” level was included with 1/10 the
standard deviation to assess how well the procedures worked
under very high signal to noise ratios. The critical age for each
simulation was randomly chosen from a uniform distribution
with a minimum age of 45 and a maximum age of 75. The
magnitudes of the maturation rate for the different maturation
patterns were held constant across simulations to approximate
the effect sizes observed in the biological data. The specific values
were: a = −0.04, b = 0.001, c = −0.8, d1 = −0.04, d2 =
−0.08. Note that in the process of classifying the curve type,
the maturation rate was normalized and slopes for half of the
simulations were inverted such that the particular effect size and
direction of the maturation pattern were irrelevant.

Analysis Steps for Top-Down, Theory
Driving Curve Fitting
Smoothing Spline Fitting
UsingMATLABR2018a with the Curve Fitting Toolbox installed,
the best fitting non-parametric smoothing spline [6, 8] was
determined for each simulation of each maturation pattern. The
smoothing parameter, which constrains the number of knots
used to fit the data, was determined based on the minimum
Bayesian Information Criterion (BIC), using the equation

BIC = n log (SSE) + (n− 1) log (n) (10)

with n = number of knots in the spline. Smoothing parameters
were checked for 1000 logarithmically spaced points between
10−7 and 10−1 such that the sum of squared error (SSE) tended
to decrease as the value of n increased, but using the minimum
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BIC ensured that the value of n did not get too high as it was
constrained by the amount of noise in the data, which is reflected
in the SSE. A continuous estimate of the z-scored brain size along
with its first derivative (i.e., maturation rate), second derivative,
and third derivative based on the smoothing spline was then
determined for the 119 unique, monotonically increasing ages
from the biological data. To ensure that the results were not
contingent on noisy calculations of the derivatives, analyses were
repeated for smoothed versions of the 2nd and 3rd derivatives.
Smoothing was done with a sliding window that averaged
together the current age point and the two adjacent age points
on each side. Examples of the smoothing spline fits for different
noise levels are shown in Figures 1–3 and examples of the
smoothed 3rd derivative are shown in Figure 10.

Determination of Critical Ages
The smoothing spline fits were used to estimate critical ages based
on the zero points of the first, second, and third derivatives.
First, the age for any zero point was determined as a change
in sign of the derivative from that age to the next age. High
levels of specificity, which would be indicated by a single critical
age guess per curve, were tested by examining the proportion
of simulations resulting in no zero points, one zero point, or
more than one zero point. A consequence of the smoothing spline
procedure is that a continuous function is generated with smooth
transitions between points such that curved lines result even if
the ground truth-generated maturation pattern is a straight line
(see Figure 1). Therefore, multiple zero points are likely to occur
for the various derivatives of the smoothing spline even if the
ground truth pattern has only a single zero point for a given
derivative. To output a single critical age guess based on each
derivative, other derivatives were used to systematically constrain
the output. Multiple first derivative zero points were expected
to occur only when the maturation rate was constant and near
zero, i.e., there is no real critical age of interest. Therefore, an
arbitrary procedure was used such that the critical age based
on the first derivative zero point was chosen to minimize the
absolute value of the second derivative at that point, i.e., be a local
maximum or minimum of the slope. Multiple second and third
derivative zero points were expected to occur due to the nature
of the fitting procedure itself, which results in curves with more
peaks for lower noise levels (Figure 3). Therefore, procedures
were used to identify the most prominent zero point in relation
to the preceding derivative. The critical age based on the second
derivative zero point was chosen to be the most distinct slope,
i.e., the furthest from the average first derivative. The critical age
based on the third derivative zero point was chosen to maximize
the second derivative, i.e., the point of greatest change in slope.

Classification of Curve Type
Different curve types are based on different underlying
maturation patterns and were expected to require different
derivative zero points to be applied in order to identify the
relevant critical ages. Therefore, a means was sought to determine
which maturation pattern best matched a particular simulation.
The slope of the smoothing spline, i.e., the maturation rate, for
77 equally spaced, whole number ages from 18 to 94 was used
as input to the classification system. This measure was chosen

to disentangle the input from the specific set of observations
used in order for the process to be more broadly applicable
across future research studies. Additionally, a 78th input value
not related to age was included in order to assist in differentiating
linear and non-linear maturation patterns. That is, a categorical
variable, i.e., a value of 0 or 1, was included of whether or not the
standard deviation of the curve was <0.005, as linear maturation
patterns have a constant maturation rate (standard deviation
of 0). The Classification Learner within MATLAB R2018A was
used on simulated data to determine which type of classifier
worked best using a 5-fold cross-validation procedure for data
with 250 trials for each of the 4 curve types. A quadratic Support
Vector Machine [17, 18] most consistently worked best across
multiple samples of simulated data. A set of “medium noise”
data (standard deviation of 0.5) was used to build a classifier that
could then be applied to other data sets, specifically the low noise
simulated data, realistic noise simulated data, and biological
data. See “Comparison of Different Classifiers” for more details
on the different options explored and how these specific values
were chosen.

Assessing Consistency Between Calculated and

Actual Critical Ages
A known but variable critical age value was used in the generation
of data for the validation process of the procedures described
above. This allows for a quantitative comparison between the
calculated critical age guess and the actual critical age used
to generate the data. Two methods of assessment were used—
the proportion of guesses within 5 years of the critical age,
which is a binary measure to emphasize the clinical applicability
of the process, and the root mean squared error (RMSE),
which is a continuous measure to characterize the magnitude
of discrepancy across all data points. Specifically, the RMSE was
calculated using the equation

RMSE = √
n

∑

i=1

(

yi − xi
)2

n
, (11)

with n = number of simulations, y = critical age guess, and x =
actual critical age.

Analysis Steps for Bottom-Up, Model Free
Curve Fitting
PCA on Smoothing Splines
In order to determine if there is sufficient information contained
within the time courses of thematuration patterns to differentiate
them (e.g., [12]), principal component analysis (PCA) was done
on the generated data using MATLAB 2018a. The input was
77 time points of the smoothing spline for each of 1,000 time
courses (250 per curve type). PCA analysis was run separately
for the different noise levels. The primary outputs were all
principal components, ordered by the amount of variance
explained (see Figure 11), and the relative scaling scores of the
different principal components, which were used for statistical
comparison between the curve types. A one-way ANOVA was
run for each of the first five principal components, with curve
type as the factor, using SPSS 26. A cutoff of p < 0.001 was

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 September 2020 | Volume 6 | Article 39

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Nichols Validated Critical Ages

used to determine statistically significant levels of information for
differentiating curve types due to multiple comparisons [19].

PCA on FFT of Smoothing Splines
Given the distribution of critical ages within the generated data
set, it was expected that the phase of the curves needed to be
accounted for in addition to their shape over time. Fast Fourier
transform (FFT) was first applied to the smoothing spline to
conduct spectral PCA on the power spectra or the combination
of the power and phase spectra (e.g., [20]). PCAwas run using the
same steps as described in “PCA on Smoothing Splines,” but with
different input. Of note is that the FFT procedure was run with
additional padding of zeros after the smoothing spline in order
to have the length of the time course be a power of 2, in this case
128 time points. The resulting power spectra is symmetric such
that only the average of the time course and half of the available
frequencies provide distinct values, in this case a total of 65.

Input type 1 was the amplitude of the power spectra,
which contained 65 data points. Input type 2 was the power
spectra combined with the raw phase spectra, for a total of
130 data points. The power spectra and phase spectra were
separately normalized to each have a mean of 0 and standard
deviation of 1 prior to combining in order to allow for equal
contribution toward the principal components. Input type 3 was
the normalized amplitude of the power spectra combined with
the normalized unwrapped phase spectra, for a total of 130 data
points. The unwrapping process removes sharp discontinuities
in phase values for nearby frequencies that can result due to the
conversion of radial phase to a linear number line. This can better
allow for consistencies in phase relationships across frequencies
to be picked up by the PCA.

RESULTS

Determination of Noise Levels
The amount of noise typically present in experimentally observed
data was sought in order to generate simulated data using
biologically realistic noise levels. First, a smoothing spline was
determined for each of the 17 areas of the Fjell et al. [3], data (see
“Biological Data”) and the residuals of each data point in relation
to the smoothing spline was calculated. Then the standard
deviation of the residuals was calculated for the entire time
course to indicate the amount of noise. Noise levels ranged from
0.61 (cerebral cortex) to 0.98 (fourth ventricle), with an average
of 0.80 and standard deviation across areas of 0.11. However,
variability tended to be higher in the older ages than younger
ages, particularly in the ventricles (see Figure 9). Therefore, the
standard deviation of the residuals was recalculated for ages<70.
Within this age range, noise levels ranged from 0.49 (inferior
lateral ventricle) to 0.95 (fourth ventricle), with an average of 0.75
and standard deviation across areas of 0.13. This value of 0.75 was
used as the “realistic noise” level for generated data.

Results of Top-Down Method for
Generated Data
To determine whether particular derivatives of a smoothing
spline were informative regarding the actual critical ages in

FIGURE 4 | The number of zero points for each of the first three derivatives

was determined for 250 simulations each of three types of curves, separately

for raw 2nd and 3rd derivatives and smoothed 2nd and 3rd derivatives.

Smoothing was done using a sliding window that averaged the five nearest

age points. Note that the number of zero points tends to increase as the noise

level decreases even though the fits better match the actual maturation rate for

lower levels of noise. The horizontal line indicates one zero point. Error bars

show one standard deviation.

generated maturation patterns, multiple analyses were done. The
specificity of the derivatives was estimated through the number of
zero points of each derivative for each type of curve. The accuracy
and reliability of a determined best guess, i.e., a single critical
age guess per derivative regardless of the number of zero points,
was assessed through comparison to the actual critical age. The
validity was confirmed through the ability to classify the type
of curve in order to extract the critical age guess based on the
relevant derivative.

Number of Zero Points
Overall, the number of critical age guesses, i.e., number of zero
points of the derivative, varied substantially between the types of
curves and the specific derivative (Figure 4). To assess variation
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FIGURE 5 | Scatter plots show the critical age guesses for the Low Noise data (σ = 0.075) for each of the first three derivatives for each type of curve. Points along

the diagonal line indicate a match between the calculated critical age and the actual critical age of the stimulated data. Points along the x-axis indicate no derivative

zero points for that trial.

in specificity across curve type and derivative, a 3 × 3 × 2
mixed-model ANOVA was run with derivative type as a within-
subjects factor (1st, 2nd, and 3rd) and curve type (1, 2, and 3) and
noise level (realistic and low) as between-subject factors. All main
effects and interaction effects were significant (all F’s > 90, all p’s
< 0.001). 3rd derivatives had the highest number of zero points
(average of 18.4) whereas 1st derivatives had the lowest number
(3.0) and 2nd derivatives had a middle level (6.6). Curve Type
2 had the highest number of zero points (16.0) whereas Curve
Type 1 had the lowest number (4.8) and Curve Type 3 had a
middle level (7.2). Low noise curves had more zero points than
high noise curves [13.6 vs. 5.0, F(1, 1494) = 86001.0, p < 0.001].
That is because lower levels of noise allow for a greater number of
knots in the BIC minimization procedure, resulting in more local
peaks, though higher noise generally leads to smoother splines
with less zero points but also less consistency with the actual
maturation rate. As seen in Figure 3, the smoothing spline fits
for higher levels of noise tended to flatten out as a function of
age in relation to lower noise data. Smoothing the 2nd and 3rd
derivative curves prior to determining the zero points reduces
the overall number of zero points, but the general patterns
remain of an increase in zero points for lower noise and a higher
number of zero points for the 3rd derivative than the 1st and 2nd
derivatives (Figure 4).

High specificity would be shown by a single critical age guess
per curve. The 1st derivative of Curve Type 1 with low noise was
the only combination that always resulted in a single zero point
for all trials (Figure 4), though the 1st derivative of Curve Type 1
with realistic noise had an average of 0.96 zero points and the 2nd
derivative of Curve Type 1 with realistic noise had an average of
0.996 zero points. The 1st derivative of Curve Type 3 for both low
and realistic noise never had zero points and the 2nd derivative
of Curve Type 1 averaged 0.28 zero points across trials (see
Figures 4–6). All other combinations of derivative, curve type,
and noise level resulted in significantly more than one zero point
per curve (all one-sample t’s > 10.9, p’s < 0.001). When the 2nd
and 3rd derivative curves were smoothed, the 1st derivative of
Curve Type 1 was the only combination that consistently resulted
in a single zero point.

Analysis Using Zero Points of a Single Derivative
Various patterns of how the calculated critical age guess
corresponded to the actual critical age defined by the specified
maturation rate were observed for different pairings of the type
of curve and the particular derivative used as the basis of the
critical age guess (see Figures 5, 6). As will be detailed below,
generally the calculated critical age was consistent with the actual
critical age when the derivative used matched the relevant type
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FIGURE 6 | Scatter plots show the critical age guesses for the Realistic Noise data (σ = 0.75) for each of the first three derivatives for each type of curve. Points along

the diagonal line indicate a match between the calculated critical age and the actual critical age of the stimulated data. Points along the x-axis indicate no derivative

zero points for that trial.

of curve and was inconsistent otherwise. Smoothing the 2nd
and 3rd derivative curves did not qualitatively change the results
as the most prominent zero point was used as the calculated
critical age regardless of how many zero points occurred (see
“Determination of Critical Ages”).

For the low noise simulated data (Figure 5), the calculated
critical age was always within 5 years of the actual critical age
when the particular derivative matched the type of curve, with
a root mean squared error (RMSE) of 0.55 or less, evidenced
by the guesses clustering along the diagonal line for each of the
subfigures along the upper-left to bottom-right diagonal. The 3rd
derivative guesses also closely corresponded to the critical age for
Curve Type 2, with 100% of the guesses within 5 years, though the
RMSE of 2.2 also indicates that they were generally slightly off
of the diagonal line. The 3rd derivative guess was disconnected
from the actual critical age for Curve Type 1 as the guesses were
uniformly distributed between 30 and 80 regardless of the actual
critical age, resulting in a RMSE of 17.4. The 2nd derivative guess
was also disconnected from the actual critical age for Curve Type
1, but in this case the zero points, when present, were at the most

extreme values of the age range, resulting in a RMSE of 32.5. The
2nd derivative guesses for Curve Type 3 tended to cluster above
the actual critical age (average residual was 11.7, RMSE of 11.0),
indicating they tended to occur after the change in maturation
rate (see Figure 3). The 1st derivative guess, though valid for
Curve Type 1, was disconnected from the actual critical age for
Curve Type 2 (RMSE of 23.8) and did not have any guesses for
Curve Type 3.

For the realistic noise simulated data (Figure 6), the calculated
critical age was consistently within 5 years of the actual critical
age when the particular derivative matched the type of curve
(92% for 1st derivative guesses for Curve Type 1, 90% for 2nd
derivative guesses for Curve Type 2, and 77% for 3rd derivative
guesses for Curve Type 3), consistent with the guesses clustering
along the diagonal line for each of the subfigures along the upper-
left to bottom-right diagonal. However, there was more spread
in the guesses for realistic noise data compared to low noise
data (RMSE of 2.1 for 1st derivative guesses for Curve Type 1,
6.4 for 2nd derivative guesses for Curve Type 2, and 5.2 for
3rd derivative guesses for Curve Type 3 vs. <0.55 for all curve
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types with low noise). This is because correlations between the
smoothing spline fit and the actual maturation rate curve were
consistently lower for the realistic noise simulated data in relation
to the low noise simulated data (average correlations—low vs.
high: Curve Type 1: 0.998 vs. 0.989; Curve Type 2: 0.959 vs.
0.574; Curve Type 3: 0.994 vs. 0.936). The 3rd derivative guesses
were now further from the critical age for Curve Type 2, with
only 8% of the guesses within 5 years and a RMSE of 7.4. The
3rd derivative guess was again disconnected from the actual
critical age for Curve Type 1 as the guesses were still uniformly
distributed, but were now more clustered around the mean age,
resulting in a RMSE of 11.8. The 2nd derivative guess was also
disconnected from the actual critical age for Curve Type 1 but
the zero points, when present, were largely clustered at the most
extreme values of the age range, resulting in a RMSE of 39.9.
The 2nd derivative guesses for Curve Type 3 tended to cluster
more symmetrically around the actual critical age but were always
away from the actual critical age (RMSE of 35.6), indicating they
occurred equally often before and after the change in maturation
rate (see Figure 3). The 1st derivative guess, though still valid for
Curve Type 1, was still not valid for Curve Type 2 (RMSE of 26.4)
and did not have any guesses for Curve Type 3.

Comparison of Different Classifiers
As initial results indicated that the critical age guess consistently
matched the actual critical age for only one of the derivative zero
points for each curve type (Figures 5, 6), a means was sought to
determine the curve type from the observed smoothing spline.
This categorization process includes the linear maturation rate
of Curve Type 0 shown in Figure 1 and allows for identification
of the appropriate derivative zero point using only the observed
data. Using generated data with various levels of noise from
0.07 to 0.75, the performance of all available classifiers in
the Classification Learner within MATLAB 2018a was assessed
(Table 1). The specific input to the classifier was the normalized
slope of the smoothing spline for 77 ages plus the variability
of the slope across all ages for each set of generated data (see
“Classification of Curve Type”). Performance generally improved
as the noise level decreased, resulting in above 95% accuracy
for multiple models, though accuracy remained low for linear
classifiers (accuracy was always below 50%, with chance level at
25%). Averaged across all noise levels tested, the Quadratic SVM
resulted in the highest level of performance (85%), though the
weighted KNN and Ensemble-Bagged Trees classifiers performed
similarly (84%).

The performance of the different classifiers was initially
assessed on each set of data separately. A single classifier was
sought that could be applied effectively across both realistic and
low levels of noise though classifiers tend to generalize best
to similar noise levels due to idiosyncrasies in the smoothing
splines for different noise levels (see Figure 3). Therefore, the
classifier trained for each level of noise using the Quadratic SVM
was applied to both low and realistic noise data (Figure 7). In
conjunction, a threshold was sought for the variability along the
spline to aide in the differentiation between linear and non-linear
curves since the variance for Curve Type 0 ought to be near
0. In general, classification initially improved for realistic noise

TABLE 1 | Classification accuracy for a subset of tested classifiers for a range of

noise levels (chance is 25%).

Noise Level

Model Type 0.75 0.5 0.3 0.075

Linear SVM 30 34 39 40

Linear Discriminant 30 35 44 44

Tree-Fine 65 75 84 94

KNN-Weighted 70 81 87 97

Ensemble-Bagged Trees 71 79 90 98

Quadratic SVM 72 81 88 98

Numbers in bold indicate the highest accuracy for each noise level.

data when a relatively low standard deviation threshold was used
(74% correct at 0.0001), remained consistent and high for a wide
range of thresholds (accuracy was 89% or above from 0.0003
through 0.007), and then decreased as the threshold increased
(78% at 0.02). Two particular values from the plateau region
were compared that were selected based on different criteria.
The threshold of 0.0003 had the highest discrimination between
the linear Curve Type 0 being below threshold and the non-
linear curves being above threshold. Specifically, 96% of the
linear Curve Type 0 while <3% of Curve Type 3 and 0% of
Curve Types 1 and 2 were below the threshold. Looking at
the biological data, the five linear areas had observed standard
deviation values of 0.0041 or below whereas the 12 non-linear
areas had observed standard deviation values of 0.0095 or above.
Therefore, a threshold of 0.005 was utilized, for which 100% of
the simulated trials of the linear Curve Type 0 but 3% of Curve
Type 3 and 0% of Curve Types 1 and 2 were below the threshold.

As anticipated, performance for the low noise data remained
high for a range of classifiers based on different noise levels
though it started to come off of the ceiling around a noise level
of 0.4 and dropped below 80% accuracy for one or more curve
types by 0.7 for both variance threshold levels (Figure 7). The
performance for the realistic noise data started off lower initially
and decreased performance fast as the noise level decreased
(Figure 7). Performance started to systematically drop below
80% for one or more curve types starting at 0.4 for a threshold
of 0.005 and at 0.5 for a threshold of 0.0003. Furthermore,
accuracy for the linear Curve Type 0 was consistently higher
and essentially 100% for a threshold of 0.005. Therefore, to
maximize correct classification of linear vs. non-linear curves
and to balance the performance at low and realistic noise levels,
a classifier trained with 0.5 noise and a threshold of 0.005 was
utilized below for analyzing both the generated data and the
biological data.

Determination of Curve Type and Critical Age
For the final validation step on using a smoothing spline
to determine the critical age in a maturation pattern, the
performance of a classification procedure was assessed to
automatically determine the type of curve so that the appropriate
derivative could be ascertained (see “Classification of Curve
Type”). For the low noise data (Figure 8), the correct type of
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FIGURE 7 | Classification accuracy as a function of noise level, shown

separately for low and realistic noise levels and two levels of variance

threshold. Percent correct of 250 trials per data point is shown for the four

different curve types along with the overall percent correct across curve types.

Chance is at 25%.

curve was identified 99.7% of the time (3 of the Curve Type
3 trials were incorrectly classified as Curve Type 2), consistent
with the high levels of correlation between the smoothing
spline and the actual maturation pattern (the correlation
coefficient for all trials was >0.95). For the realistic noise data
(Figure 8), classification performance varied by curve type but
was consistently well above chance. The lowest performance was
for Curve Type 2 at 80% correct, which was misclassified on
the remaining trials as Curve Type 3. Curve Type 1 had 93%
accuracy, though on 7% of trials it was misclassified as Curve
Type 3. Curve Type 3 was classified correctly on the vast majority
of trials (82% correct), though incorrect trials were split between
Curve Type 1 (7%) and the linear maturation rate (11%). The
linear maturation rate, i.e., Curve Type 0, was correctly classified
on 100% of trials. For the realistic noise data with a uniform
distribution of ages, classification accuracy improved—Curve
Type 1 was 98% correct, Curve Type 2 was 92% correct, Curve
Type 3 was 94% correct, and Curve Type 4 was 100% correct.
These results indicate that the classification procedure can
consistently differentiate between types of maturation patterns.

The validity of the output of the classification procedure
was determined by comparing the calculated critical age against
the actual critical age (Figure 8). Note that in order to provide
a critical age guess for the Curve Type 3 trials that were
misclassified as a Curve Type 1, since there was no first derivative
age guess for these trials, the third derivative age guess was used
whenever a trial was classified as a Curve Type 1 but there was
no first derivative guess. This had the unintended consequence
of also causing some Curve Type 1 trials that were correctly
classified as Curve Type 1 to use the third derivative guess when
there was no first derivative zero point. This occurred when the
maturation rate approached but did not quite reach a value of

0 such that the sign of the first derivative never changed. This
occurred for 3% of the Curve Type 1 trials with realistic noise.

For the low noise simulated data, all determined critical ages
for Curve Type 1 and Curve Type 2 and 99% of determined
critical ages for Curve Type 3 were within 5 years of the
actual critical age (all RMSE < 1.0). The 3 incorrect trials for
Curve Type 3 were biased above the curve (average residual of
7.7, RMSE of 1.5). For the realistic noise simulated data, the
consistency between the determined critical age and the actual
critical age varied as a function of curve type. For Curve Type
1, 89% of the determined critical ages were within 5 years of the
actual critical age, including 93% of the correct trials but only 29%
of the incorrect trials. The correct trials were not biased (average
residual of−0.6, RMSE of 5.1), but the incorrect trials were biased
toward the middle of the age range (average residual of −6.1,
RMSE of 12.5). For Curve Type 2, 90% of the determined critical
ages were within 5 years of the actual critical age, including 100%
of the correct trials but only 8% of the incorrect trials. The correct
trials were not biased (average residual of −0.4, RMSE of 1.0),
but the incorrect trials were biased below the actual critical age
(average residual of −8.1, RMSE of 4.1). For Curve Type 3, 74%
of the determined critical ages were within 5 years of the actual
critical age, including 86% of the correct trials but only 20% of
the incorrect trials. The correct trials were not biased (average
residual of−0.8, RMSE of 3.2), but the incorrect trials were biased
below the actual critical age (average residual of −4.7, RMSE of
4.9). For the realistic noise simulated data with uniform ages,
a higher percentage of critical ages were within 5 years of the
actual critical age−98% for Curve Type 1, 92% for Curve Type 2,
and 90% for Curve Type 3. Additionally, determined critical ages
were closer to the actual critical age for Curve Type 1 (RMSE of
1.8) and Curve Type 2 (RMSE of 2.7), though were similar for
Curve Type 3 (RMSE of 3.5).

Results for Biological Data
Critical ages for cross-sectional MRI data from 17 brain measures
(see “Biological Data”) were found using the same classification
procedure as was applied to the simulated data. That is, the type
of curve was first determined based on the smoothing spline fit
and then the relevant derivative zero point was chosen as the
critical age. The determined critical ages were then compared
to those reported in Fjell et al. [3], which always used 3rd
derivative zero points of a smoothing spline fit as the critical ages.
However, the exact method of defining the smoothing spline,
i.e., the constraint on the smoothness defined by the BIC vs.
AIC, may have resulted in enough differences in the local bumps
of the smoothing spline to account for some differences in the
determined critical ages. Therefore, discussion of the results will
extend to aspects of the maturation pattern that are consistent or
inconsistent between the methods.

Classification of Curve Type
At least one brain area was classified as belonging to each of
the maturation patterns with the majority (10/17) belonging to
Curve Type 3, one classified as Curve Type 1 (caudate nucleus),
one classified as Curve Type 2 (pallidum), and five classified as

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 September 2020 | Volume 6 | Article 39

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Nichols Validated Critical Ages

FIGURE 8 | Scatter plots show the critical age guesses for the simulated data following a classification procedure to determine which particular derivative zero point

to use. Black circles show correct classification of curve type. Red circles show incorrect classification of curve type. Points along the diagonal line indicate a match

between the calculated critical age and the actual critical age of the stimulated data.

Curve Type 0, i.e., linear (cerebellum cortex, thalamus, putamen,
amygdala, and nucleus accumbens).

Comparison of Specified Critical Ages
The five areas classified as linear were consistent between the
current method and Fjell et al. [3]. To help compare between the
results for the non-linear areas, the critical ages based on both
are shown for 12 areas in relation to the raw data and maturation
pattern (Figure 9) and the 3rd derivative curve (Figure 10). For
the caudate nucleus, identified as a Curve Type 1, the critical
age guesses are within 1 year (59 vs. 60). The 3rd derivative
zero point was in a similar range (55) as that is the point of
maximum curvature change for the maturation rate. For the
pallidum, identified as a Curve Type 2, the critical age guesses
occur along different points of the curve—the 2nd derivative zero
point is the peak of the maturation rate curve (59) whereas the
3rd derivative zero points are near symmetrically offset around
the peak (49 and 70), corresponding to the middle of the rise
and fall of the maturation rate. For two of the curves identified as
Curve Type 3 (total brain volume and cerebral cortex), the critical
age guesses are within 3 years of one another across methods
as both points are in the vicinity of the point of maximum
curvature change for the maturation rate. For the other eight
curves identified as Curve Type 3, the Fjell et al. critical age

guesses did not clearly correspond to the calculated 3rd derivative
zero points, but sometimes corresponded to peaks of the 3rd
derivative (e.g., lateral ventricles, fourth ventricle, brain stem,
hippocampus), a 3rd derivative zero point that was distinct
from the most prominent 2nd derivative peak (e.g., cerebellum
white matter), or an age that was not clearly identifiable based
on the smoothing splines calculated here (e.g., lateral inferior
ventricle, third ventricle, cerebral white matter). To better clarify
the correspondence of any particular critical age guess with
the calculated 3rd derivative zero points, Figure 10 shows a
smoothed version of the 3rd derivative along with the determined
critical ages based on the methods described here and those
reported in Fjell et al. [3].

Results of PCA Analysis
Principal Component Analyses (PCA) were performed on the
low and realistic noise data sets to explore what differentiating
information was present in the smoothing splines without using
preconceived theoretical maturation patterns (Figure 11). The
PCA output for the biological data was included for visual
comparison with the simulated data though no statistics could
be run on it since the curve types were not explicitly known. In
general, the first two principal components for each type of input
were sufficient to account for a majority of the variance across
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FIGURE 9 | Biological data for 12 brain measurements (circles) is shown along with the smoothing spline curve fit (smooth line) for all measurements classified as

non-linear curve types. Top rows show volume (z-score) and the bottom rows show the calculated instantaneous slope (maturation rate: ẏ) based on the smoothing

spline fit. The upper left measurement (caudate nucleus) was classified as Curve Type 1, the upper middle (pallidum) was classified as Curve Type 2, with the

remaining classified as Curve Type 3. Dotted vertical lines show the critical age guess based on the classification procedure. Short solid vertical lines show the critical

ages reported in Fjell et al. [3].

all examples with the greatest amount of variance accounted
for by a low frequency differentiation between low and young
ages. Significant differences between the curve types on particular
principal components can help elucidate the information used by
a classifier that categorizes curve type. Statistics were run on the

first five components regardless of howmuch of the total variance
was explained in order to give an adequate opportunity for the
PCA results to differentiate between curve type.

For PCA on the raw data, i.e., maturation rate time course,
no components demonstrated significant differences across curve

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 September 2020 | Volume 6 | Article 39

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Nichols Validated Critical Ages

FIGURE 10 | 3rd derivatives for 12 brain measurements (smooth line) are shown along with the determined critical ages (vertical lines) for all measurements classified

as non-linear curve types. The upper left measurement (caudate nucleus) was classified as Curve Type 1, the upper middle (pallidum) was classified as Curve Type 2,

with the remaining classified as Curve Type 3. Dotted vertical lines show the critical age guess based on the classification procedure. Short solid vertical lines show the

critical ages reported in Fjell et al. [3].

type (all F’s < 1.3, p’s > 0.27), despite the first five components
accounting for a large proportion of the variance (92% for low
noise, 99% for realistic noise). For PCA on the power spectrum
following FFT on the maturation rate time course, again no
components demonstrated significant differences across curve
type [most F’s < 1, p’s > 0.45, fifth low noise component F(3, 996)
= 2.26, p = 0.08, fourth realistic noise component F(3, 996) =

2.64, p= 0.05], despite the first five components accounting for a
large proportion of the variance (98% for low and realistic noise).
For PCA on the power spectrum combined with the raw phase
spectrum, similarly no components demonstrated significant
differences across curve type (all F’s < 1.1, p’s > 0.37), despite
the first five components accounting for a large proportion of the
variance (73% for low noise, 85% for realistic noise).
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FIGURE 11 | The principal components based on the PCA of four different input types for three different data sets. Only the set of components that accounted for at

least 95% of the variance were included or the first five components are shown, whichever was the smaller number. The color of the components indicates the relative

proportion of the variance explained by that component, in the following order from most to least: blue, red, orange, purple, and green.
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For PCA on the power spectrum combined with the wrapped
phase spectrum in order to remove discontinuities in the phase
spectrum for adjacent frequencies, a different pattern emerged
as some of the components were useful in differentiating curve
type. For low noise data, though the first component, which
accounted for 46% of the variance, did not show a significant
difference between curve type [F(3, 996) = 0.40, p= 0.76], each of
the next three components, which together accounted for 45% of
the variance, did show a significant difference between curve type
(each F > 70, p < 0.001). The second component is relatively flat
for the power spectrum but discriminates between a set of low
frequency phases from higher frequency phases (see red curve in
Figure 11). Tukey post hoc testing indicated that this component
differentiated Curve Type 1 and Curve Type 2 from each other
and the other curve types (p’s < 0.001), but did not differentiate
Curve Type 3 and Curve Type 0, i.e., the linear maturation
pattern (p = 0.37). The third and fourth components had a
similar shape in the power spectrum, differentiating relatively low
frequencies from the lowest frequencies andmedium frequencies,
but had opposite shapes in the phase spectrum (see purple and
orange curves in Figure 11). Tukey post hoc testing indicated
that the third component differentiated Curve Type 3 and Curve
Type 0 from each other and the other curve types (p’s < 0.001),
but did not differentiate Curve Type 1 and Curve Type 2 (p
= 0.66) whereas the fourth component differentiated Curve
Type 0 from the non-linear curve types (p’s < 0.001), with
a possible separation from Curve Type 1 and Curve Type 3
(p = 0.046). For PCA on the power spectrum combined with
the wrapped phase spectrum using realistic noise data, again
there was differentiating information to separate out the curve
types. However, the components with significant differences
across curve type were much more heavily weighted toward the
phase spectrum information than the power spectrum (blue,
orange, and green curves in Figure 11), with the opposite true
for the components with no significant differences (red and
purple curves in Figure 11). Specifically, the first component,
which accounted for 65% of the variance, was shown through
Tukey post hoc testing to differentiate Curve Type 0, the linear
maturation pattern, from the three non-linear curve types (p’s <

0.001) but not differentiate the other curves from one another
(p’s > 0.52). The third component, which accounted for 7% of
the variance, differentiated all curve types (p’s < 0.001) whereas
the fifth component, which accounted for 1% of the variance,
differentiated Curve Type 1 and Curve Type 2 from each other
and the other curve types (p’s < 0.001), but did not differentiate
Curve Type 3 and Curve Type 0 (p= 0.72).

DISCUSSION

Smoothing splines were shown to be a valid means of identifying
a set of maturation patterns for adult ages and shown to contain
the essential information required to determine a single critical
age for the patterns. However, zero points of any particular
derivative were not sufficient to determine the critical age when
maturation patterns contain critical ages defined by different
derivative zero points, arguing against using third derivative zero

points to determine critical ages for all maturation patterns.
Classifying the type of maturation pattern prior to determining
the critical age resulted in identified critical ages within 5 years
of the actual critical age for a vast majority of trials, even for
realistic noise levels. The results of PCA on various types of input
(maturation time course, FFT of the maturation time course
including the power and phase spectra), demonstrated that only
when appropriate phase information is included can the curve
types be differentiated, clarifying why linear classifiers performed
much worse than non-linear classifiers. The method presented
here holds promise for differentiating the maturation patterns of
individual brain areas to identify both the type of developmental
pattern occurring and the critical age that represents the key
reflection point of that pattern.

In addition to determining a validated method for identifying
critical ages in brain maturation, a goal of this study was to
rule out other methods by elucidating deficiencies in using
limited sources of information. As such, any methods seeking
to rely solely on the 1st and 2nd derivative zero points or
principal components of the maturation patterns were found to
be insufficient. Of special interest was assessing the effectiveness
of using 3rd derivative zero points as that method had previously
been used [3, 6, 8]. That method was found to work well for
most brain measurements as a vast majority of those tested here
were determined to have an accelerating non-linearity as their
developmental maturation pattern. Still, the method is invalid
for the minority of brain areas with a U-shaped maturation
pattern (Curve Type 1) and systematically misrepresents the
critical age of development for sigmoidal maturation patterns
(Curve Type 2). In regards to the identified critical ages for areas
with clear changes in the maturation rate, the 3rd derivative zero
point generally corresponds to age ranges with clear visual bends
in their observed sizes (see the rows of z-scores in Figure 9).
Such age ranges may possibly be of clinical relevance if they
also indicate a deviation from maturation across younger ages.
However, caution should be exercised when interpreting the 3rd
derivative zero points for sigmoidal maturation patterns (Curve
Type 2) as their proximity to the reflection point for the true
maturation pattern is highly impacted by noise in the observed
data (see Figure 3).

One potential issue identified here with using 3rd derivative
zero points to identify critical ages in development is the high
number of zero points found for data simulated based on a
ground truth curve with only a single zero point. This brings
up two main issues—how to determine which zero point to use
to identify a single critical age and how to determine if it is
appropriate to identify more than one critical age of development
over the lifespan. The current method proposed above took
into account the magnitude of the peak or trough of the 2nd
derivative. This is equivalent to identifying the 3rd derivative
zero point with the greatest local slope. Based on 3rd derivatives
shown in Figure 10 for biological data, most brain areas had
a single zero point with a steep slope, justifying this choice.
However, some areas, such as the cerebral cortex and cerebral
white matter, show two zero points with similar magnitude
slopes. A different selection method may have chosen the older
value as the critical age. There is some evidence, seen in Figure 8,
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that the current method may be biased toward choosing the
younger of two zero points when the actual critical age is over
70. Performance of the method as a function of age when there
is a non-uniform distribution of observations across age could be
examined further in a follow up study. Identifying maturational
patterns with multiple critical ages is a limitation of the current
method and is further discussed below.

Here simulated data was used to validate procedures that
were then used on previously published data. Validation on
simulated data is an essential step in that it verifies the
performance of themethod but using it on real data demonstrates
that the method is actually applicable. Basing simulations
on biologically constrained variables can assist in identifying
limitations of conclusions drawn from analysis of observed data.
For instance, the simulated data with an experimentally observed
age distribution highlighted particular issues in determining
critical ages above 70 that were not present with uniformly
distributed ages, especially for Curve Type 1. This was likely
due to having a sparser sampling of the population in the
oldest age groups. The increase in availability of open-access
data facilitates the process of testing new procedures on large
samples of real data [21]. Prior studies have used ground
truth simulations before applying analysis methods of MRI
data to clinical assessments in order to explore the effects of
sampling procedures and individual differences in trajectories
(e.g., [22]). Predicted brain age is a method that uses the ground
truth of someone’s actual age to infer a different biological
age as an indicator for health markers with deviations from
a normative maturation pattern possibly occurring as a result
of environmental factors [23]. Similar to what was done here,
machine learning is first used to identify patterns present in the
data but predicting brain age utilizes a continuous output value,
i.e., age, whereas here a limited number of maturation patterns
are distinguished between so that a continuous output value, i.e.,
critical age, can then be extracted. Better understanding of the
critical ages in brain maturation could help in determining brain
age or the qualitative differences in health that may exist before
and after such a critical age.

Three maturation patterns were emphasized because they
were found previously in the literature (see “Introduction”) and
correspond to typical developmental processes. The linear change
in maturation rate of Curve Type 1 would represent, in its
inverted U-shaped form, sustained neuronal growth followed by
sustained loss, which would be consistent with a combination
of two different developmental processes acting at different
points in the lifespan. The Gaussian shaped maturation pattern
of Curve Type 2 would represent growth or loss at isolated
times in the lifespan, such as puberty. The sigmoidal maturation
pattern of Curve Type 3 is consistent with acceleration due to
normal aging or disease progression. It is quite likely that various
neurobiological processes acting at different points along the
lifespan can result in other less-well defined brain maturation
patterns ([3, 7]—see Figure 4, p. 2245; [23, 24]) or that other
types of patterns would be revealed when younger ages are
included [15, 25]. The classification scheme presented here would
not detect multiple critical ages. In principle the method could
be extended to determine that multiple critical ages are present

and furthermore which component of the maturation rate would
be most informative for determining each of them. However,
the specific formulation of such a process is outside the scope
of the current study. Though much of the early studies on
how brain areas change in size over the lifespan utilized cross-
sectional data, there has been an increase in the number of studies
using longitudinal data collection. One caution on relying on
estimates based on cross-sectional data alone is the variability
added due to differences in scanner properties and the sex of
the subjects [26, 27]. Though the current analysis focused on
cross-sectional data, there has been good consistency found in the
estimated rate of change when cross-sectional data was compared
to longitudinal data in older adults ([3, 14] though see [28]).
While it is an open empirical question regarding whether the
same critical ages would be identified using either type of data,
consistency in the results is expected if the general shapes of the
maturation patternsmatch. Furthermore, longitudinal data could
be used as the basis of the maturation pattern as opposed to a
non-parametric estimation based on changes in volume across
age since estimates of brain volume loss are reliable [14, 29].
With that said, additional benefits may be gained in regards
to clinical assessment if an individual is described based on
their deviation from the mean maturation pattern [30] or when
the age trajectories of individuals are determined beyond the
group-based maturation pattern [8].

Some limitations of the method described here may be noted.
The critical age is based on a mathematical approximation of the
underlying function but may not correspond to when a change
first appears in the population, as evidenced by the location of the
dotted vertical lines along the growth curves shown in Figure 9.
Identifying initial changes in maturation rate requires pulling
additional information from the smoothing spline. This would
be possible using a sliding window that defines the expected
trajectory of maturation rate based on a preceding age range
that could signal discontinuities in the trajectory. A smoothing
spline fit would not be required for such an analysis as Schippling
et al. [9], used a non-parametric technique with smaller windows
applied to various points along the lifespan with the emphasis
on determining the maturation rate but not critical ages. Other
approaches may be more appropriate in determining when
different populations diverge from one another [13]. Another
issue is that only a single critical age is being identified when
it is possible that more than one may exist, especially when the
entire lifespan is included as opposed to just adult ages. Using
more complex maturation patterns based on the combination
of different patterns described here would still allow for using
the principle of classifying the pattern followed by extracting
multiple critical ages based on derivative zero points.
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