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In this paper three information criteria are employed to assess the truncated operational

risk models. The performances of the three information criteria on distinguishing the

models are compared. The competing models are constructed using Champernowne,

Frechet, Lognormal, Lomax, Paralogistic, and Weibull distributions, respectively.

Simulation studies are conducted before a case study. In the case study, certain

distributional models conform to the external fraud type of risk data in retail banking

of Chinese banks. However, those models are difficult to distinguish using standard

information criteria such as Akaike Information Criterion and Bayesian Information

Criterion. We have found no single information criterion is absolutely more effective than

others in the simulation studies. But the information complexity based ICOMP criterion

says a little bit more if AIC and/or BIC cannot kick the Lognormal model out of the pool

of competing models.

Keywords: information criteria, model selection, operational risk, truncated models, Value at Risk (VaR)

1. INTRODUCTION

This paper mainly applies model selection information criteria to operational risk models subject
to data truncation. In the practice of collecting operational loss data of a bank, certain losses below
a threshold value are not recorded. Thus, the data at hand can be viewed as truncated from below.
The truncated models, compared to the shifted models and naive models, have been determined to
be appropriate to model loss data for operational risk [1].

Model selection differs from model validation. Perhaps there are a few models passing the
validation process. Model selection criteria are further used to separate a most suitable model from
the rest. Traditional information criteria such as Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) have been documented [2] for a banking organization to employ when
comparing alternative models. The recent research work of Isaksson [3] and Svensson [4] have
explored model selection for operational risk models. Using AIC and/or BIC, they have determined
the overall best distributional model(s) for internal data or external data for operational risk in
financial institutions.

The purpose of this paper is to assess the effectiveness of information complexity based ICOMP
criterion, compared with AIC and/or BIC, to distinguish the fat tailed distributional models for
operational risk.

The structure of the remaining of this paper is as follows. In section 2, six candidate distributions
for construction of the truncated models of operational risk are reviewed: they are Champernowne
distribution, Frechet distribution, Lognormal distribution, Lomax distribution, Paralogistic
distribution, and Weibull distribution. In section 3, we give an introduction to such standard
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information criteria as AIC and BIC for model selection. After
reviewing standard information criteria, another information
criterion based on information complexity, known as ICOMP, is
presented. In section 4, we conduct simulation studies for the six
distributional models. In section 5, we walk the readers through
the model fitting, model validation, VaR estimation, and model
selection procedure, using a real data set for external fraud type
of losses in retail banking across commercial banks in China.
The practical performance of all information criteria presented
in this paper is compared. Concluding remarks are provided
in section 6.

2. PARAMETRIC DISTRIBUTIONS FOR
OPERATIONAL RISK

The real data of operational losses usually exhibit fat tail
properties. The main body of the data are of low severity and
high frequency. In other words, operational losses of small sizes
occur on a frequent basis. The losses of significantly larger sizes
would occur less frequently, but cannot be ignored, since a few
extremely large magnitude of losses could be very influential
to the financial health and security of a financial institution.
A few appropriate distributions for modeling the skewed type
of operational loss data have been studied in the literature: for
instance, the Champernowne distribution (see for example, [5]),
the Lognormal distribution (see for example, [6]), and the Lomax
distribution (also known as two-parameter Pareto distribution)
as a special case of the Generalized Pareto Distribution (see for
example, [7]), etc. There are a few other distributions that are
suitable to model fat tailed risks, such as the Frechet distribution,
the Paralogistic distribution, and theWeibull distribution (see for
instance, [8]).

2.1. Champernowne Distribution
The Champernowne distribution is originally proposed in the
study of income distribution, and it is a generalization of the
logistic distribution, firstly introduced by an econometrician D.
G. Champernowne [9, 10], in the development of distributions
to describe the logarithm of income. The Champernowne
distribution has probability density function (pdf)

fCHAMP(α,M)(x) =
αMαxα−1

(xα +Mα)2
, x > 0, (1)

and cumulative distribution function (cdf)

FCHAMP(α,M)(x) =
xα

xα +Mα
, x > 0, (2)

where α > 0 is the shape parameter and M > 0 is
another parameter that represents the median of the distribution.
The Champernowne distribution looks more like a Lognormal
distribution near x value of 0 when α > 1, while converging to
a Lomax distribution in the tail. In addition, by inverting the cdf
given in (2) one obtains the quantile function (qf) as

F−1
CHAMP(α,M)

(β) = M

(
β

1− β

)1/α

, 0 < β < 1. (3)

For more details about the application of Champernowne
distribution to operational risk modeling, readers are referred to
a monograph (see [5]).

2.2. Frechet Distribution
The Frechet distribution is also known as the inverse Weibull
distribution. The pdf of the two-parameter Frechet distribution
is given by

fFrechet(α, θ)(x) =
α (x/θ)−α e−(x/θ)−α

x
, x > 0, (4)

and the cdf is given by

FFrechet(α, θ)(x) = e−(x/θ)−α

, x > 0. (5)

The qf is found by inverting (5) and given by

F−1
Frechet(α, θ)

(β) = θ
(
− logβ

)−1/α
, 0 < β < 1. (6)

For the Frechet distribution, α > 0 is the shape parameter, and
θ > 0 is the scale parameter.

2.3. Lognormal Distribution
The Lognormal distribution with parameters µ and σ is defined
as the distribution of a random variable X whose logarithm is
normally distributed with mean µ and variance σ 2. The two-
parameter Lognormal distribution has pdf

fLN(µ,σ )(x) =





1
√
2πσx

e
−

(
log x− µ

)2

2σ 2 , if x > 0,

0, if x ≤ 0,

(7)

where−∞ < µ < ∞ is the location parameter and σ > 0 is the
scale parameter.

The two-parameter Lognormal distribution has cdf

FLN(µ,σ )(x) = 8

(
log x− µ

σ

)
, x > 0, (8)

and by inverting (8), the quantile function

F−1
LN(µ,σ )

(β) = eµ + σ8−1(β), 0 < β < 1 (9)

is obtained. Here 8 and 8−1 denote the cdf and qf of the
standard normal distribution, respectively.

2.4. Lomax Distribution
The pdf of the two-parameter Pareto distribution, also called
Lomax distribution, is given by

fLOMAX(α, θ)(x) = αθα (x+ θ)−α−1 , x > 0, (10)

and the cdf is given by

FLOMAX(α, θ)(x) = 1−
(
θ/(x+ θ)

)α
, x > 0, (11)
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and the qf is found by inverting (11) and given by

F−1
LOMAX(α, θ)

(β) = θ
(
(1− β)−1/α − 1

)
, 0 < β < 1. (12)

We refer readers to Arnold [11] for more details of Pareto
distributions, and see Klugman et al. [8] for the applications of
Pareto distributions to insurance loss modeling.

2.5. Paralogistic Distribution
The pdf of the two-parameter Paralogistic distribution is given by

fPL(α, θ)(x) =
α2 (x/θ)α

x (1+ (x/θ)α)α+1
, x > 0, (13)

and the cdf is given by

FPL(α, θ)(x) = 1−
(
1+ (x/θ)α

)−α
, x > 0, (14)

and the qf is found by inverting (14) and given by

F−1
PL(α, θ)

(β) = θ
(
(1− β)−1/α − 1

)1/α
, 0 < β < 1. (15)

The Paralogistic distribution is characterized by the shape
parameter α > 0 and the scale parameter θ > 0.

2.6. Weibull Distribution
The pdf of the two-parameter Weibull distribution is given by

fWeibull(α, θ)(x) =
α (x/θ)α e−(x/θ)α

x
, x > 0, (16)

and the cdf is given by

FWeibull(α, θ)(x) = 1− e−(x/θ)α , x > 0, (17)

and the qf is found by inverting (17) and given by

F−1
Weibull(α, θ)

(β) = θ
(
− log (1− β)

)1/α
, 0 < β < 1. (18)

The parameter α > 0 characterizes the shape of the Weibull
distribution, and the parameter θ > 0 characterizes the scale.

3. INFORMATION CRITERIA

Given a data set, X1, . . . ,Xn, the amount of objective information
contained in the data is fixed. However, different models may be
fitted to the same data set in order to extract the information.
We want to select the model that best approximates the
distribution of the data. There are various information criteria
for model selection, such as the Akaike Information Criterion
[12], Bayesian Information Criterion [13], and Information
Complexity (ICOMP) [14, 15]. The defining formulas of all these
three contain negative double log-likelihood.

Let L
(
θ1, . . . , θk

∣∣X1, . . . ,Xn

)
be the likelihood function of a

model with k parameters based on a sample of size n, and let θ̂1,
. . . , θ̂k denote the corresponding estimators of those parameters
using the method of Maximum Likelihood Estimation (MLE).

The AIC is defined as:

AIC = −2 logL
(
θ̂1, . . . , θ̂k

∣∣X1, . . . ,Xn

)
+ 2k. (19)

The BIC is defined as:

BIC = −2 logL
(
θ̂1, . . . , θ̂k

∣∣X1, . . . ,Xn

)
+ k log n. (20)

The ICOMP is defined as:

ICOMP = −2 logL
(
θ̂1, . . . , θ̂k

∣∣X1, . . . ,Xn
)
+ 2C1

(
I−1(θ̂1, . . . , θ̂k)

)
,

(21)

where

C1

(
I−1

)
=

s

2
log

(
tr
(
I−1

)

s

)
−

1

2
log

(
det

(
I−1

))
,

with s, tr, and det denoting the rank, trace, and determinant of
I−1 (the inverse of Fisher information matrix), respectively.

Using those information criteria, the preferred model is the
one that minimizes AIC, BIC, or ICOMP. In general, it is
known that when the number of parameters increases, the model
likelihood increases as well. We see that there is a competition
between the increase in the log-likelihood value and the increase
in the number of model parameters in the AIC and BIC formulas.
If the increase in the log-likelihood value is not sufficient to
compensate the increase in the number of parameters, then it is
not worthwhile to have the additional parameters. Note also that
the BIC criterion penalizes the model dimensionality more than
AIC for log n > 2.

ICOMP penalizes the interdependencies among parameter
estimators of MLE, i.e., the complexity of variance-covariance
structure of model’s maximum likelihood estimators via the
inverse Fisher information matrix. It is a generalization of the
maximal information measure proposed by van Emden [16]. Let
In = n ·I denote the Fisher informationmatrix based on a sample
of size n. The ICOMP penalty term is a function of the matrix I
rank, trace and determinant. The minimum value of the penalty
term is zero, which is reached when the variances of parameter
estimators are equal and the covariances are zeros. The ICOMP
criterion is very effective for regression-type models.

4. SIMULATION STUDIES

To get an idea of how each of AIC, BIC, and ICOMP performs
in selecting distributional models, let us first of all conduct some
simulation studies. The purpose of the simulation is to see which
criterion can capture the true underlying distribution fromwhich
the data is generated from.

We are going to simulate data from each of Champernowne,
Frechet, Lognormal, Lomax, Paralogistic, and Weibull
distributions, with specified parameter values. For each
distribution, the simulation is done twice, the first time with a
relatively small sample size of 100, and the second time with a
relatively large sample size of 1,000. Thus, there are in total 12
data sets being simulated. Then we fit all six distributions to each
of the 12 simulated data sets.
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In Tables 1–12, we will present the results of the simulation
studies, about the performance of all three information criteria.

In Table 1, AIC values of 2,142 and 2,141 are both regarded
as the smallest AIC values since the difference in a magnitude of

TABLE 1 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,142 2,191 2,148 2,144 2,141 2,155

BIC 2,147 2,196 2,153 2,149 2,146 2,160

ICOMP 2,155 2,205 2,144 2,160 2,155 2,171

Data generated from Champernowne (shape = 1.5, scale = 12,000), sample size 100.

TABLE 2 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 21,823 22,085 21,859 21,911 21,833 22,181

BIC 21,833 22,095 21,869 21,921 21,843 22,190

ICOMP 21,836 22,099 21,855 21,928 21,848 22,197

Data generated from Champernowne (shape = 1.5, scale = 12,000), sample size 1,000.

TABLE 3 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,348 2,339 2,353 2,364 2,353 2,399

BIC 2,353 2,344 2,358 2,370 2,358 2,404

ICOMP 2,362 2,354 2,349 2,374 2,370 2,408

Data generated from Frechet (shape = 1, scale = 20,000), sample size 100.

TABLE 4 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 24,051 23,913 24,138 24,197 24,101 24,784

BIC 24,061 23,923 24,147 24,207 24,111 24,794

ICOMP 24,066 23,928 24,134 24,213 24,135 24,803

Data generated from Frechet (shape = 1, scale = 20,000), sample size 1,000.

TABLE 5 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 1,821 1,833 1,822 1,833 1,822 1,850

BIC 1,826 1,838 1,827 1,839 1,827 1,855

ICOMP 1,833 1,843 1,818 1,840 1,832 1,867

Data generated from Lognormal (location = 7, scale = 3), sample size 100.

one is too small and that might be due to round up of decimals.
That tiny difference is insignificant. The same logic applies to
the lowest BIC values of 2,147 and 2,146. When the sample size
is 100, AIC and BIC cannot separate the true Champernowne

TABLE 6 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 18,900 19,029 18,876 19,034 18,921 19,027

BIC 18,910 19,039 18,886 19,044 18,931 19,037

ICOMP 18,912 19,039 18,872 19,043 18,932 19,044

Data generated from Lognormal (location = 7, scale = 3), sample size 1,000.

TABLE 7 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,045 2,098 2,051 2,044 2,045 2,052

BIC 2,050 2,103 2,056 2,049 2,050 2,058

ICOMP 2,057 2,111 2,047 2,058 2,058 2,068

Data generated from Lomax (shape = 1.2, scale = 8,000), sample size 100.

TABLE 8 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 21,075 21,400 21,104 21,075 21,075 21,353

BIC 21,085 21,410 21,114 21,085 21,085 21,363

ICOMP 21,089 21,415 21,100 21,090 21,089 21,370

Data generated from Lomax (shape = 1.2, scale = 8,000), sample size 1,000.

TABLE 9 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,085 2,148 2,093 2,098 2,080 2,083

BIC 2,091 2,153 2,098 2,104 2,086 2,088

ICOMP 2,097 2,162 2,089 2,107 2,094 2,096

Data generated from Paralogistic (shape = 2, scale = 20,000), sample size 100.

TABLE 10 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 20,973 21,385 20,996 21,254 20,955 21,081

BIC 20,983 21,395 21,005 21,264 20,965 21,091

ICOMP 20,984 21,398 20,992 21,262 20,968 21095

Data generated from Paralogistic (shape = 2, scale = 20,000), sample size 1,000.
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TABLE 11 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,096 2,146 2,101 2,146 2,107 2,087

BIC 2,101 2,152 2,106 2,151 2,112 2,092

ICOMP 2,111 2,160 2,097 2,156 2,120 2,105

Data generated from Weibull (shape = 0.3, scale = 5,000), sample size 100.

TABLE 12 | Simulation: Information criteria for Champernowne, Frechet,

Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 19,332 – 19,418 19,937 19,469 19,194

BIC 19,342 – 19,428 19,947 19,478 19,203

ICOMP 19,346 – 19,414 19,945 19,480 19,211

Data generated from Weibull (shape = 0.3, scale = 5,000), sample size 1,000.

model from the Paralogistic model. ICOMP tends to favor the
Lognormal more than all other models, even though the true
model is Champernowne instead of Lognormal. This bias can be
corrected by increasing the sample size.

In Table 2, across each row of the three information criteria,
the lowest value has been highlighted. All the three information
criteria are able to distinguish the true Champernowne model
from the other models, if the data is generated with a large sample
size of 1,000.

From Table 3, AIC and BIC can determine the best model that
is consistent with the underlying true model that generates the
data, since the true Frechet model produces the lowest AIC and
BIC values among all models. ICOMP says the Lognormal model
has the smallest information complexity value, while the true
Frechet model turns out to have the second lowest complexity
value. This error may be due to the relatively small sample size
of 100, and it can be eliminated by increasing the sample size to
1,000, which can be seen in the following table.

When the sample size is 1,000, all AIC, BIC, and ICOMP
criteria are successful in identifying the Frechet model as the true
model from which the data is generated. This is supported by the
lowest values of all information criteria for the Frechet model in
Table 4.

In Table 5, we have highlighted a few lowest values of AIC
and/or BIC, ignoring the slight difference of one in the values,
perhaps due to round up error. It seems that neither AIC nor
BIC can separate the true Lognormal model from the other
two competing models: the Champernowne model and the
Paralogistic model, because all three models produce the lowest
AIC and BIC values. ICOMP successfully distinguishes the true
Lognormal model from all other models. This simulation study
of fitting various models to Lognormal data of sample size 100
suggests that ICOMP is indeed more effective than AIC and BIC
to identify the true Lognormal model when the sample size is as
small as 100. But this advantage of ICOMP may disappear if we
increase the sample size to 1,000, as shown in the next table.

The Lognormal model produces the lowest AIC value, the
lowest BIC value, and the lowest ICOMP value, as indicated in
Table 6. Thus, all three information criteria successfully select
the true underlying model that generates the data, when the true
model is Lognormal and the sample size is 1,000.

From Table 7, we can tell that AIC and BIC fail to distinguish
among the Champernowne model, the true Lomax model, and
the Paralogistic model. We ignore the difference of one in the
values that may be due to round up error, and those highlighted
values are treated as the smallest ones in that particular row.
ICOMP has a biased favor toward the Lognormal model,
suggested by the lowest ICOMP value of 2,047 produced by the
Lognormal model. However, the true model is Lomax instead of
Lognormal. This type of error will go away if the sample size is
bigger as indicated in the coming table.

When the true model that generates the data is Lomax, even
if the sample size is as large as 1,000, none of AIC, BIC, or
ICOMP seems to be able to distinguish the competing three
different models: they are the Champernowne model, the true
Lomax model, and the Paralogistic model, since they all produce
the lowest information criteria values across each row in Table 8.
The magnitude of one in the difference of the highlighted values
may be subject to round up issues, and such tiny differences do
not say much about distinguishing the models.

When the sample size is 100, AIC and BIC can weakly identify
the true Paralogistic model that generates the data, since the
Paralogistic model produces the smallest AIC and BIC values in
Table 9. The reason we say weakly identifying the true model is
because the AIC and BIC values of a competing Weibull model
are close to those of the true model. However, ICOMP makes a
wrong decision to select the Lognormal model (with the lowest
ICOMP value of 2,089), even though the ICOMP value (2,094) of
the true Paralogistic model comes as the next lowest. ICOMP will
make a right decision when the sample size is increased to 1,000
as in the subsequent table.

When the sample size is as large as 1,000, all AIC, BIC, and
ICOMP can correctly identify that the true underlying process
that generates the data is the Paralogistic model, which has the
lowest information criteria values as highlighted in Table 10.

From Table 11, you can tell that AIC and BIC are able to
identify the true Weibull model that has generated the data
of a relatively small sample size 100, since the Weibull model
produces the lowest AIC and BIC values. But ICOMP fails to do
so, and ICOMP erroneously picks the Lognormalmodel (with the
lowest ICOMP value of 2,097) and puts the true Weibull model
(with the next lowest ICOMP value of 2,105) in the second place.

Fortunately, when the sample size increases from 100 to 1000,
ICOMP seems to correct its mistake as of wrongly picking the
Lognormal model in the previous table, and now ICOMP also
identifies the trueWeibull model that has generated the data. AIC
and BIC are still working well. All three information criteria end
up to have the smallest value for theWeibull model. By the way, in
thisTable 12, there are no values produced for the Frechet model,
since the numerical procedure in maximizing the log-likelihood
does not converge. Obviously, when the sample size is 1,000, the
Frechet model is definitely not a good fit for the data generated
from the Weibull model.
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Even if we have only presented 12 tables as above, more
simulation studies can be done across a wide range of the
parameter values for each distribution, and ICOMP still exhibits
a tendency to favor the Lognormal model when the sample size is
small. That sort of tendency can disappear when the sample size
gets large enough.

Let us make a remark here. When the true data generating
process is a Lognormal model, ICOMP beats AIC and BIC if
the sample size is small. When the data of small sample size
is simulated from another distribution, ICOMP might lose the
competition to AIC and/or BIC.

5. CASE STUDY: EXTERNAL FRAUD RISK

In this section, we illustrate the model performance on the real
data. We walk through the entire process of modeling, beginning
with model fitting and model validation, then Value-at-Risk
(VaR) estimation, and ends up withmodel selection using various
information criteria.

We have collected data for operational losses of external fraud
type in retail banking in branches of major commercial banks of
China in 2009–2015. We have recorded the amount of principal
indemnification involved in each event. If a savings account
holder or a debit card holder loses their money of deposit due to
external fraud, a certain proportion of the original loss amount
of principal deposit may be indemnified or reimbursed by the
bank to mitigate the loss of bank customers. That proportion is
determined by the court in accord with how much responsibility
the bank is supposed to assume during the events of external
fraud. Usual proportion numbers could be 100, 90, 80, 70, 50, or
0%. There are 181 data points that represent the cost of debit card
or savings account external fraud events for branches of major
commercial banks in China. The cost measure is in Chinese Yuan
(RMB) currency. Even though the data have been collected over
a span of a few years, the loss sizes are not scaled for inflation.
Also the legal costs, involved in the law sue process, are not
included. To illustrate the impact of data modeling threshold on
the considered models, we split the data set into two portions:
losses that are at least 26,000 RMB, which will be regarded
as observed and used for model building and VaR estimation;
and losses that are below 26,000 RMB, which will be treated as
unrecorded by the bank or unobserved. The modeling threshold
is a different concept from the reporting threshold: the former is
the threshold chosen by the model builders, and the latter is the
threshold chosen by each individual bank. We use a modeling
threshold of 26,000 RMB just for demonstration purposes. Such
a choice of modeling threshold results in 103 observed losses. A
quick summary statistics of the 103 observed data shows that it is
right-skewed and tentatively heavy-tailed, with the first quartile
40,085, median 72,000, and the third quartile 220,879; its mean is
342,838, standard deviation 944,314, and skewness 5.731.

Such a real dataset is used to conduct the case study, and we
consider three distributional models; they are Champernowne,
Lomax, and Lognormal models. MLE estimators are solved
numerically, when explicit formulas can not be obtained for
maximization of the log-likelihood functions. In Table 13, we

report the resulting MLE parameter estimates. Further, we assess
all models using the visual inspection in Figures 1–6 and formal
goodness-of-fit test statistics. The KS and AD goodness-of-fit test
statistics are given in Table 14. The VaR estimates are provided in
Table 15. Finally the information criteria values are summarized
in Table 16.

5.1. Model Fitting
Using the 103 observations of the aforementioned construction
of dataset, exceeding (inclusively) the modeling threshold 26, 000
Chinese RMB, we fit the Champernowne, Frechet, Lognormal,
Lomax, Paralogistic, and Weibull distributions to the data by
the truncated approach. The values of parameter estimators are
obtained using numerical procedure, when there are no closed
form formulas for the parameter estimators. The results are
reported in the following table.

For the truncated Champernownemodel, the shape parameter
estimate is 0.84, and the scale parameter estimate 11,654 is an
estimate of the median of the fitted Champernowne distribution.
For the truncated Frechet model, the shape parameter estimate
is 0.812, and the scale parameter estimate is 16,440. For the
truncated Lognormal model, the location parameter estimate
of the Lognormal distribution is 6.66, and the scale parameter
estimate is 2.952. For the truncated Lomax model, the shape
parameter estimate is 0.82, and the scale parameter estimate is

TABLE 13 | Parameter MLEs using truncated approach of the Champernowne,

Frechet, Lognormal, Lomax, Paralogistic, and Weibull models.

ParameterChampernowne Frechet Lognormal Lomax Paralogistic Weibull

Shape 0.84 0.812 – 0.82 0.912 0.285

Scale 11,654 16,440 2.952 12,812 12,199 5,500

Location – – 6.66 – – –

FIGURE 1 | Champernowne QQ-plot.
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FIGURE 2 | Frechet QQ-plot.

FIGURE 3 | Lognormal QQ-plot.

12,812, which in general is not the median estimate unless the
shape parameter were exactly equal to one. The shape parameter
estimate of the Champernowne model 0.84 seems pretty close
to the shape parameter estimate 0.82 of the Lomax model. If we
compare the cdf of the Champernowne distribution with that of
the Lomax distribution, we could find that they would coincide
when the shape parameter α of both were equal to one. For
the truncated Paralogistic model, the shape parameter estimate
is 0.912, and the scale parameter estimate is 12,199. For the
truncated Weibull model, the shape parameter estimate is 0.285,
and the scale parameter estimate is 5,500.

FIGURE 4 | Lomax QQ-plot.

FIGURE 5 | Paralogistic QQ-plot.

5.2. Model Validation
To validate the fitted models we employ visual inspection tools
like quantile-quantile plots (QQ-plots) and furthermore two
goodness-of-fit test statistics, Kolmogorov-Smirnov (KS) test
statistic and Anderson-Darling (AD) test statistic.

In Figures 1–6, we present plots of the fitted-versus-empirical
quantiles for the six truncated distributional models. In all
the plots both fitted and empirical quantiles have been taken
the logarithmic transformation. It seems hard to distinguish
the truncated Champernowne (Figure 1), Frechet (Figure 2),
Lomax (Figure 4), and Paralogistic (Figure 5) models, as
indicated by the graphical inspection of QQ-plots. The truncated
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FIGURE 6 | Weibull QQ-plot.

TABLE 14 | The KS and AD statistics for the fitted models, using truncated

approach.

Test

statistics

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

KS 0.063 0.066 0.054 0.068 0.064 0.107

AD 0.309 0.309 0.257 0.319 0.320 1.285

TABLE 15 | External Fraud Risk: VaR(β) estimates, measured in millions and

based on the fitted models, using truncated approach.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

VaR(0.99) 2.759 4.737 0.746 3.406 3.064 1.173

VaR(0.995) 5.092 11.154 1.292 7.913 7.074 1.920

VaR(0.999) 18.905 81.098 3.804 55.834 49.06 4.874

TABLE 16 | External Fraud Risk: Information criteria for truncated

Champernowne, Frechet, Lognormal, Lomax, Paralogistic, and Weibull models.

Champernowne Frechet Lognormal Lomax Paralogistic Weibull

AIC 2,676 2,676 2,675 2,676 2,676 2,678

BIC 2,681 2,682 2,680 2,682 2,682 2,683

ICOMP 2,695 2,694 2,676 2,695 2,694 2,697

Lognormal (Figure 3) model looks good overall by examining the
QQ plot visually. The truncatedWeibull (Figure 6) model has the
QQ plot a little bit further away from the identity line compared
to the other five models.

Looking at Figure 1, all points except for the two most
extremely large observations lie nearly on or very close to
the identity line. Compared with Figure 1 fitting the truncated
Champernowne model, we see that Figure 3 indicates a slightly
better fit of the truncated Lognormal model in the most extreme

right tail (for the largest two observations) because those two
points in Figure 3 get closer to the identity line compared to
in Figure 1. However, such improvement comes at the cost of
a slightly worse fit of the next few observations just below the
largest two.

Visual inspection of Figures 1, 4 tells us that they look very
similar to each other. This is consistent with what we have
observed in the closeness of parameter estimates in Table 13

between the truncated Champernowne model and the truncated
Lomax model.

The KS goodness-of-fit test statistic measures the maximum
absolute distance between the fitted cdf and the empirical cdf.
The AD goodness-of-fit test statistic measures the cumulative
weighted quadratic distance (placing more weight on tails)
between the fitted cdf and the empirical cdf. The KS and AD
statistics have been evaluated using the MLE parameter estimates
from Table 13. The following is the table of the KS statistics and
the AD statistics for each of the fitted models.

From Table 14, it looks like that all fitted models have low KS
and AD values except that the Weibull model produces relatively
higher values of KS and AD statistics than the other models. This
is consistent with the visual inspection of the QQ-plots.

5.3. VaR Estimates
The final product of operational risk modeling is VaR estimation,
built upon the parameter estimates of the fitted models. The
concept of VaR is useful in both finance and insurance, and let’s
define VaR as follows: Let 0 < β < 1. VaR is defined as

VaR(β) = F−1(β) , (22)

where F−1(β) denotes a quantile evaluated at level β of the
cumulative distribution function F, and F−1 is a notation used
for the generalized inverse of F.

Having gone through the model fitting and model validation,
we now are ready to compute the estimates of VaR(β) for all three
models. We summarize the results in Table 15.

From Table 15 we see that the considered six models, five of
which exhibited nearly as good fit as one another to the studied
data, produce substantially different VaR estimates, especially at
the very extreme right tail. For example, the Frechet model
produces the most conservative VaR estimates at all three levels.
The Frechet distribution comes from the family of distributions
to model extreme values. The fitted Frechet model turns out
to be more heavy-tailed than the other fitted models. On the
other hand, the fitted Lognormal model ends up to be less heavy-
tailed than the others, and Lognormal VaR values are smaller
than the VaR values of other models. For instance, the 99.9%
VaR of the truncated Lognormal model is 3.8 million RMB;
while it is 18.9 million RMB for the truncated Champernowne
model and 55.8 million RMB for the truncated Lomax model.
The 99% VaR and 99.5% VaR of the six models maintain the
same order of ranking, but the magnitude of gap is not as much
as in the highest level of 99.9% VaR. Despite producing very
different VaR estimates, we will see in the following section
that the six models are very close in terms of the values of
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information criteria, with an exception for ICOMP of the
Lognormal model.

5.4. Information Criteria Results
Finally, in Table 16 we present the values of all information
criteria considered in this paper for the truncated
Champernowne, Frechet, Lognormal, Lomax, Paralogistic, and
Weibull models. The log-likelihood function has been obtained
using the truncated distributional approach. Likewise, the Fisher
information matrix I(θ1, . . . , θk) has been derived using the
truncated likelihood for the respective parametric distributions.

As we can see from Table 16, the six models are
indistinguishable using traditional information criteria such as
AIC and BIC, since the values of each criterion are very close
for all models. In particular, a slight difference in the AIC values
with a magnitude of 1 out of more than 2,000 provides little
evidence. It is very similar if we look at the difference of 1 or 2 in
the BIC values. The use of the more refined information measure
ICOMP does not help among the truncated Champernowne,
Frechet, Lomax, Paralogistic, and Weibull models, but has the
ability to distinguish the truncated Lognormal model from the
other five models. The ICOMP favors the truncated Lognormal
model since it produces significantly lower value of ICOMP than
the other five models. We can see there is a difference of no <18
out of roughly twenty six hundred, which contrasts that tiny
difference in the values of AIC and/or BIC.

6. CONCLUDING REMARKS

In this paper, we have studied the problem of model
selection in operational risk modeling, which arises due to
that various truncated models are all validated but cannot be
distinguished. Through the numerical illustrations of simulation
studies and a case study in the previous two sections, the
performances of the traditional well-known model selection
criteria such as Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) and another information criterion
based on Information Complexity (ICOMP) have been assessed
and compared.

We summarize our conclusions as follows. Is ICOMP really
credible when choosing a Lognormal model? It depends on
the size of the sample, and also relies on whether or not the
Lognormal model gets kicked out of the pool of candidate models
by AIC and/or BIC. Simulation studies have shown that when
the true underlying model is Lognormal and the sample size is
100, ICOMP can successfully identify the Lognormal as the true
model, while AIC and/or BIC cannot distinguish the Lognormal

model from some of the other models (for example, the
Champernowne model, and the Paralogistic model). However,
when the sample size in the simulation increases to 1,000, AIC
and/or BIC can also successfully separate the true Lognormal
model from other models. In this way, when the sample size
is 1,000, ICOMP loses its competitive advantage. On the other
hand, when the underlying true model is Champernowne,
Frechet, Lomax, Paralogistic, or Webull, instead of Lognormal,
if the sample size is set to be 100, ICOMP will still erroneously
choose Lognormal as the winning model, while AIC and/or BIC
will not make such a mistake. Fortunately, this disadvantage of
ICOMP will disappear when the sample size increases to 1,000.
The reason why ICOMP prefers the Lognormal model so much
is probably because the information complexity of the Lognormal
variance covariance matrix is simpler than other models.

In order to make full use of the advantages of all the three
information criteria and avoid the disadvantages of them, a large
sample size is desirable. Otherwise, caution has to be used when
the sample size of data at hand is small, for which we propose two
stages of model selection. In the first stage, we use AIC and/or
BIC to select the best model. If it turns out that AIC and/or BIC
are successful, then we use ICOMP to strengthen the selection of
the best model. Otherwise, if AIC and/or BIC fails, we will enter
the second stage. Due to the failure of AIC and/or BIC, theremust
be several indistinguishable competing models. We consider two
different situations. One situation is that AIC and/or BIC have
kicked the Lognormal model out from the candidate pool, if
so then we cannot continue to use ICOMP to avoid ICOMP
choosing the Lognormal by mistake. The other situation is that
after using AIC and/or BIC, the Lognormal is still surviving in
the pool of candidate models, then ICOMP may be used further.
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