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Symmetry is a mathematical concept only partially explored in networks, especially at

the applicative level. One reason is a certain lack of interpretable inference obtained

from networks. While the network systemic associations (links) between entities (nodes)

emerge from the underlying dependence structure, this latter is only partially explicit

via the established direct interactors and remains to a certain extent latent (distant

node predicted paths). Verifiability of significant hubs, connectors, paths, and modules

allows to build a knowledge base useful to infer latencies and/or validate complex

associations. When symmetry is searched in images, reflection, translation and rotation

are applicable transformations in n-dimensional Euclidean space that computational

algorithms target. There is symmetry when original and transformed images cannot be

distinguished. Once collected together, such transformations form an automorphism

group, indicating a stable and robust global characteristic. It is common to step from

images to quantifiable features for conducting inference. Deep learning is typically used to

classify whole images reconstructed from the myriads of features in which these images

are decomposed. However, with images considered at multiple scales and locations,

symmetries are valuable for describing local characteristics. Casting local features into a

network framework enables their associations to be explored by similarity or dissimilarity

criteria. This is quite intriguing because network configurations may display topological

features and connectivity patterns associated with synchronization and symmetry that

reduce the redundancy of features to more compact functional descriptions. Then,

identifying anomalies from unusual events, behaviors, patterns would spot network

vulnerabilities and signs of symmetry breaking.
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INTRODUCTORY REMARKS AND METHODOLOGICAL
BACKGROUND

In physical systems, symmetry commonly means invariance. Therefore, this is like to say that a
system looks the same from different observation angles. Equivalently, due to the presence of
intrinsic regularities, a system’s characteristic may be an observable output in correspondence
with multiple interrelated inputs. As symmetries influence the system’s functionality and models
allow the interpretation of the function dynamics, a general concern is model misspecification.
This implies that an inference model m applied to sample data xǫX may fail due to the wrong
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choice of model family M(x,θ ) characterized by parameters θǫ2
and likelihood function L(θ |x). For example, the identifiability
of parameters may be violated. Among other possible reasons,
parameter non-identifiability may occur due to the presence of
symmetry [1].

Formally, symmetry indicates a type of invariance such
that a mathematical object remains unchanged under a set of
transformations. For instance, a symmetry of a function is a
transformation of the function that leaves its graph unchanged.
More in general, a symmetry maps an object onto itself, thus
preserving its structure. In mathematical terms, a symmetry
s: θ → θ is a measurable function that makes θ in a model
no longer identifiable from the given data x. The natural way
to obviate to this effect of symmetry is to re-parameterize
the model, i.e., θ → ψ , with ψǫΨ . Alternatively, one can
constrain the parameters, i.e., θ → θ c. In such cases, the recourse
to “symmetry breaking” solutions can be needed to augment
the performance of inferential algorithms. Symmetry breaking
implies that small system’s fluctuations vary beyond established
thresholds and that the system may cross a critical point due
to the variation governing its state dynamics. Overall, this
determines the system’s fate because once such transition occurs,
it may orient the system toward a different state compared to the
initial one.

There are several types of symmetries, the most common
being permutations. Some symmetries are local and grouping
them leads to transformations that change the system in different
ways at different places in space and time. Instead, a symmetry is
global if it acts similarly at every point. The fact that for a global
symmetry the corresponding parameter is constant explains why
the transformation is applied uniformly across the entire system,
unlike with a local symmetry in which its parameter is a function
of position, and the transformation is applied differently at
different points in space and time.

In the system of interest here, i.e., a network N, symmetry
depends on the preferential attachment growth rule inducing
a bias toward multiple short branches that tend to repeat
themselves in a tree more than longer ones, and the definition
of symmetry is inherent to nodes and their permutations [2].
Given the N adjacency matrix A, in which Aij =1 (nodes
i,j are adjacent) and 0 (otherwise), a symmetry is present
when a permutation P is applied to A, leaving it unchanged,
i.e., PA = A. This so-called automorphism (Aut) means that
nodes are topologically equivalent if their permutation does
not affect the network structure. This offers a rationale for
considering network redundancy and its reduction into network
quotients or skeletons [3–5]. Here, structural network properties,
including heterogeneity and complexity, remain while repetitions
are excluded.

Symmetries may also be combined, but of interest are
especially theminimal ones calling all participating nodes to form
a symmetric structure, or an orbit O (in which a set of nodes is
mapped onto each other). Formally, given I(N) as a set of nodes
in N forming a group Aut(N), the orbit of the node iǫI(N) is a set
O(i) = {π • iǫI(N): πǫAut(N)} (see [4]). Thus, nodes belonging
to an orbit are intrinsically related by simple permutations in
Aut(N).A symmetric network partitioning of its nodes into orbits

is thus establishing disjoint equivalence classes for each node,
which forms an automorphism partition (Aut-P) [6]. Of interest
is also its entropy, which is a measure of the network structural
heterogeneity defined as:

EAut−P
= −

∑
k
pklogpk (1)

with k = 1,K, for K = dim(Aut-P), and with pk the associated
probabilities (computed as node ratios between Aut-P and
network). The normalized entropy is then defined as EAut−P

N =

EAut−P/log K.
It is important to consider a system in steady state

(equilibrium) vs. possible departure from it. Such dynamics
are regulated by the spectral characteristics. In particular, the
eigenvalues of a symmetric structure are decomposable into
two types: redundant and non-redundant. Redundancy is in
correspondence with the eigenvectors localized on the symmetric
structure. The non-redundant eigenvectors refer to eigenvalues
with the same values relatively to the nodes of a given orbit.
This is relevant for the purpose of reducing the network to
the consideration of orbits instead of nodes, which eliminates
the redundancy. Conversely, this is a structural property of
symmetric networks.

Networks are also a paradigm of complexity. If we insert
a probability measure PN in a network N, which defines a
probability distribution Pr(N) on its nodes, each having a
probability pri, we can also define a Network Entropy as:

EN = min
∑

i
prilogpri (2)

This entropy measures the randomness degree in the network
and implies the importance of stochasticity, with a role played by
symmetries too. Namely, measures may vary depending on fuzzy
symmetries [7] (based on fuzzy measure theory) and stochastic
symmetries [8] (based on network ensembles). Furthermore,
network communities (defined as cohesively connected sets
of functionally similar nodes) exert strong inference impacts,
although there are cases in which functional node similarity refers
to symmetry rather than community effects. A typical example of
such ambiguity is provided by studies of brain areas.

The role of symmetries is especially relevant with reference to
network synchronization (see [9]), and computational methods
to break such symmetries (isolated desynchronization) are
discussed in [10]. The construction of functional networks
depends on the relationships between their coupling
components, which makes synchronization motifs central
features. Functional networks are in general heterogeneous
or non-symmetrical structures. This reflects the fact that
disruption of the couplings generates symmetry-breaking in
the network, and also loosens the inherent distribution of
synchronization motifs. However, if the couplings are able to
sustain synchronization, then symmetry will be characterizing
the functional network [11].

Finally, controllability refers to the ability of a dynamical
system to step between states, say from an initial to a final state,
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in finite time [12, 13]. This possibility can be verified quite
straightforwardly in linear time-invariant systems by the so-
called Kalman’s rank condition. In particular, given a canonical
system dz = Az + Bv, with state vector z, and A, and B as state
and control parameter matrices, respectively, the requirement is:
rank[B,AB,. . . .., AP−1 B] = P. Naturally enough, a complication
is when the system’s parameters are unknown. Furthermore, a
common strategy to establish network controllability turns to
the identification of a minimal set of driver nodes. This implies
that controlling this set allows to exert control over the entire
system [14].

With reference to symmetry, what reported in [15] is relevant
for the focus on network controllability but considering the
impact of individual rather than global dynamics, thus departing
from network topology. In real-world networks, assumptions
like the independence of parameters must be relaxed to face
the presence of dependence and even interdependence structure.
Thus, a global symmetry aspect is a characteristic to consider in
assessing both single and combined networks, and establishing
the highest possible controllability, i.e., the lowest number of
critical nodes, becomes a primary goal in applications. Intuitively,
specific hub or module dynamics may remain locally informative
but become less relevant for controllability scopes compared with
the densities at which they present at network scale, which reflects
their possible influence. Figure 1 reconciles the main concepts in
this section.

Nevertheless, real networks complexity may be reduced by
considering node-specific hidden variables that once transformed
may reveal latent symmetries. Such transformations may extend
to statistical ensembles designed through families of stochastic
networks [16]. For the networks partition N = [N1, N2, . . . .,NQ]
and the associated probabilities assigned to each of them Pr(N)
= [Pr(N1), Pr(N2),. . . Pr(NQ)], it holds that

∑
NPr(N) =

∑
q

Pr(Nq) =1 for q = 1,Q. These networks will be stochastically
symmetric under a transformation if each member network has
the same properties under the transformation. An associated
entropy optimization problem is the one searching for the Pr(N)
that maximizes the Shannon-Gibbs entropy:

ESG = −

∑
N
Pr(N)logPr(N) (3)

This problem usually involves a topologically constrained
network, particularly when the ensemble network functions as a
null model (more details on probability functions and entropies
can be found in [8]).

COMPUTATIONAL ASPECTS OF
NETWORK SYMMETRY

Symmetry exerts several types if influences (see Figure 2). A
first main question generally addressed is how to quantify the
redundancy that is due to the presence of symmetry in a network.
One way is through the compression ratio [17], a measure that
compares the full network N to its quotient Q (counting one node
per orbit) computed in two possible ways as either:

C1r = (nN/nQ)
2 (4)

where the ratio is between the number of nodes nN and the
number of orbits nQ in the full network, or

C2r = lN/lQ (5)

this time with edges lN and lQ (representing average connectivity)
used in a sparse network.

It is between these two measures that the redundancy of
an arbitrary network can fluctuate. A direct compression of
symmetry is also possible, through the quotient matrix Q(A),
obtained from the adjacency matrix A and the characteristic
matrix S (i.e., referred to the network partition associated to
the quotient):

Q(A) = STAS (6)

Importantly, symmetry leaves also a spectral signature through
the presence of peaks in the spectral density, to which redundant
eigenvectors are associated, i.e.,

ρ(λ) = 1/N
∑

i=1,N
δ(λ− λi) (7)

or a sum of Dirac delta functions with λias the largest
eigenvalue [4].When the spectrum of a network adjacencymatrix
is considered, symmetries differentiate according to whether
a symmetric structure is present, for then the eigenvalues
can be decomposed into two classes: a) with redundant
eigenvalues, in correspondence to eigenvectors localized on the
symmetric structure and b) with non-redundant eigenvalues, i.e.,
whose eigenvectors have identical values in all elements that
correspond to nodes in the same orbit. As an alternative, similar
results were obtained for the Jacobian matrix in a food web
model [18].

Looking beyond partitions from nodes to orbits, one
can consider equitable partitions in which two node
clusters have a special relationship, one in which each
node of one cluster has exactly the same number of
neighbor nodes in the other cluster. Interestingly, this
complementary partition has relevance for synchronous
patterns, as in both types of partitions nodes in the
same cluster can synchronize and in different clusters
cannot [19].

It is consolidated nowadays as a practice the fact to
extensively use Deep Learning (DL) in image applications.
It is rarer to find symmetry at the core of studies, despite the
relevance [20]. An interesting study [21] of generative adversarial
networks (GAD) has exploited horizontal symmetry (usually
not considered in such form) by adopting two methods, one
checking what symmetry loss allows generated images and
flipped versions to be classified the same way, and another
that inverts the flipped images aiming at reconstructing
with minimal distortion. Another convolutional neural
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FIGURE 1 | Hierarchy of symmetry relationships in networks.

FIGURE 2 | Symmetry outreach.

neural networks (CNN) study [22] inspired by primary
visual cortex processes has investigated the impact of
symmetry constraints in convolutional layers for image
classification. As a result, similar performance was found
in a setting with reduced number of parameters due to
replacement of random weights by symmetry constraints
during backpropagation.

Interestingly, the imposition of symmetry constraints to
reduce the number of parameters was assessed in another
study [23] in which accuracy loss was absolutely limited
even in overparameterized settings (both CNN and recurrent
neural networks or RNN) from CIFAR, ImageNet etc. As a
general remark, data paucity and non-standard statistical settings
(non-independently identically distributed, unsupervised etc.)
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have suggested to embed learning architectures with invariance
under symmetry transformations. In a study [24] on probabilistic
symmetry, a link with functional symmetry was established
such that the structure of networks could be completely
characterized by invariance usable to construct both stochastic
and deterministic solutions.

Different applications have been presented by two further
studies. One study [25] was centered on a spreading model in
a setting of multilayer networks that considers non-equilibrium
phase transition when either susceptible-infected-susceptible
or susceptible-infected-recovered spreading dynamics being
integrated. Using a biased diffusion process among different
layers, the discontinuous transition goes together with a
spontaneous symmetry breaking in occupation probabilities of
individuals in each layer. Another interesting study [26] was
proposed on the symmetry of weighted brain networks to
decipher the roles of individual brain areas and the redundancy
of connectivity. The structural symmetry of every pair of nodes
in the network was quantified by the isomorphism of the residual
graphs. Then, fMRI was performed on subjects with a condition,
i.e., inattentive type of Attention Deficit Hyperactivity Disorder,
showing the emergence of higher level of network symmetry
compared to the development group. As a methodological note,
symmetry levels threshold-sensitivity was observed.

IMAGE NETWORKS AND ROLE OF
SYMMETRY

Radiomics [27–29] promotes the role of images as mineable
data [30]. These are features providing the medical imaging
community with a wealth of quantitative information usable
for diagnosis, therapy evaluation, patient risk profiling and
stratification. The literature of radiomics is dense of applications
centered on pipelines that leverage machine learning (ML)
implementation of feature selection and image fusion methods.
Especially the DL community found in radiomics a precious
source of data and a testing ground for ML and statistical
methods. In turn, the advent of this discipline has stimulated
increasingly integrative research on cancer biology, genomics and
clinics with unprecedented scale and resolution depth [31]. Thus,
it has become possible to investigate the complex hierarchical
organization of medical images.

The key factor is designing DL and ML solutions targeted to
a synthesis of various types of measurements and predictions,
either assembled together in the attempt to concentrate
information or distributed across network layers in order to
reconcile all the differently channeled information into scores.
These two types of approach, concentric one and distributed the
other, may present quite different symmetry scenarios, despite
a differentiation occurs according to the achievable precision,
thus depending on imaging technologies and combination of
modalities together with data gaps.

From a modeling standpoint, and by keeping symmetry in
mind, transfer learning (TL) [32–36] and ensemble modeling
(EM) seems especially relevant. The TL’s paradigm is that features
may be learned in a certain application domain and then applied

to different domains. The role of symmetry could be an important
criterion to judge generalizability first and feasibility after, for
then leaving to the ability of TL leveraging other similarity aspects
(related or not to symmetry). EM seems to match well the
distributed approach discussed earlier by suggesting strategies
for weighting scores and predictions from different models.
However, data features gathered at a variety of spatiotemporal
resolutions are hard to integrate into interpretable predictive
models. Quite evidently, there is strong need to identify and
measure heterogeneity in spatial and time, and then cross-
correlate all types of imaging features.

Structural symmetry is central to human brain functions and
thus the functional activities of areas that are symmetric at
an anatomic level can be strongly correlated, even if the areas
are distant in space. Experiments in [9] studied symmetry in
the human brain via coupled anatomical (DW-MRI data) and
functional (fMRI) connectivity graphs defined on the same set of
90 cortical areas. Interestingly from a network standpoint the fact
the relevance of anatomical symmetry in neural synchronization
because determining correlated functional modules across
distant locations. At one end anatomically symmetric regions
obtained via clustering of nodes with phase at stationary state,
at the other end a functional network with links indicating
statistically significant correlations between the timeseries of
cortical areas. For two nodes in spatially separated regions
showing no anatomical connection it appeared symmetry and
strong synchronization from fMRI. For other two nodes from
spatially adjacent regions and anatomically connected a gap in
phase emerged together with lack of fMRI synchronized patterns.

In an interesting study [37], non-contrast (nc) CT images with
follow-up magnetic resonance diffusion-weighted (MR-DW)
images have supported evidence on the differentiation between
ischemic and healthy brain tissue through quantification of
symmetry. Stroke spots were identified by spatially aligning MR-
DW images to the corresponding ncCT images. An interesting
observation is that three methods (AdaBoost, Support Vector
Machines, Decision Trees) were used to classify, but a basic
limitation in terms of accuracy remained when comparing
the textures only between the stroke lesions while considering
as normal the contralateral regions. Despite the symmetrical
acute strokes would be uncommon, other ischemic lesions or
pathologies might be present in the contralateral region and
require selection of features ad hoc for differentiating stroke
regions from normal ones.

In the above example networks were not used, but in general
our ability to carry or block information through a network
depends on its topology. Especially when the conductivity
or information transfer is considered then spatial symmetry
becomes central together with its density or average number of
links per node and topological dimension [38]. Therefore, an
alternative method of classification ideally fitting the experiments
in would involve encoding equivariance in learning [39]. In
order to approximate invariance to a class of transformations of
the input, a neural network would need training via with data
augmentation (see [40], and related references in this work).With
enough capacity, the network may learn such invariances but
without guarantee of generalization.
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The specific patterns of synchronization detectable in a
network provide information about the underlying couplings
dynamics and when considered in all their relationships can
well characterize the system under study. Even with non-
linear dynamics interaction regimes become identifiable and the
network structure inferable from similarity and connectivity. Co-
existing complex synchronized dynamics male a network stable
and robust against external factors (stressors/perturbations) and
heterogeneous motifs are probes for functional connectivity,
particularly when stable as they become an invariant feature (i.e.,
consistency of synchronization patterns). Thus, the relationship
between network symmetries and the consistency of the
synchronization patterns, particularly with coupling inducing
global synchronization and resulting in symmetrical networks
reflected onto functional ones, as shown in the brain context (see
[11] for all details and related references).

DISCUSSION

We keep a final point for discussion. Identifying anomalies
from unusual events, behaviors, patterns can be useful to
spot network vulnerabilities and may reveal presence of
symmetry breaking. Conversely, the control of large dynamical
complex networks may depend on the identification of just
a few input nodes or modules. Therefore, by keeping in
mind what the targets are, the results from exerting control
through networks can be quite efficiently achievable, although
only approximately.

The identification of symmetries in a complex network
remains important in order to decipher its organizational
principles and rules. It is key to understand the role of symmetries
in reconstructing or controlling network dynamics [41]. It
is important to decompose a network in two possible ways:
one into observable/controllable vs. unobservable/uncontrollable
sub-networks, and another one into symmetry-driven vs. non-
symmetry-driven sub-networks. Finally, it is key to study how
network components synchronize or desynchronize because
network functionalization depends on such coupled dynamics.
Naturally enough, the problems are always much harder in

non-linear networks as observability and controllability must
deal with more complex dependence relationships.

The last considerations go to the application domain.
Symmetry has several impacts on very transformative fields
like robotics, computer vision, computer graphics, medical
image analysis, radiomics all characterized by coupling artificial
intelligence and machine learning with geometry, group theory,
graphs, statistics etc. Recognizing symmetries is instrumental
to the retrieval of structure from redundant noisy systems,
therefore a statistical problem too, which brings in lots of
other applications and many possible model frameworks (see for
instance examples from network medicine applied to cancer data
of various complexities [31]).
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