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In this article, we challenge the existing paradigm that greater tumor shrinkage at the

end of treatment leads to longer patient survival. In particular, we identify biological

conditions under which the exact opposite is true. A central role in our argument about

the paradoxical effect of tumor shrinkage is played by the emergence and self-selection of

subpopulations of increasingly faster proliferating cancer cells. This evolutionary factor is

often at work during post-treatment tumor regrowth and has a decidedly negative impact

on patient survival. We analyze various patterns of post-treatment tumor dynamics and

show that if the clones generated by cancer cells present at the end of treatment or the

start of a treatment break evolve independently then greater tumor shrinkage leads to

progressive enrichment of the re-growing tumor with faster proliferating cells. Importantly,

greater tumor shrinkage favors independent clonal expansion. Our findings explain

numerous clinical cases where initial tumor shrinkage to undetectable levels was promptly

followed by an aggressive tumor recurrence. They also suggest that indiscriminate use

of tumor shrinkage as surrogate endpoint in clinical trials should be discouraged.

Keywords: cancer treatment, exponential growth, Gompertz growth, net proliferation rate, overall survival, tumor

shrinkage

INTRODUCTION

Local or systemic treatment of solid cancers including external beam radiation, brachytherapy,
cytotoxic chemotherapy, immuno-, hormonal or targeted therapy has been so far largely dominated
by the idea that a malignant tumor should be treated as soon as possible with the maximum dose
a patient can tolerate. In the final analysis, this “frontloading” approach is rooted in the fact that
a dead cell will never produce offspring. In the case of fractionated radiation, the validity of the
frontloading principle can be proved mathematically under very broad, well-defined conditions
[1]. However, the maximum tolerated dose (MTD) approach faces two principal challenges. The
first is toxicity of anti-cancer drugs and radiation that increases with the dose, thus limiting both
the dose rate and the total dose administered to a patient, and negatively affects the patient’s overall
survival. The second challenge is the pre-existing or emerging resistance to treatment, i.e., selection
and proliferation of malignant clones that carry resistant genotypes and/or epigenetically modified
resistant phenotypes facilitated by massive elimination of sensitive cells.

More recently, various “smart” multi-drug treatment strategies based on the idea that sensitive
cancer cells and/or tumor microenvironment can help control the growth of the resistant cancer
cell population were proposed. For example, an evolutionary game formalism accounting for
synergistic and antagonistic interactions between sensitive, resistant, and stromal cells and aiming
to reach more favorable patient outcomes through rational treatment sequencing and timing was
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developed in [2]. As yet another example, a personalized
approach to treatment relying on a different aspect of
evolutionary game theory and based on adaptive selection of
drugs and doses depending on the results of periodic assessment
of tumor volume and composition was formulated in [3].

In this article, we bring into focus a commonly occurring,
yet quite often neglected, evolutionary factor that can cause
long-term failure of cancer treatment, be it MTD-based or
“smart”– the emergence and self-selection of subpopulations of
increasingly faster proliferating cancer cells. Even acting alone, this
factor may bring about treatment failure and shorten disease-
free, progression-free, and overall survival. Typically, however,
it acts in concert with other sources of resistance exacerbating
their effects.

The following observation is of paramount importance in
the context of this article. The post-treatment period including
the breaks between treatment cycles tends to select faster
proliferating cancer cells, unless the therapy eradicates cancer
completely, or induces a stable disease. In fact, as the residual
tumor regrows after treatment, faster proliferating cells will
dominate over time the surviving population of cancer cells
provided that their fitness is superior or comparable to that of
slower proliferating cells. In summary, for every cancer therapy
that fails to eliminate or stabilize the disease, treatment holidays
are likely to act as a filter that enriches the surviving cancer cell
population with faster proliferating cells. Such enrichment may
also occur, although perhaps to a lesser degree, during treatment.

That progressive enrichment of the residual tumor with faster
proliferating cells has a decisively negative effect on a patient’s
overall survival is clear. In an untreated patient, this would
cause the residual tumor to reach a lethal size over a shorter
period of time. If a patient is undergoing treatment then to
counter accelerated tumor growth and metastatic dissemination,
oncologists have to administer progressively higher doses ofmore
potent anti-cancer drugs. If such treatment fails, as it often
does, aggressive proliferation of multi-drug resistant residual
tumor and its metastases as well as snowballing side effects will
dramatically shorten the patient’s remaining lifetime.

Tumor shrinkage is a quantitative measure commonly used
to assess the effects of local or systemic cancer treatment. The
extent of tumor shrinkage is measured at the end of treatment
or one of its cycles in accordance with RECIST guidelines [4].
Tumor shrinkage is used for treatment planning and is widely
considered a convenient, readily measurable surrogate endpoint
that leads to acceleration of clinical trials, and thereby faster
approval of anti-cancer drugs and other interventions resulting
from such trials.

There seems to be an almost universal agreement among
cancer biologists and oncologists that greater tumor shrinkage
entails longer patient survival. An ostensibly compelling reason
for such a conclusion is that the smaller the initial tumor size at
the end of treatment the greater the time it will take a re-growing
tumor to reach a certain fixed threshold used to define a specific
survival endpoint, such as disease-free, recurrence-free, or overall
survival. This rationale is rooted in a tacit assumption that the
dynamics of tumor growth post-treatment is independent of
the tumor shrinkage factor. That this assumption is unrealistic

follows from the following biological considerations borne out
by a vast body of knowledge amassed in cancer biology:

1. Due to the treatment-induced decrease in cell density
surviving cancer cells enjoy a greater supply of space, nutrients,
oxygen, and growth factors, which is likely to decrease the
rates of their death and quiescence and thus to increase their
net proliferation rates. Furthermore, this effect is likely to be
more pronounced for larger tumor shrinkage. In radiation
therapy, the phenomenon of treatment-induced accelerated
tumor repopulation has been recognized long ago [5–7].

2. Genomic instability of cancer cells leads to spontaneous
emergence of malignant clones with higher net proliferations
rates. If such clones are fit enough compared to slower
proliferating cancer cells then their survival, combined with the
aforementioned filtering effect of treatment breaks, will cause the
range of net proliferation rates within the residual tumor to shift
to the right, i.e., to higher values. Again, greater tumor shrinkage
makes survival of such aberrant clones more likely.

3. Random biological variation causes the net proliferation
rates of daughter cells to deviate somewhat from those of mother
cells. The filtering effect of treatment breaks will tend to gradually
make this random drift one-directional and cause the range of net
proliferation rates in the surviving cancer cell population to shift
to the right.

In this article, we seek to identify biological conditions under
which greater tumor shrinkage in an individual patient may lead
to shorter survival. Because, as mentioned above, enrichment
of the surviving tumor cell population with faster proliferating
cells leads to poorer survival, the main research question we
pursue below is as follows:What are the effects of tumor shrinkage
on the progressive enrichment of the residual tumor with faster
proliferating cancer cells? To answer this question and uncover
factors bearing on these effects, we employ mathematical analysis
of cancer population dynamics. Detailed tumor dynamics in
an individual patient including the laws of growth of various
sensitive and resistant subpopulations within the residual tumor
are unknown and largely unobservable. That is why in this article
we rely on the conclusions that can be made for a number
of general, and partially empirically verifiable, patterns of post-
treatment tumor growth.

Another way to explore the relationship between tumor
shrinkage and patient survival is through statistical data analysis.
While some statistical analyses, or meta-analyses, of clinical trial
data, typically based on the Cox proportional hazards model,
found positive statistical association between tumor shrinkage
and overall survival [8–10], other studies did not confirm such
an association [11–13]. Such uncertainty is not unexpected. The
reasons why statistical methodology is unlikely to definitively
confirm or falsify the association of interest are discussed in
section Discussion.

Below we study the dynamics of the distribution of net
proliferation rates of homogeneous subpopulations forming a
residual tumor post-treatment for different tumor shrinkage
factors and tumor growth laws. In our analysis, we assume the
set of net proliferation rates within a re-growing tumor to be
fixed thus focusing our attention on conditions under which
larger tumor shrinkage produces an increase in the weights of
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faster growing subpopulations. The aforementioned naturally
occurring shift of cellular net proliferation rates within a re-
growing tumor to the right will accelerate the enrichment of the
residual tumor with faster proliferating cells even further.

As a technical note, the net proliferation rate of cancer cells
in a homogeneous population at a given time is the difference
between the rate of cell division and the combined rate of cell
death from all sources (apoptosis, necrosis, and autophagy).
The net proliferation rate depends on the heritable rates of
“intrinsic” cellular proliferation and death as well as on short-
and long-range interactions with other cancer and normal cells,
the microenvironment, and the immune system. Quiescent cells
do not contribute to the net growth rate. Because cell cycle
duration in proliferating cells can only vary within narrow
limits, the main cause of increase in the net proliferation rate
is a drop in the cell death and/or quiescence rates. Such a
drop may be due to cell migration, decreased competition with
other cells, enhanced supply of space and essential chemicals
through more efficient usage of the existing vasculature or neo-
angiogenesis, beneficial interaction with other cells and the
microenvironment, and through the development of immune
system evasion capabilities. Finally, by distribution of net cell
proliferation rates in a heterogeneous population at time t we
mean the collection of these rates at the time t together with
the fractional sizes, or weights, at the time t of homogeneous
subpopulations forming a given population.

In this article, a re-growing tumor is thought of as
consisting of a subpopulation of quiescent cells and finitely
many subpopulations growing according to certain laws. These
growing subpopulations may be defined by such cellular
characteristics as spatial localization, degree of clonogenicity,
oxygenation level, presence of certain mutations or membrane
markers, being sensitive or resistant to treatment, etc. In the
case of tumors driven by cancer stem cells, the quiescent
subpopulation may include the cancer stem cells (assumed to be
dividing asymmetrically) while other subpopulations may consist
of their descendants in various stages of differentiation. In this
case, the growth laws depend, among other factors, on transition
rates between the constituent subpopulations. Various versions
and particular cases of this general model will be considered in
the next three sections.

METHODOLOGY AND PROOF OF
PRINCIPLE

To introduce our methodology and give a proof of the principle
that greater tumor shrinkage may favor the enrichment of a
residual tumor with faster proliferating cancer cells, consider the
following simple schematic example. Suppose a pre-treatment
cancer cell population forming a solid primary or secondary
tumor consisted of N0 cells, and that the size of the population
of surviving cells post-treatment is kN0, where k, 0 < k < 1, is
the tumor shrinkage factor. Notice that greater tumor shrinkage
is associated with smaller values of k. We assume that the
surviving population consists of a stable subpopulation and two
subpopulations that grow exponentially with net growth rates

λ and 2λ. The stable subpopulation may consist of quiescent
and/or stem-like cancer cells dividing asymmetrically. Let the
respective fractional sizes, or weights, of the stable and growing
subpopulations at the end of treatment be q, 1-p-q and p, where
0 < p, q < 1 and p+q < 1, so that p is the weight of the faster
growing subpopulation. Then for time t, counted from the end of
treatment, when the re-growing tumor will reach a certain size of
interest, denoted µN0, where µ > k, we have

qkN0 + (1− p− q)kN0exp{λt} + pkN0exp{2λt} = µN0 (1)

Equivalently, in terms of x= exp{λt},

pkx2 + (1− p− q)kx+ qk− µ = 0 (2)

Solving this equation for x we find that

x=
2(µ−kq)

√

k2(1− p− q)2+4kp(µ−kq)+k(1− p− q)

(3)

At the time t determined by Equation 1 the fraction, r(k), of faster
proliferating cells is kp exp{2λt}/µ = kpx2/µ, and in view of
Equations 2 and 3 we find that

r(k)= 1−
kq

µ
−

k

µ
(1− p− q)x=

(

1−
kq

µ

)
√
1+θ−1

√
1+θ +1

, (4)

where

θ=
4p(µ−kq)

k(1− p− q)2
(5)

Interestingly, r(k) is independent of λ. Thus, by the time t
the composition of the tumor cell population post-treatment
transitioned from (q, 1-p-q, p) to (kq/µ, 1-r(k)-kq/µ, r(k)).

An elementary algebraic computation based on Equations 4
and 5 would show that r(k) > p for all k < µ, which confirms
the intuition about the filtering effect of treatment breaks, see
section Introduction. Importantly, it follows from Equations 4
and 5 that r(k) is a decreasing function of k and r(k) approaches
1 as k → 0. In particular, for a balanced surviving population
without quiescent cells (p = 0.5, q = 0) in the case µ = 1
(i.e., when the re-growing tumor reaches its pre-treatment size)
we have

r(k)=
√

1+8/k−1
√

1+8/k+1

How r(k) depends on k forµ= 1, p= 0.5 and q= 0, 0.1, 0.2, 0.4 is
shown graphically in Figure 1B. For comparison, Figures 1A,C
show this dependence for an unbalanced residual tumor with
p = 0.25 and p = 0.75, µ = 1 and the above values of q
such that p+q < 1. Figures 1A–C display a qualitatively similar
pattern of the dependence of r on k and clearly demonstrate that
r
(

k
)

→ 1 as k → 0.
Thus, in the case at hand, greater tumor shrinkage leads

to a progressive enrichment of the recurrent tumor with faster
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FIGURE 1 | (A–C) The weight of the faster growing subpopulation as a function of tumor shrinkage factor k: Exponential kinetics. The weight r(k) was computed from

Equations 4 and 5 at the time when the size of a re-growing tumor reaches its pre-treatment level. Two surviving tumor subpopulations were assumed to grow

according to exponential laws with unspecified net rates λ and 2λ. The post-treatment growing subpopulation was assumed either balanced (p = 0.5, B) or

symmetrically unbalanced (p = 0.25, A and p = 0.75, C). The following values for the weight of the quiescent cancer cell population were adopted, assuming q < 1-p:

q = 0 (solid line), q = 0.1 (dashed line), q = 0.2 (dotted line), and q = 0.4 (dashed-dotted line). See section Methodology and Proof of Principle for more details.

proliferating cells. This result is not entirely surprising: larger
tumor shrinkage leaves more room for the growth of the
residual tumor, which over time is increasingly dominated
by faster proliferating cells. Below we identify more general
post-treatment tumor dynamics scenarios that produce the
same effect.

RESIDUAL TUMOR GROWTH:
INDEPENDENT CLONAL EXPANSION
MODEL

The exponential growth law considered in the previous section
can be derived mathematically from the assumption that cells
proliferate and die independently of each other at constant
rates. This law provides a good approximation to the dynamics
of various treated and untreated tumors both in experimental
[14] and clinical [15] settings, especially at the initial stages
of tumor growth. We now describe a more general pattern
where, as above, larger tumor shrinkage leads, barring complete
tumor ablation or induction of a stable disease, to greater
enrichment of the residual tumor with faster proliferating
cancer cells. Suppose that proliferating clones generated by

cancer cells present at the end of treatment or the start of a
treatment break do not interact with each other. By contrast,
we allow arbitrary interactions between cancer cells within the
same clone.

We assume that along with a subpopulation of quiescent cells
there are two subpopulations of growing clones—one expanding
according to a growth law f(t) and another in accordance with a
law of the form g(t) = f(t)h(f(t)), where f and h are increasing
differentiable functions such that f(0) = 1 and h(1) = 1. This
implies that the second subpopulation grows faster than the
first one.

The three most prominent specific examples of such clonal
growth laws are as follows:

A. Exponential growth laws, where f(t) = exp{λt} and g(t) =
exp{γλt} with λ > 0 and γ > 1. Here h(x) = xγ−1. The case γ =
2 was considered in the previous section.

B. Gompertz laws, where

f(t) = exp

{

λ

β
(1− exp {−βt} )

}

and

g(t) = exp

{

γλ

β
(1− exp {−βt} )

}

(6)
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with λ, β > 0 and γ > 1. Here again h(x) = xγ−1. Functions
y = f(t) and y = g(t) satisfy the following ordinary differential
equation (ODE)

y′= αy−βyln y, y(0) = 1, (7)

where α = λ or γλ. This implies that λ and γλ are the
intrinsic net growth rates of the clones within the two respective
subpopulations while β is the rate of growth inhibition, assumed
the same in both subpopulations. Note that as β → 0 the two
Gompertz growth laws degenerate into the above exponential
laws. In an exponentially growing population, the per-cell net
proliferation rate remains constant: y′/y = λ. By contrast, under
the Gompertz growth law, it decreases with the increase in the
population size: y′/y = α - βln y. The adequacy of the Gompertz
law has been confirmed empirically for certain experimental
[16, 17] and clinical [18] tumors.

C. Power growth laws of the form f(t) = (1+ct)a and g(t) =
(1+ct)b with a, c > 0 and b > a, in which case h(x)= xb/a−1. The
power law was first used to describe tumor growth in the 1960s
[19]; for more recent applications of this law, see [20, 21].

Similar to Equation 1 we have

qkN0 + k(1− p− q)N0f(t)+ kpN0g(t) = µN0, (8)

where k, 0 < k < 1, is the shrinkage factor, µ > k, and q, 1-p-q, p
are the fractional weights of the respective three subpopulations
at the end of treatment. Setting in Equation 8 x= f(t) we find that

qk− µ + k(1− p− q)x+ kpxh(x) = 0, (9)

compare with Equation 2. It follows from our assumptions
that Equation 9 has a unique solution x = x(k). Differentiating
Equation 9 in k and using our assumption that the weights p, q
and function h are independent of k we obtain:

q+
(

1− p− q
)

x+
(

1− p− q
)

k
dx

dk
+ pxh (x)

+ pk[h (x)+xh′ (x) ]
dx

dk
= 0

Therefore,

dx

dk
=−

q+x
[

1− p− q+ph (x)
]

k
[

1− p− q+ph (x)+pxh
′
(x)
] (10)

In view of Equation 9 for the scaled weight, ρ(k) = µr(k), of the
faster growing subpopulation at time t determined by Equation 8
we have: ρ(k)= kpxh(x)= µ – kq – k(1-p-q)x. Then

dρ

dk
=−q−(1− p− q)

(

x+k
dx

dk

)

Using Equation 10 we obtain after some algebra

dρ

dk
=−

p[qh (x)+qxh
′
(x)+

(

1− p− q
)

x2h
′
(x) ]

1− p− q+ph (x)+pxh
′
(x)

<0

Thus, dr(k)/dk < 0, which means that larger tumor shrinkage
leads to progressive enrichment of the surviving population with
faster proliferating cells.

To compute the limiting value, rmax, of r(k) as k → 0, we
derive from Equations 8 and 9 that

r(k)=
pxh (x)

q+
(

1− p− q
)

x+pxh (x)
(11)

If the growth law f(t) is unbounded (as is the case for exponential
and power laws) then x → ∞ as k → 0. Therefore, if function
h(x) is also unbounded then Equation 11 implies that rmax =
1. Alternatively,

rmax=
pL

1− p− q+pL
,

where L = h(∞) in the case of an unbounded function f and
bounded function h and L = h[f(∞)] in the case of a bounded
(e.g., Gompertz) function f.

Our argument can be generalized to the case where the
surviving population of cancer cells consists of any number of
non-interacting homogeneous subpopulations with distinct net
growth rates. Such subpopulations may consist of sensitive or
resistant cells. As an example, we demonstrate that the above-
described effect of tumor shrinkage holds for exponentially
growing subpopulations. Let the surviving population of cancer
cells at the end of treatment or one of its cycles consist of
a quiescent subpopulation with weight q and n exponentially
growing subpopulations with net growth rates λ1 < λ2 < . . . <

λn and initial post-treatment weights p1, p2, . . . , pn > 0 such that
q+ p1 + p2 + . . .+ pn = 1. Then, similar to Equations 1 and 8

k



q+
n
∑

j=1

pjexp{λjt}



 = µ, (12)

where parameters q, λj and pj, 1≤ j≤ n, are again assumed to be
independent of the shrinkage factor k. Setting x = exp{λnt} and
γj = λj/λn, 1 ≤ j ≤ n, we represent Equation 12 in the form

q+
n
∑

j=1

pj x
γj=

µ

k

Therefore, x → ∞ as k → 0. Differentiating this equation in k
we find that

dx

dk
=−

µ

k2
(

∑n
j=1 pjγjx

γj−1
)< 0 (13)

Then for the weight, r = r(k), of the fastest growing
subpopulation given by

r=
pnx

q+
∑n

j=1 pj x
γj

(14)
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we have

dr

dx
=pn

q+
∑n−1

j=1 pj(1− γ j)x
γj

(

q+
∑n

j=1 pjx
γj
)2

>0 (15)

Combining the inequalities in Equations 13 and 15 we conclude
that r(k) is a decreasing function of k. Also, it follows from
Equation 14 that r(k) approaches 1 as k → 0.

EXPANSION OF INTERACTING CLONES:
GOMPERTZIAN GROWTH

We now analyze the effects of tumor shrinkage on the
distribution of net proliferation rates in a cancer cell population
where cell interaction is allowed to happen not only within
the clones generated by initiator cells present at the end of
treatment or the start of a treatment break but also between the
clones within the same homogeneous subpopulation. The most
widely used growth law allowing for such interactions is the
Gompertz law.

Consider a cell population growing according to the
Gompertz law. The size, y(t), of such population satisfies the
following ODE

y′= λy− βylny, y(0) = N0, (16)

which is the same as Equation 7 except now we are not limited
to the case N0 = 1. Here, as above, λ represents the intrinsic net
proliferation rate and β is the rate of growth inhibition due to
cell-to-cell interaction, competition for space, nutrients, oxygen
and growth factors, and other reasons. The solution of Equation
16 has the form

y (t)= N0
exp{−βt}exp

{

λ

β
(1− exp {−βt} )

}

, (17)

compare with Equation 6 corresponding to the case N0 = 1. Thus,
the size of the population at time t is identical to the total size at

time t of a population of N
exp{−βt}
0 non-interacting clones with

the same Gompertz kinetic parameters. The limiting size of the
population as t → ∞ is K = exp{λ/β}, which is independent of
N0 and represents the carrying capacity of the environment. The
Gompertz growth law given by Equation 17 can be alternatively
represented as

y (t)=K

(

N0

K

)exp{−βt}
(18)

Suppose a residual tumor consists of two non-interacting
subpopulations, S1 and S2, whose growth is governed by
Gompetrz laws with respective parameters λ1, β and λ2, β, where
λ2 > λ1. As above, we let k denote the shrinkage factor, p be
the weight of the faster growing subpopulation, S2, at the end of
treatment, and

K1=exp

{

λ1

β

}

, K2=exp

{

λ2

β

}

represent the respective carrying capacities.We assume that there
are no quiescent cells. For time t when the total population
reaches a given size M, where kN0 < M < K1 + K2, we set z
= exp{-βt} to obtain

[k(1− p)N0]
zexp

{

λ1

β
(1− z)

}

+(kpN0)
zexp

{

λ2

β
(1− z)

}

=M

or equivalently

K1

[

k(1− p)N0

K1

]z

+K2

(

kpN0

K2

)z

=M (19)

Therefore, the time t satisfying this equation is a decreasing
function of the tumor shrinkage factor k.

Denote by y1 and y2 the respective sizes of subpopulations
S1 and S2 at the time t. Notice that the relative weight,
r(k)= y2/M= y2/(y1+y2), of subpopulation S2 has the same
pattern of monotonicity in k as the ratio y2/y1. The same is also
true for the ratio u2/u1 of population sizes scaled to their carrying
capacities. Then, see Equation 18,

u2 (t)

u1 (t)
=





kN0p
K2

kN0(1−p)
K1





z

=

( p
K2

1−p
K1

)z

(20)

The ratio u2/u1 depends on k only through variable z (or
equivalently, time t). If at the end of treatment subpopulation S2
had a larger weight relative to its carrying capacity i.e., if

p

K2
>
1− p

K1
(21)

then Equation 20 implies that under the above assumptions
and for any given threshold, M, for the total population size
and any pre-treatment tumor size N0, greater tumor shrinkage
followed by tumor repopulation will favor the expansion of
the slower growing subpopulation S1. Conversely, if at the end
of treatment subpopulation S1 constituted a larger fraction of
the residual tumor, relative to its carrying capacity, than the
faster growing subpopulation S2 then greater tumor shrinkage
will favor expansion of subpopulation S2 at the expense of S1.
Notice a stark contrast with the case of non-interacting clones
where tumor shrinkage confers a blanket advantage on the faster
growing subpopulation.

To illustrate a complex dependence of the weight of the faster
growing subpopulation of cancer cells on the shrinkage factor for
a fixed total population size in the case of Gompertzian kinetics,
we selected the following values of model parameters: (i) K1 =
1013 cells and K2 = 2 · 1013 cells, which implies that λ2 is 2.3%
larger than λ1; (ii) N0 = 109 or 1010 cells (i.e., about 1 or 10
cm3); (iii) the overall survival endpoint was defined as reaching
the total tumor size of M = 1012 cells, assumed lethal; and (iv)
for the initial post-treatment weight, p, of the faster growing
subpopulation we chose two values: p = 0.5 and p = 0.8 (notice
that p = 0.8 satisfies the inequality in Equation 21 while p = 0.5
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does not). With these parameters, the weight, r(k), of the faster
growing subpopulation is given by

r (k)=
2

[

2(1−p)
p

]z
+2

(22)

where z is related to k through Equation 19. The results shown
in Figures 2A,B for the two selected values of N0 confirm the
aforementioned dependence of the monotonicity pattern of r(k)
on the relationship between p/K2 and (1-p)/K1, see Equation 21.
It follows from Equation 19 that z approaches 0 as k → 0, and
from Equation 22 we conclude that the limiting value of r(k) as
k → 0 is 2/3, which is clearly seen in Figure 2.

In the foregoing examples, the effects of greater tumor
shrinkage on the qualitative dynamics of the fastest growing
subpopulation was either universal, as in the independent clonal
growth model, see the previous section, or dependent only on a
combination of kinetic parameters of the two populations and the
compositional parameter p of the cancer cell population at the
end of treatment, as in the above Gompertz model. In the case
of two independently evolving Gompertz subpopulations with
distinct values of the growth inhibition coefficient β the pattern
of such dynamics changes with time. Even more complex pattern
can be expected when the residual tumor consists of several
interacting subpopulations.

DISCUSSION

In this article, we explored systematic biomedical reasons behind
the hypothesis that greater treatment-induced tumor shrinkage
may lead to shorter overall survival of cancer patients. To
validate this hypothesis, we viewed the effects of tumor shrinkage
on post-treatment survival through the lens of progressive
enrichment of a recurrent residual tumor with increasingly
faster proliferating cancer cells. Such an enrichment occurs
post-treatment or during treatment breaks and clearly has a
negative effect on long-term survival of cancer patients. The
enrichment results from four mechanisms: (A) progressive
dominance of faster proliferating cells that occurs in every
re-growing heterogeneous tumor post-treatment provided that
faster proliferating cells have higher, or similar, fitness compared
to slower proliferating cells; (B) increase in the net proliferation
rates of surviving cancer cells due to a greater per-cell supply
of space, oxygen, nutrients, and growth factors as well as
to diminished competition between cancer cells for these
resources; (C) emergence of aberrant malignant clones with
higher net proliferation rates whose expansion and domination
are facilitated by the above factors A and B; and (D) random
deviation of net proliferation rates of daughter cells relative to
those of mother cells, which in combination with the filtering
factor A and facilitating factor B causes a gradual shift of
the spectrum of net proliferation rates to the right. Greater
treatment-induced tumor shrinkage tends to make the effects
of processes A-D even more pronounced. Additionally, tumor
shrinkage occurs mostly at the expense of sensitive cancer cells
while leaving resistant cells essentially intact. The emergence of

faster proliferating resistant subpopulations narrows treatment
options, necessitates dose escalation with an attendant increase
in the risks and severity of adverse side effects, and often leads to
treatment failure.

We showed that in the case where clones generated by
the surviving cancer cells grow independently of each other
more extensive tumor shrinkage leads to greater enrichment of
a re-growing tumor with faster proliferating cells, see section
Residual Tumor Growth: Independent Clonal Expansion Model.
In this argument, we assumed that the pattern of post-treatment
dynamics of the residual tumor does not change over time.
In reality, the above mechanisms B, C and D will likely make
the rate of the enrichment even greater. Conversely, in the
case of significant interaction between surviving clones such as
the one occurring under the Gompertz growth model, larger
tumor shrinkage may bestow greater or lesser advantage on faster
proliferating cells, depending on the kinetics of the surviving
subpopulations, the initial composition of the residual tumor, the
tumor shrinkage factor, and time.

Thus, somewhat paradoxically and contrary to the common
belief that greater tumor shrinkage is universally beneficial and
increases patient survival, it can be expected that in a significant
fraction of patients increased tumor shrinkage is actually a
predictor of treatment failure and will entail shorter survival.
Furthermore, this conclusion is likely to be true for various kinds
of local and systemic treatment and across many types of solid
cancer and stages of the disease.

Are there clinical scenarios where independent propagation
of the clones generated by surviving cancer cells present at the
end of treatment or the start of a treatment break, and hence
the paradoxical effect of greater tumor shrinkage on patient
survival, is likely to occur? First, extensive tumor shrinkage
may leave enough space and create sufficient supply of essential
chemicals for the surviving clones to grow independently, at least
on the initial stages of tumor repopulation. Second, surviving
cancer cells that have preexisting or acquiredmigration capability
will tend to spread over a larger volume; the resulting spatial
separation of the initiator cells will reduce interaction between
their clones. Third, such separation of clones may be due to
anatomic reasons; for example, primary colon tumor grows
through the expansion of clones anatomically sequestered in
crypts and the involvement of new crypts in the carcinogenic
process through crypt fission [22]. Fourth, many cancers form
deposits on nutrient- and oxygen-rich surface of blood vessels.
When the surviving cancer cells on such a surface spawn their
clones, the presence of a spatial dimension orthogonal to the
surface reduces the inter-clone competition for space, which
would tend to make the expansion of such clones independent
as along as contact inhibition and competition for resources do
not play a significant role in the dynamics of clonal expansion.

It is well-known that tumor latency time from the emergence
of the first malignant clonogenic cell to the event of tumor
detection typically comprises many years or even decades. Yet in
a large number of clinical cases tumor shrinkage to undetectable
levels induced by local or systemic treatment is followed by
aggressive tumor recurrence within just a fewmonths. The results
of this study offer a natural explanation of this phenomenon.
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FIGURE 2 | (A,B) The weight of the faster growing subpopulation as a function of tumor shrinkage factor k: Gompertzian kinetics. The two surviving subpopulations

of cancer cells were assumed to grow independently according to Gompertz laws with the same unspecified growth inhibition parameter β and carrying capacities K1

= 1013 cells and K2 = 2.1013 cells. The initial pre-treatment tumor size was assumed N0 = 109 cells in A and 1010 cells in B. The weight r(k) of the faster growing

subpopulation was computed at the time when re-growing residual tumor reaches a lethal size M = 1012 cells. For the initial post-treatment weight, p, of the faster

growing subpopulation we adopted the values of p = 0.5 or p = 0.8; the respective plots for r(k) are the lower (solid) curve and the upper (dashed) curve in (A,B). For

background and relevant equations, see section Expansion of Interacting Clones: Gompertzian Growth.

Our results also suggest that the choice between the MTD and
“smart” approaches to cancer treatment is a delicate one. One the
one hand, resistant cells pose a greater threat to patients’ survival
than sensitive cells, and constraining accelerated proliferation of
resistant cells through competition with sensitive cells seems a
reasonable “smart” approach conducive to the patients’ overall
survival. On the other hand, cancer cells usually become resistant
to a given treatment through acquisition of new functions whose

maintenance requires extra energy and material resources. As a
result, resistant cells are generally expected to be less fit than
sensitive cells [23]. Therefore, the residual tumor is more likely
to be progressively enriched with faster proliferating sensitive
cells than resistant ones, which would favor a more aggressive
treatment against sensitive cells. Thus, adaptive combinations of
the two treatment strategies like the ones advocated in [3] seem
to be most promising.
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Many cancer patients whose tumor shrunk to undetectable
levels as a result of treatment are declared “cancer-free” and put
on a laxer follow-up schedule than patients whose treatment did
not result in such a dramatic reduction of tumor burden. Quite
often, tumor recurrence in such highly responsive patients is
detected through onset of symptoms rather than in the course of
a pre-scheduled medical exam. The results of this work suggest
a recommendation that cancer patients with extensive tumor
shrinkage should be followed up, at least initially, as frequently as
other cancer patients, and perhaps even more so. It is expected
that the proposed management of this well-defined group of
patients will require relatively few additional resources.

Timely detection of rapid recurrence in cancer patients
whose treatment resulted in extensive tumor shrinkage
requires development of highly sensitive biomarkers that
would reliably differentiate between fast growing and indolent
tumors before they become visible on CT, PET, MRI, and other
diagnostic images.

In this study, we identified one mechanism leading to shorter
overall survival of cancer patients—progressive enrichment
of the residual primary or secondary tumor with faster
proliferating cells that occurs post-treatment or during treatment
breaks. In many patients, this largely unobservable process
manifests clinically as distant metastatic relapse. There is a
competing mechanism that may bring about the same clinical
outcome—treatment-induced escape from metastatic dormancy
and accelerated growth and vascularization of those active
metastases that remain undetected during the treatment of the
primary tumor. In the case of breast cancer, the widespread
presence of dormant metastases at the time of primary tumor
detection and their role as critical determinant of long-
term patient survival were demonstrated in the body of
work by Bernard Fisher that spanned more than half-century,
see his reviews [24, 25]. More generally, a compelling new
paradigm of cancer centered around tumor dormancy was
formulated in [26]. The aforementioned metastasis-promoting
effect of the treatment of primary tumor is due to a number
of factors:

(1) Suppression of metastasis by the primary tumor. Starting
with the pioneering works [27, 28] published in the 1910s
this phenomenon was observed in many animal studies,
see comprehensive reviews [29, 30]. It would come as no
surprise, then, that extensive shrinkage of the primary tumor
could accelerate metastasis; moreover, one would expect this
effect to be proportional to the extent of tumor shrinkage.
In the case of primary tumor resection, rapid outgrowth
of metastases in animal models was directly observed in
[27, 28] and since then in countless experimental studies
and clinical cases, as reviewed in [29–33]. A detailed
experimental investigation of the interruption of dormancy
of the immune system-controlled distant tumors in mice
triggered by primary tumor resection was conducted in
[34]. Finally, mathematical modeling revealed considerable
acceleration of metastatic growth in ten prostate cancer
patients treated with chemotherapy and adjuvant hormonal
therapy [35].

(2) Increased local and systemic production of growth and
angiogenesis factors required for the healing of injury
caused by radiation treatment. For a discussion of the
role of wounding in promotion of metastasis, see [36] and
references therein.

(3) Transient inflammation and temporary immunosuppression
that may cause metastases to escape from dormancy and
evade immune surveillance. To quote a seminal experimental
study by Panigrahy et al. [37], “Cancer treatment is a double-
edged sword, as surgery (including biopsy), chemotherapy, or
radiation can induce tumor-dormancy escape and subsequent
metastatic outgrowth by impairing tumor-specific immunity
through inflammation-mediated growth signals and loss of
resolution of inflammation. . . ”

One would expect that the utility of tumor shrinkage as a
predictor of long-term survival could be confirmed through
statistical analysis, or meta-analysis, of data resulting from
observational studies, or clinical trials. Results of such analyses,
however, are controversial [8–13]. This can be explained by
five non-mutually exclusive factors. First, observations of tumor
shrinkage and long-term survival of patients are often separated
by long periods of time, typically ranging from a few months
to many years. Quite often, various health-related events and
interventions occur over this period of time, which may affect the
association of interest. Second, short- and long-term responses
of patients to treatment are often very heterogeneous: while
some patients fail to positively respond to treatment, responses
of others may lie anywhere between partial and complete;
additionally, the treatment may produce side effects ranging
from minor and transient to permanent and life-threatening,
which may also affect long-term survival in many essential
ways. Such heterogeneity of responses may preclude rigorous
statistical analysis [38]. Third, as discussed above, survival
effects of the progressive enrichment of a recurrent residual
primary tumor with increasingly faster proliferating cancer cells
are confounded by those of treatment-induced acceleration of
metastasis, which makes separation of these two factors by
statistical means a daunting task. Furthermore, in many cases
reduction in patient survival time caused by both mechanisms
is expected to be more pronounced for greater tumor shrinkage.
Fourth, statistical methods utilized to ascertain an association
between short-term response to treatment and its long-term
benefits are predicated on various untestable assumptions. For
example, the Cox proportional hazards model widely used
for this purpose depends on the empirically untestable, and
most likely unrealistic, assumption that unobservable individual
hazard functions of cancer patients in a queried group associated
with a long-term outcome of interest are proportional. Finally,
the gap between the real goal of establishing a cause-and-effect
relationship between tumor shrinkage and improvement in long-
term survival of cancer patients on the one hand and confirming
a statistical association or correlation between them on the other
hand is a formidable one to fill [39].

Progressive enrichment of the residual tumor with faster
proliferating cells has a universal prerequisite—interruption
or termination of treatment, usually due to toxicity and/or
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emergence of resistance. One therapy type where such
interruption does not have to occur necessarily is metronomic
treatment, i.e., continuous exposure to low doses of an anti-
cancer drug, which is the exact opposite of the MTD approach.
The metronomic treatment strategy resulted from a cancer
growth model developed in [40] and was successfully tested by
Dr. Michael Retsky, one of the authors of that study, on his stage
IIIc colon cancer [41–43]. Our results suggest that benefits of
metronomic treatments deserve a thorough investigation.

We have shown that greater tumor shrinkage does not
necessarily translate into improved long-term patient survival.
Thus, tumor shrinkage may be a poor surrogate for long-
term survival endpoint in clinical trials of anti-cancer drugs

and other interventions. Moreover, for some potentially
identifiable categories of cancer patients and treatment
modalities, considerable tumor shrinkage may serve as a
predictor of treatment failure. Their identification will add
more nuance and realism to treatment planning, increase
utility of clinical trials, stimulate the design of better and
more personalized treatments, and ultimately improve patient
survival outcomes.
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