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Tension-resolution patterns seem to play a dominant role in shaping our emotional

experience of music. In traditional Western music, these patterns are mainly expressed

through harmony and melody. However, many contemporary musical compositions

employ sound materials lacking any perceivable pitch structure, rendering the two

compositional devices useless. Still, composers like Tristan Murail or Gérard Grisey

manage to implement the patterns by manipulating spectral attributes like roughness

and inharmonicity. However, in order to understand the music of theirs and the other

proponents of the so-called “spectral music,” one has to eschew traditional categories

like pitch, harmony, and tonality in favor of a lower-level, more general representation

of sound—which, unfortunately, music-psychological research has been reluctant to

do. In the present study, motivated by recent advances in music-theoretical and

neuroscientific research into a the highly related phenomenon of dissonance, we propose

a neurodynamical model of musical tension based on a spectral representation of sound

which reproduces existing empirical results on spectral correlates of tension. By virtue of

being neurodynamical, the proposed model is generative in the sense that it can simulate

responses to arbitrary sounds.

Keywords: music, neurodynamics, timbre, tension, dissonance, roughness, inharmonicity, periodicity

1. INTRODUCTION

Music gives rise to some of the strongest emotional experiences in our lives. Even though the
first surviving theoretical treatments of the power of music to move the soul were written in
the fifth century B.C. [1], the origin of this power still largely remains a mystery. However, both
musicological and music-psychological evidence seems to converge on the theory that music
arouses emotions by a sophisticated play of tension-resolution patterns [2]. For instance, many
authors describe the musical language of RichardWagner (1813–1883) as “the language of longing”
[2]; it may not bemerely a coincidence thatWagner’s common practice was to introduce a dissonant
chord, making the listener “long for” a more consonant chord to “resolve” the dissonance, and
then keep the listener in tension by delaying the resolution or slap him right away with another
dissonance [[2], p. 334–339].
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Creating and resolving tension is an easy task for composers
who follow the nineteenth century Western tradition (as, e.g.,
most “mainstream” composers of film music do); any standard
textbook on harmony and voice leading provides them with
plenty of recipes [e.g., [3]] tested by centuries of musical practice
and decades of psychological research [e.g., [4] and references
therein]. However, over the course of the twentieth century,
many composers enriched their palette with sounds possessing
neither definite pitch (precluding melody) nor perceivable
voice structure (precluding harmony), thus venturing out into
territories about which traditional theory has nothing to say but
hic sunt leones [5]. Still, while tantalizing their audience with
a sound palette ranging from pure tones to the most atrocious
noises, they seek control over how their music is experienced by
the listener as much as their more conservative colleagues do [6].

Devoid of any perceivable pitch structure, the ferocious
sound materials contemporary art music is at times so fond
of can only be conceived in terms of loudness and timbre.
This forces any composer seeking a full control over these
“beasts” to dive from the lofty heights of venerable musical
abstractions like pitch, harmony, and tonality to the cold depths
of spectral representations of sound. However, beauty emerges
even from such depths; by careful manipulation of roughness
and inharmonicity composers like Tristan Murail or Gérard
Grisey “tense” their audience no less than Richard Wagner by
his mastery of tonal harmony; indeed, the term “spectral music,”
used when referring to the music style pioneered by the former
two composers [7], does not tell the whole story.

As usual, music-psychological research somewhat lagged
behind compositional practice; loud music has been shown to be
perceived as more tense than soft music [8]; likewise, roughness
(that is perception of rapid beating due to interference of close
frequencies) seems to be positively correlated with tension [9, 10].
A recent study assessed the effect of specific timbre attributes
on the perception of tension [11], confirming particularly the
role of roughness, inharmonicity (deviation of the constituent
frequencies from integer multiples of a fundamental tone) and
spectral flatness. However, the functional forms and mechanisms
through which such stimuli aspects combine to give rise to
perceived tension are still unclear.

For standard Western musical intervals, roughness is a
principal source of perceived dissonance in musical material,
which thus gives rationale to mathematical models of musical
dissonance [12]. In Stolzenburg [13], a mathematical model of
dissonance has been proposed and shown to correlate highly
with empirical psychophysical data. The core idea of the model
can be illustrated on a simple example: Consider an interval
of perfect fifth, the most consonant interval after the octave,
which, in the standard Western tuning, corresponds to the
distance of seven semitones. Hence, denoting f1 and f2 the
fundamental frequencies of the tones spanning the interval,

[f1, f2] = [f1, f12
7
12 ] (2

1
12 is the frequency ratio corresponding

to a semitone distance in the standard Western tuning). First,
approximate [f1, f2] with a pair of coprime natural numbers,

�′ = [i, j], such that i
j ≈ f1

f2
= 2

7
12 , e.g., �′ = [2, 3].

Then, the dissonance of the interval will be 2, the minimum

of �′. Likewise, for an interval of major sixth, considered less

consonant than P5, with frequencies [f1, f2] = [f1, f12
9
12 ], we

have �′ = [3, 5], the dissonance being 3 in this case. Finally,
for a dissonant interval of minor seventh with frequencies

[f1, f2] = [f1, f12
9
12 ], �′ = [4, 7] and the dissonance will be

4. In general, the dissonance of any vector of frequencies, f ,
approximated as �′ ∈ Z

n
≥1, is assumed to be proportional to the

minimum element of �′. Note that the dissonance of an interval
estimated this way does not change if we include harmonics
(integer multiples) of the constituent frequencies. However, it
does change if one uses a different rational approximation of
the frequency ratio; incidentally, all standard Western intervals
except for the octave are characterized by an irrational frequency
ratio. In Stolzenburg [13], this inconvenience is dealt with by
averaging over several alternative approximations.

The quantity above, called relative periodicity [see Definition 6
in [13], p. 17], is equivalent to obtaining the period of the fastest
oscillation having the frequencies in question as its harmonics, in
particular the period assessed in cycles of the lowest frequency in
question. Interestingly, this oscillation has been experimentally
observed to be represented in the auditory brainstem response
to the intervals listed above [14], with the representation being
particularly faithful for relatively more consonant intervals.

Motivated by the latter observation, we put forward a
neurodynamical model of tension which is in line with the basic
concepts of pitch perception of complex sounds and reproduces
the results concerning the effect of roughness and inharmonicity
reported in Farbood and Price [11] and, at the same time,
provides a dynamical interpretation of relative periodicity [13].
In this regard we follow suit of existing studies which apply
the dynamical systems theory to composition [15] and analysis
[16, 17] of music.

2. METHODS

Everyone interested in neurodynamical modeling faces the same
basic dilemma: which model to use? For modeling perception of
music, the most common choices are the leaky integrate-and-
fire (LIF) model [18–21] and a canonical model for gradient-
frequency networks of Wilson-Cowan-type neural oscillators
[22–25]. Still, neuroimaging methods are far from giving us an
assurance that among the myriad possible models one of these
is the “correct” one. Hence, to improve our chances, instead of
adhering to a particular model right from the beginning, we take
a whole class of models as our point of departure in the hope
that the class is wide enough to include a good approximation
to the actual biological system. More precisely, we proceed by
derivation of a normal form to which any of the class members
can be transformed through a continuous near-identity change
of variables and parameters and (possibly) a time scaling. Then,
analysis of the entire class effectively reduces to analysis of the
normal form [26].

The pioneering work of the latter approach in our field is Large
et al. [22]; the model proposed therein can even be fit to auditory
brainstem responses to musical intervals [24, 27]. Consequently,
one could argue that we already have a neurodynamical model of
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tension at hand. However, to prove analytically that the latter is
indeed a decent model of tension, we would first have to simplify
the model substantially for the specific purpose, adopting thus
a similar strategy as in previous applications of the model [23,
28, 29]. Moreover, the class of systems of which the latter is
a canonical model [22, 27] is not the class of systems we are
interested in, as shown below.

Our choice of model class is motivated by the observation
that the auditory system is sensitive to the periodicity of the
signal (see section 1). A possible explanation for the observation
is that the system comprises an array of oscillatory “detectors”
with external auditory signal input; these can be viewed (and
indeed physically seem to be) ordered tonotopically with respect
to their eigenfrequency. Within this framework, eliciting a
sustained oscillation in one of the oscillators represents detection
of the corresponding period in the input signal. Or, on a
continuous scale, the more sustained an oscillation is, the more
“‘confident” is the auditory system that the input signal exhibits
the corresponding period. In order for a stimulus to elicit an
oscillation in a model belonging to our class of choice, it needs
to destabilize the (originally stable) quiescent state; if this shift in
stability is relatively small or intermittent, the oscillation will have
small or fluctuating amplitude.

To avoid introducing unnecessary complexity, we start
building our model class of interest by considering the simplest
possible model of an oscillator:

ẋ1 = −y1

ẏ1 = x1 ,

where x1, y1 ∈ R and ẋ1, ẏ1 are time derivatives. In matrix form:

[
ẋ1
ẏ1

]
=

[
0 −1
1 0

] [
x1
y1

]
.

Here, x1 and y1 could be interpreted as the amount of local
inhibitory and excitatory synaptic activity, respectively, but the
particular physiological interpretation of the variables is not
important for our discussion. In line with the scenario outlined
above, we want the oscillator to transit from a quiescent state
(say, [x1, y1] = [0, 0]) to an oscillation when subject to an input
having the oscillator’s period (1 in this case). By definition, the
spectrum of such an input consists of frequencies which are a
subset of 1, 2, . . . ,M. As we later aim to introduce the possibility
of modeling the effect of inputs with frequencies deviating from
perfect multiples of the base frequency, we allow already in the
basic model for repeated frequency components of the input,
yielding the input frequency vector [ω1,ω2, . . . ,ωn] = � =
[1, 1, . . . , 1, 2, 2, . . . , 2, . . . ,M,M, . . . ,M], whereM is the highest
frequency contained in the input. Representing the i-th frequency
component of the input with frequency ωi as [xi+1(t), yi+1(t)] ∈
R
2, we extend the oscillator with forcing by the input:

[
ẋ1
ẏ1

]
=

[
0 −1
1 0

] [
x1
y1

]

+
[
f (x1, y1, x2(t), y2(t), x3(t), y3(t), . . . , xn+1(t), yn+1(t))
g(x1, y1, x2(t), y2(t), x3(t), y3(t), . . . , xn+1(t), yn+1(t))

]
,

where f (·), g(·) are smooth real functions.
Two more steps are needed in order to make the model

class amenable to derivation of a normal form. First, we need
to rewrite this non-autonomous system as an autonomous one.
This is straightforward, since [xi+1(t), yi+1(t)], being frequency
components of a signal, are harmonic oscillations. Let x =
[x1, y1, x2, y2, . . . , xn+1, yn+1]:

ẋ =




0 −1
1 0

0 −ω1

ω1 0
0 −ω2

ω2 0

. . .

0 −ωn

ωn 0




x+




f (x)
g(x)
0
0
0
0
...
0
0




.

Second, we expand the f (·) and g(·) functions around the origin:

ẋ =




0 −1
1 0

0 −ω1

ω1 0
0 −ω2

ω2 0

. . .

0 −ωn

ωn 0




x+




f2(x)
g2(x)
0
0
0
0
...
0
0




+




f3(x)
g3(x)
0
0
0
0
...
0
0




+




O(x4)
O(x4)
0
0
0
0
...
0
0




, (1)

where fd(x), gd(x) are homogeneous polynomials of degree d and
O(x4) is a polynomial of degree 4 or more.

Before delving into the actual derivation, a few remarks are
in place. First, the idea of modeling the auditory system as a
tonotopically arranged array (or rather a series of arrays) of
oscillators is in fact not new [23, 24, 27]. Further, since the
lowest frequency of signal with harmonic spectrum corresponds
to its perceived pitch, Equation (1) is, by design, a pitch detector.
Then, instantiating Equation (1) with a range of eigenfrequencies
can be thought of as matching a template to the signal;
consequently, our model can be considered a neurodynamical
implementation of template matching postulated as a possible
mechanism underlying pitch perception [30].
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As the first step of the derivation, we diagonalize the linear
part of Equation (1) using the following two matrices:

T =
1

2




1 1
−ı ı

1 1
−ı ı

1 1
−ı ı

. . .

1 1
ı −ı




,

T−1 =




1 ι

1 −ı
1 ı
1 −ı

1 ı
1 −ı

. . .

1 ı
1 −ı




,

where ı is the imaginary unit. Denoting the linear part of
Equation (1) as A, the diagonalized matrix reads:

T−1AT =




ı
−ı

ıω1

−ıω1

ıω2

−ıω2

. . .

ıωn

−ıωn




. (2)

The diagonalization defines a change of variables:




z1
w1

z2
w2

z3
w3

...
zn+1

wn+1




= ζ = T−1x =




1 ι

1 −ı
1 ı
1 −ı

1 ı
1 −ı

. . .

1 ı
1 −ı







x1
y1
x2
y2
x3
y3
...

xn+1

yn+1




=




x1 + ıy1
x1 − ıy1
x2 + ıy2
x2 − ıy2
x3 + ıy3
x3 − ıy3

...
xn+1 + ıyn+1

xn+1 − ıyn+1




.

After this change, Equation (1) reads:

żk = ẋk + ı ẏk = (3)

=





−yk + ıxk + f (x) = ı2yk + ıxk + f (x) k = 1

= ızk + fzeta(ζ ) ,

ıωk−1zk , 1 < k ≤ n

ẇk = ẋk − ı ẏk = (4)

=





−yk − ıxk + g(x) = ı2yk − ıxk + g(x) k = 1

= −ıwk + gζ (ζ ) ,

−ıωk−1wk , 1 < k ≤ n ,

with gζ (ζ ) = fζ (ζ ), where and · is complex conjugate. From
here, with a slight abuse of notation, we drop for simplicity the
subscript of gζ (ζ ) which is a function in the complex vector space
corresponding to g(x) from section 2, that is obtained through
the change of variables applied, i.e., gζ (ζ ) = gζ (T

−1x) = g(x);
likewise for f (ζ ). Our subject of study will be the normal form of
the system comprising Equations (3) and (4).

When in normal form, f (ζ ) in Equation (3) will only contain
monomials of the form

crspqz
[r,p]w[s,q] = crspqz

r
1z

p1
2 z

p2
3 · · · zpnn+1w

s
1w

q1
2 w

q2
3 · · ·wqn

n+1 , (5)

where p = [p1, p2, . . . , pn], q = [q1, q2, . . . , qn], and [r, s, p, q] is a
nonnegative integer solution to the equation

r − s+ p� − q� = 1 . (6)

Analogously, the exponents in g(ζ ) solve

r − s+ p� − q� = −1 (7)

(see Equation 2). Since f (ζ ) and g(ζ ) contain neither constant nor
linear terms (see section 2),

r+s+|p|+|q| = r+s+(p1+p2+· · ·+pn)+(q1+q2+· · ·+qn) ≥ 2 .

For conciseness, from now on, whenever v = [r, s, p, q] satisfies
the above inequality, we write v ∈ S when it solves Equation (6)
and v ∈ S̃ when it solves Equation (7). Note that [r, s, p, q] ∈ S iff
[s, r, q, p] ∈ S̃. Consequently, in the normal form,

g(ζ ) =
∑

[r,s,p,q]∈̃S

crspqz
[r,p]w[s,q] =

∑

[r,s,p,q]∈S
csrqpz

[s,q]w[r,p] =

f (ζ ) =
∑

[r,s,p,q]∈S
crspqz

[r,p]w[s,q] =
∑

[r,s,p,q]∈S
crspqw

[r,p]z[s,q]
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and, by equality of polynomials,

csrqp = crspq

for all [r, s, p, q] ∈ S.
To broaden the class of systems covered by our normal

form, we unfold Equation (3) using small parameters α ∈ R

and β ∈ R
n:

żk =
{
(α + ı)zk + f (ζ ) , k = 1

(ı + ıβk−1)ωk−1zk , k ≥ 2

ẇk =
{
(α − ı)wk + g(ζ ) , k = 1

(−ı − ıβk−1)ωk−1wk , k ≥ 2
.

This way, in addition to themodels with Taylor expansion around
the origin of the form (Equation 1), our class now includes
models whose Taylor expansion around the origin has the form

ẋ =




α −1
1 α

ıω1β1 −ω1

ω1 −ıω1β1

ıω2β2 −ω2

ω2 −ıω2β2

. . .

ıωnβn −ωn

ωn −ıωnβn




x

+




f2(x)
g2(x)
0
0
0
0
...
0
0




+




f3(x)
g3(x)
0
0
0
0
...
0
0




+




O(x4)
O(x4)
0
0
0
0
...
0
0




. (8)

The corresponding normal form then reads

ż1 = (α + ı)z1 +
∑

[r,s,p,q]∈S
crspqz

[r,p]w[s,q]

ẇ1 = (α − ı)w1 +
∑

[r,s,p,q]∈S
crspqz

[s,q]w[r,p]

ż2 = ı(1+ β1)ω1z2

ẇ2 = −ı(1+ β1)ω1w2

ż3 = ı(1+ β2)ω2z3

ẇ3 = −ı(1+ β2)ω2w3

...

˙zn+1 = ı(1+ βn)ωnzn+1

˙wn+1 = −ı(1+ βn)ωnwn+1 . (9)

Intuitively, the α parameter makes it possible to change the
stability of the origin (see section 2.1) whereas the βk parameters
allow the model to resonate when the inputs are not exactly its
harmonics. In fact, it might happen that two different inputs
approximate the same harmonic. That is, their frequencies equal
(1 + βi)ωi and (1 + βj)ωj, respectively, with ωi = ωj. This is
the reason why we allowed for duplicate frequencies in the input
frequency vector � (see the beginning of section 2).

It might appear that Equation (9) only models period
detection in a full harmonic spectrum (up to the n-th harmonic).
However, it can be easily adapted to a more general stimulus with
frequencies Hharm ⊂ � by removing the dependence on those
zj and wj for which �j /∈ Hharm from the equation for ż1 and
ẇ1 (assuming the dimension of the system is large enough to
accommodate any stimulus of practical interest). Since the right-
hand sides of the equations are polynomials, it suffices to zero-out
the coefficients of those terms containing nonzero powers of the
offending zj or wj. This will turn out to be useful when extending
the model to an array by making scaled copies of Equation (9);
while changing the eigenfrequency by scaling the left-hand side,
we can zero-out coefficients as needed to reflect the changing
relation between the eigenfrequency and the inputs.

It might be interesting to compare Equation (9) to [[22],
Equation 15] reproduced below in a form that facilitates the
comparison [see also [27], Equation A.1], which is also a normal
form for an oscillator coupled to a set of sinusoidal inputs:

ż1 = (α + ı)z1 +
∑

[r,s,p,q]

crspqz
[r,p]w[s,q] , (10)

where

crspq =
{
drspq p = q = 0
√

ǫ
s+|p|+|q|−1

otherwise.
(11)

In Equation (10), the sum runs over all such vectors [r, s, p, q]
for which either r = s + 1, s ∈ Z>0, p = q = 0, or r = 0,
s ∈ Z≥0, p, q ∈ Z

n
≥0, r + s + |p| + |q| > 0. In contrast, the

sum in Equation (9) only runs over the nonnegative solutions
to Equation (6), whose coefficients are determined by input
frequencies. Hence, whereas Equation (10) applies to inputs of
arbitrary frequencies, Equation (9) requires that the frequencies
are close to the harmonics of the oscillator’s eigenfrequency.
On the other hand, in contrast to Equation (9), Equation (10)
presupposes a particular form of the coefficients (see Equation
11). Consequently, Equation (9) covers neither a subset, nor a
superset of the models covered by Equation (10).

2.1. Model Analysis
In this subsection, we analyse the normal form (Equation 9)
derived in section 2. More precisely, we study the stability of the
origin (z1 = w1 = 0). The choice of the origin as the focus of
this section is motivated by our previous (arbitrary) choice of the
origin as a “quiescent state” of the oscillator (see the beginning of
section 2). The reason why we treat its stability in such a detail
here is that it determines whether, e.g., the oscillator stays quiet
(its period was not detected in the input signal) or oscillates (its
period was detected in the signal)—see the beginning of section 2.
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As the first step of the analysis, note that all solutions to
Equation (9) are of the form

[z1, z2, z3, . . . , zn+1]

= [z1(t), ρ1e
ı(1+β1)ω1t , ρ2e

ı(ϕ2+(1+β2)ω2t), . . . , ρne
ı(ϕn+(1+βn)ωnt)]

[w1,w2,w3, . . . ,wn+1]

= [w1, ρ1e
−ı(1+β1)ω1t , ρ2e

−ı(ϕ2+(1+β2)ω2t), . . . , ρne
−ı(ϕn+(1+βn)ωnt)] .

(12)

Consequently, using the simplified notation � =
[1, 1, . . . , 1, 2, 2, . . . , 2, . . . ,N,N, . . . ,N] and β = [β1,β2, . . . ,βn]
as above, and introducing ρ = [ρ1, ρ2, . . . , ρn],
ϕ = [0,ϕ2, . . . ,ϕn], and �β = � ◦ β = [ω1β1, . . . ,ωnβn], we
can drop equations for ż2, ż3, . . . , żn+1 and ẇ2, ẇ3, . . . , ẇn+1 from
Equation (9) and write

ż1 = (α + ı)z1

+
∑

[r,s,p,q]∈S
crspqz

r
1w

s
1ρ

p+qeı(pϕ−qϕ)eı(p(�+�β )−q(�+�β ))t

ẇ1 = (α − ı)w1

+
∑

[r,s,p,q]∈S
crspqz

s
1w

r
1ρ

p+qeı(qϕ−pϕ)eı(q(�+�β )−p(�+�β ))t .

(13)

Introducing new coordinates relative to a rotating frame of
reference eı t ,

u = z1e
−ı t (14)

v = w1e
ı t ,

and new parameters,

1pq = p�β − q�β , (15)

Equation (13) reduces to:

u̇ = ż1e
−ı t − ız1e

−ı t = e−ı t (ż1 − ız1)

= αu+
∑

[r,s,p,q]∈S
crspqu

rvsρp+qeı(pϕ−qϕ)eı1pqt (16)

v̇ = ẇ1e
ı t + ıw1e

ı t = eı t (ẇ1 + ıw1)

= αv+
∑

[r,s,p,q]∈S
crspqu

svrρp+qeı(qϕ−pϕ)e−ı1pqt .

(17)

As we will see in section 3, under a rather generic restriction on
Equations (16) and (17), the stability of u = v = 0 crucially
depends on the relative periodicity and the inharmonicity of the
input, as formalized in previous studies, and hence its perceived
tension (see section 1). Namely, we require that Equation (16)
contains no linear terms in v and, symmetrically, Equation (17)

has no linear terms in u. For the remaining linear terms, Equation
(6) reduces to

p� − q� = 0 . (18)

Assuming the origin is a fixed point of the system of Equations
(16) and (17), its stability is determined by the Jacobian of the
system evaluated at the origin:

(J)[0,0] =




(
∂ u̇

∂u

)

0,0

(
∂ u̇

∂v

)

0,0(
∂ v̇

∂u

)

0,0

(
∂ v̇

∂v

)

0,0




=




α +
∑

[1,0,p,q]∈S 0

c10pqρ
p+qeı(pϕ−qϕ)eı1pqt

0 α +
∑

[1,0,p,q]∈S
c10pqρ

p+qeı(qϕ−pϕ)e−ı1pqt




=
[
α 0

0 α

]

+
∑

[1,0,p,q]∈S
ρp+q

[
c10pqe

ı(pϕ−qϕ) 0

0 c10pqe
ı(qϕ−pϕ)

][
eı1pqt 0

0 e−ı1pqt

]

= A+
∑

[1,0,p,q]∈S
ρp+qBpq

[
eı1pqt 0

0 e−ı1pqt

]
, (19)

where

A =
[
α 0
0 α

]

Bpq =
[
c10pqe

ı(pϕ−qϕ) 0

0 c10pqe
ı(qϕ−pϕ)

]
.

In particular, the fixed point solution at the origin is stable, if all
the eigenvalues of the Jacobian have negative real parts; while it
is unstable if at least one eigenvalue of the Jacobian has positive
real part. Apparently, without input (ρ = 0), the stability is
solely determined by the matrix A, particularly the unfolding
parameter α. For positive α, the fixed point at origin is unstable,
while for negative alpha, the fixed point at origin is stable. Note
that whereas the original class of models (section 2) only covers
systems in which the origin is marginally stable (α = 0), the
“unfolded” class (Equation 8) encompasses the entire spectrum
of stability of the origin.

With input, one can view the Jacobian as the matrix A
perturbed by a time-dependent term consisting of a sum of
oscillators with amplitudes depending exponentially on p + q
(with base ρ) and frequencies 1pq. Thus, if we consider the
neural auditory system as spontaneously possessing stable fixed
point for a given pitch-detector, i.e., its α < 0, only inputs with
high amplitude ρ and/or spectral content giving rise to suitable
solutions [1, 0, p, q] ∈ S with small value of (p + q) can perturb
the matrix A sufficiently for the fixed point to lose stability
at least transiently (note the complicated periodic behavior of
the perturbation on the right-hand side), and the pitch-detector
show input-modulated oscillatory behavior. An example of such
scenario is presented later in section 3.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 June 2020 | Volume 6 | Article 18

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hadrava and Hlinka A Dynamical Systems Approach to Spectral Music

Let us now in detail assess which monomials appear on
the right-hand side of the reduced equations. Note that all
solutions to Equation (18) correspond to non-negative integer
linear combinations of a finite set of minimal solutions, i.e., they
have the structure:

p� − q� = 0 ⇐⇒ [p, q] = kM, M ∈ Z
l×2n
≥0 , k ∈ Z

l
≥0 , (20)

where M is a matrix with the i-th row, denoted [mi, ni], equal to
the i-th minimum solution to Equation (18) [31]. Consequently
(see Equation 15),

1pq = p�β − q�β = [p, q][�β ,−�β ] = kM[�β ,−�β ]

=
∑

j

kj[mj, nj][�β ,−�β ] =
∑

j

kj(mj − nj)�β ,

eı1pqt = e
ı
(∑

j kj(mj−nj)�β

)
t =

∏

j

(
eı(mj−nj)�β t

)kj
,

and

(J)[0,0] = A+
∑

k∈Zl
>0

BkM
∏

j

(
ρmj+nj

[
eı(mj−nj)�β t 0

0 e−ı(mj−nj)�β t

])kj
.

(21)

As noted above, we model stimulation with Hharm ⊂ � by
zeroing-out those monomials containing nonzero powers of zj or

wj for which �j /∈ Hharm. Consequently, BkM will be nonzero if
and only if

kM = kM′ ,

where M′ ∈ Z
l×2|Hharm|
≥0 is a submatrix of M whose

rows, [m′
i, n

′
i], satisfy

m′
ij > 0 H⇒ �j ∈ Hharm ,

n′ij > 0 H⇒ �j ∈ Hharm

(see Equations 18 and 20).

3. RESULTS

In this section, we show how the system of Equations (16)
and (17) reacts to stimulation with complex tones varying in
relative periodicity and inharmonicity. For the specific case of
complex tones consisting of two harmonics, analytical treatment
is feasible as we are basically dealing with an interval comprising
two pure tones. Let the frequency ratio of the two harmonics
be approximated as i : j, Hharm = [i, j], where i ≤ j. Table 1
summarizes the rows of M′ together with the corresponding
frequencies of the complex exponentials in Equation (21) (i.e.,
±(mj − nj)�β ) and the exponents of ρ (i.e., mj + nj) for this
case. Note that both the frequencies (in absolute value) and the
exponents grow monotonically with i, which is precisely the
relative periodicity of the interval (see section 1). Hence, as long

TABLE 1 | Context-derived heterogeneous functions of monocyte subsets.

m′

k
n′

k
m′

k
+ n′

k
(m′

k
− n′

k
) [βi ,βj] [i, j]

[1, 0] [1, 0] [2, 0] 0

[0, 1] [0, 1] [0, 2] 0

[j, 0] [0, i] [j, i] ij(βi − βj )

[0, i] [j, 0] [j, i] −ij(βi − βj )

Quantities appearing in Equation (21) for the special case of stimulation with an interval

(that is, Hharm = [i, j], i ≤ j).

as BkM does not grow superexponentially with i, the amplitudes
of the complex exponentials (i.e., ρmj+nj in Equation 21) increase
with decreasing relative periodicity of the interval.

Further, it can be shown that the frequencies above also grow
(in absolute value) with the inharmonicity of the interval, the
other factor in perception of musical tension considered here.
Let f1 and f2 denote the lower and the higher frequency of the
interval, respectively, that is,

f1 = (1+ βi)i ,

f2 = (1+ βj)j =
(
(1+ βi)+ (βj − βi)

)
j (22)

(see Equation 12). Additionally, let

f0 = 1+ βi .

The inharmonicity of the interval [f1, f2] with respect to the
fundamental frequency f0 is defined as its weighted Manhattan
distance to the interval [if0, jf0], comprising the i-th and the j-th
harmonic of f0. The distance is weighted by the squared signal
amplitudes and normalized by f0 and the sum of the squared
signal amplitudes [11]. In our particular case, the inharmonicity

I
ij

f1f2
is equal to

I
ij

f1f2
=

2

f0

|f0i− f0i|ρ2
i + |

(
f0 + (βj − βi)

)
j− f0j|ρ2

j

ρ2
i + ρ2

j

=
2

f0

j|βj − βi|ρ2
j

ρ2
i + ρ2

j

f0

(
ρ2
i + ρ2

j

)

2ρ2
j

I = j|βj − βi| .

Indeed, the frequencies grow (in absolute value) with the
inharmonicity of the interval. Consequently, noting that A
governs the stability of the fixed point solution at origin without
input (ρ = 0), we conclude that, under the above assumption
on BkM , pure-tone intervals with lower relative periodicity and
lower inharmonicity (i.e., those perceived as less tense) cause a
higher-amplitude and slower fluctuation of the driven system
eigenvalues around those of A than those with higher relative
periodicity and inharmonicity (perceived as more tense).

Note that there is an ambiguity of approximation represented
by a choice of i and j in Equation (22). Further, Equations (16) and
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(17) are far from being a global model of perception of tension
even in complex tones consisting of just two harmonics; they are
local in the sense that they only model perception of a particular
tone with respect to a particular approximation. Last but not
least, we still have to demonstrate that the above fluctuations
of stability translate to features of the oscillatory dynamics in a
meaningful way. We address these issues now when considering
the general case of stimulation with a complex tone consisting of
more than two harmonics. To this end, we construct an array of
models like Equation (16) differing in eigenfrequency. Here, each
eigenfrequency represents a choice of f0 in Equation (22) so that
the entire array essentially works as a pitch detector. Time traces
from simulations of such an array are depicted in Figures 1, 2.

The equations for the array were derived by applying the above
restriction on linear terms to Equation (9), writing-out the inputs
(Equations 12, 16, 17) and using Equations (6) and (18),

ż1 =


α + ı +

∑

p�−q�=0
|p|+|q|≥1

c10pqρ
p+qeı(p−q)ϕeı(p−q)�β t


 z1

+ z1|z1|2
∞∑

k=0

|z1|2k
∑

p�−q�=0

c(s+1)spqρ
p+qeı(p−q)ϕeı(p−q)�β t

+
∑

[r,s,p,q]∈S
p�−q� 6=0
r+s≥2

crspqz
r
1z1

sρp+qe−ı(r−s−1)teı(p−q)ϕeı(p−q)�β t , (23)

then truncating the higher-order terms,

ż1 =


α + ı +

∑

p�−q�=0
p=(ωj)i , q=(ωi)j

c10pqρ
p+qeı(p−q)ϕeı(p−q)�β t


 z1

+c2100z1|z1|2 ,

and, finally, setting

c2100 = −1 , c10pq = 1 ,ϕ = 0 , z1 = z1k , ρ = ρk ,

and scaling the time for convenience by the eigenfrequency,
fk, which yields a parametrically-forced normal form for
supercritical Andronov-Hopf bifurcation:

ż1k= fk





α+ı+

∑

p�−q�=0
p=(ωj)i , q=(ωi)j

ρ
p+q

k
eı(p−q)�β t


 z1k − z1k|z1k|2


 .

(24)
Here, (ωj)i signifies a vector with ωj at the i-th position and zero
otherwise. � and β are set as

� = [ω1,ω2, . . . ,ω54] = [1, 1, . . . , 1, 2, 2, . . . , 2, . . . , 6, 6, . . . , 6]

β = �24TET
1

�
− 1

(see Equations 1, 8), where each element of �24TET approximates

the corresponding element of � as a power of 2
1
24 (the 24-

tone equal-tempered tuning); � and �24TET are aligned in such
a way that ω5 = ω24TET, 5 = 1 and hence β5 = 0. The
oscillators (Equation 24) receive connections from a bank of
input units—linear oscillators with eigenfrequencies spanning
from B♭0 to B4 in quarter-tone steps. In accordance with
Equation (8), each oscillator (Equation 24) is only connected to
input units with frequencies (fkωiβi in Equation 8, after scaling
by fk) approximating its harmonics (in the above tuning) and,
additionally, to frequencies up to 4 quarter-tones below and
above these. In other words, it does not have fixed homogeneous
connectivity input strength from all input units, but rather
receives (weighted) input only from input units with frequencies
close to its first six approximate harmonics; the connectivity of
each oscillator is thus effectively defined by a connectivity pattern
or kernel consisting of six unimodal elementary Gaussian kernels

(k(l) = e−0.5l2; l ∈ {−4, . . . , 4} and k(l) = 0 otherwise) centered
at the harmonics. See visualization of the connectivity kernel in
Figure 3. Moreover, only the connections emanating from the
input units whose frequencies are included in the stimulus are
set to have nonzero amplitude in the respective simulation. Note
that by fixing a set of eigenfrequencies (corresponding to different
choices of f0 in Equation 22) and input units and restricting the
connectivity to (near-)harmonics, there remains no ambiguity in
approximation of the input; each oscillator, as long as the input
falls within the reach of its connectivity kernel, approximates the
input in its own, unique, way.

All simulations were run from initial conditions

z1k(t0 = 0) = 0.001 ,

with

α = −0.001 ,

a parameter setting corresponding to the (almost loss of)
stability (without input) of the fixed point z1k = 0. Three
alternative inputs were applied, whose spectra can be seen in
Figure 4. The first corresponds to harmonic input with the
C tone at its base plus its first five harmonics (tones with
integer multiple frequencies of the base tone). The second
input results from a transformation of the first which increases
inharmonicity while the third is a result of a transformation
which increases roughness.

As can be seen from Figures 1, 2, both transformations seem
to increase fluctuation of stability of the origin, as predicted by
our analysis pertaining to two-frequency stimulation. This results
in an increase in amplitudemodulation across the oscillator array
and a corresponding decrease in peak amplitude (see Figure 5).
In other words, an increase in perceived musical tension seems
to be related to an increase in fluctuation of stability of the
origin which manifests itself as an absence of a stable dominant
amplitude peak. These preliminary observations are largely
confirmed by computing the minimum and the maximum of
each oscillator’s amplitude trace (see Figure 6). Consequently, we
put forward the absence of a stable dominant amplitude peak as
a hallmark of perceived musical tension in our model.
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FIGURE 1 | Time traces from simulations of Equation (24) with a soft harmonic (A,B), inharmonic (C,D), and rough (E,F) input. The stability (A,C,E) is quantified as

ℜ
(
(J)[0,0]

)
(see Equation 2); the amplitude (B,D,F) is simply |z1k |.
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FIGURE 2 | Time traces from simulations of Equation (24) with a loud harmonic (A,B), inharmonic (C,D), and rough (E,F) input. The stability (A,C,E) is quantified as

ℜ
(
(J)[0,0]

)
(see Equation 2); the amplitude (B,D,F) is simply |z1k |.
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FIGURE 3 | Connectivity of the oscillator with eigenfrequency C1 (k = 1, see

Equation 24). The first “blob” represents connections which stem from input

units with eigenfrequencies ranging from B♭0 to D1 and target the oscillator’s

“slots” corresponding to ρ1,1, ρ1,2, . . . , ρ1,9 in Equation (24); likewise, the

second blob connects B♭1, . . . ,D2 to ρ1,10, ρ1,11, . . . , ρ1,18 etc. The

connectivity of any other oscillator is obtained by shifting this kernel so that the

center of the first blob is aligned with the oscillator’s eigenfrequency.

4. DISCUSSION

We propose the absence of a stable unambiguous pitch detection
modeled as the absence of a pronounced amplitude peak in an
array of oscillators to be a correlate of timbre-induced musical
tension. In the class of oscillators we chose for populating the
array, the amplitude of the limit cycle is determined by the
stability of the origin; if the stability switches between a stable
and an unstable regime fast enough, the amplitude doesn’t have
enough time to grow.We show that the frequency andmagnitude
of this switching depends on inharmonicity and roughness of
the input to the oscillator. Imagine such an oscillator is actually
present in the brain; when subject to a tense (inharmonic
and/or rough) stimulus, it will remain almost silent, leading
to an “unclear,” “unstable,” “difficult to memorize” etc. percept
(see Figures 1, 2D,F). In contrast, a less tense stimulus would
result in a “clear”, “stable”, “easy to memorize” etc. percept (see
Figures 1, 2B). Of course, neurophysiological and neuroimaging
evidence shows the what we have in our head is not a single
oscillator, but rather an entire bank of them; we show in our
simulations that the results of our analysis of single oscillator
generalize to an array of them in the sense that the average
oscillation amplitude across the array is lower for tense than less
tense stimuli (see Figure 6).

Of course, tension is clearly not a one-dimensional
phenomenon and different aspects of it could be related to
different aspects of the underlying neurodynamics. For instance,
in a nonlinear model like the one proposed here, loudness of
the input is going to affect both the general amplitude of the
oscillations and their temporal fluctuations—in a frequency-
dependent manner, as our example simulations for two loudness
levels suggest. We consider disentangling these not necessarily
orthogonal dimensions of tension as a natural extension of the
currently proposed modeling framework.

We have proposed a neurodynamical model of musical
tension (see Equation 24) which reproduces existing empirical
results on timbral correlates of tension, is consistent with
neuroimaging findings [14] in that consonant stimuli compared
to dissonant stimuli elicit more sustained periodic neuronal
activity of higher amplitude, and due to its generative nature
can provide prediction of perceived tension of an arbitrary
sound input. More precisely, we have demonstrated that
both inharmonicity and roughness make the spectrum of the
simulated signal flatter and more variable (wider range over
time) (see Figures 1, 2, 6). Note that while [14] quantified the
periodicity by the amplitude of the autocorrelation peak of the
signal spectra, we rather proposed the absence of a temporally
persistent, pronounced amplitude peak in the spectrum of the
elicited neural activity as a possible correlate of tension—a related
indicator that is also present in the results presented in [14]. One
might even speculate, based on the similarity of the spectrum
to the major key profile [32], that the same principles underlie
perception of tonality.

Considering the simulation results reported above in more
detail, we note that the overall increase in fluctuation of stability
of the origin for the inharmonic and the rough input as compared
to the harmonic one can be explained based on the analytical
insights into the dynamics of a single oscillator obtained earlier.
More precisely, the nearly-harmonic relations in the inharmonic
and the rough input introduce oscillating terms into most of
the oscillators’ coupling functions; the increase of amplitude
modulation is, in turn, accounted for by the fact that the
amplitude of the stable limit cycle of Equation (24) is determined
by the stability of the origin. The decrease of the peak amplitude
is, for the inharmonic input, probably due to the connectivity;
there are no exact harmonic relations in the input and hence
no oscillator can align its connectivity kernel optimally with
the input (see Figure 3). For the rough input, it might be a
consequence of scaling down the amplitudes of its frequency
components to keep the overall loudness equal to that of the other
inputs which consist of fewer harmonics (see Figure 4).

As for our general approach, a few comments are in order.
First, for the sake of simplicity, we chose a subclass of multiple
centers [a generalization of double centers; see [26]] as our family
of models. It might be an interesting avenue for future research
to determine whether there are other families of models in which
relative periodicity and inharmonicity of the input plays such an
important role.

Also for the sake of simplicity, we only considered relative
periodicity and inharmonicity of pure-tone dyads. For general
sounds, we would be dealing with the set of nonnegative
solutions to a general linear Diophantine equation (Equation 18).
To the best of our knowledge, the structure of the set (its
minimum generators) can only be determined algorithmically
[e.g., [31]]. This makes analytical insights virtually impossible in
the general case.

Further, concerning the phenomenon wherein loud music
is perceived as more tense than soft music [8], we argue that,
replacing the bank of input units with a model of cochlea, the
effective input generated by a loud harmonic spectrum would be
very similar to the rough input used in the simulations reported
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FIGURE 4 | Spectrum of the harmonic (A), inharmonic (B), and rough (C) input used in the simulations. The construction loosely follows the procedure from [11]. We

chose ǫ = 3 for the soft and ǫ = 5.4 for the loud inputs.

FIGURE 5 | Trajectory of the C1 oscillator with soft/low-amplitude input corresponding to Figure 1 (A,C,E) and loud/high-amplitude input corresponding to Figure 2

(B,D,F) for the harmonic (A,B), inharmonic (C,D), and rough input (E,F), rendered in the complex plane.
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FIGURE 6 | Minima and maxima of the oscillator amplitude traces from

simulations with soft/low-amplitude input corresponding to Figure 1 (A) and

loud/high-amplitude input corresponding to Figure 2 (B) with the first 20 s

dropped to attenuate the effect of the same initial conditions. Incidentally, note

the similarities between Figure 6 and the major key profile from Krumhansl

and Kessler [32].

here. More precisely, we expect the loud harmonic spectrum to
displace not only those segments of the basilar membrane whose
eigenfrequencies match the harmonics, but also the adjacent
segments (see Figure 4). This way, the effect of loudness would
be accounted for by a combination of cochlear physiology and
sensitivity of our model to roughness.

Finally, even though the choice of spectral representation was
motivated by our interest in contemporary art music, especially
the so-called “spectral music,” the model presented here is

applicable to any kind of music; indeed, even music composed
with traditional categories in mind ends up being rendered as
sound which can be fed into our model.

To conclude, mapping perception to neurodynamics is hard.
However, from time to time, a favorable constellation of research
sheds light on the underlying physiology. The fruitful concept
of relative periodicity [13] suggests that roughness, as one of
the perceptual “dimensions” of timbre contributing to tension,
might originate in (neural) resonance. Indeed, in this study, we
have shown that the dynamics of stability of the origin in a
wide class of periodically forced nonlinear oscillators crucially
depends on the relative periodicity of the input and, additionally,
on its inharmonicity. Since roughness and inharmonicity are
principal constituents of perceived tension, we have effectively
put forward a possible neurodynamical explanation of musical
tension. Moreover, for a particular model belonging to the
above class, we have demonstrated by simulations that tense
inputs result in an absence of a persistent dominant peak in the
spectrum of the time series generated by the model.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

AUTHOR CONTRIBUTIONS

JH and MH contributed to conception, theoretical analysis,
design of the study, manuscript revision, read and approved
the submitted version. MH implemented the simulations and
visualizations and wrote the first draft of the manuscript.

FUNDING

This study was funded by the project Nr. LO1611 with a financial
support from the MEYS under the NPU I program and with
institutional support RVO:67985807.

ACKNOWLEDGMENTS

We thank Pavel Sanda and Hana Markova for reading the
manuscript and providing helpful comments.

REFERENCES

1. Anderson W, Mathiesen TJ. Ethos. Oxford University Press (2001).

Available online at: http://www.oxfordmusiconline.com/subscriber/article/

grove/music/09055

2. Huron D. Sweet Anticipation. Cambridge, MA: The MIT Press (2006).

3. Aldwell E, Schachter C, Cadwallader A. Harmony & Voice Leading. Exeter:

Schirmer Cengage Learning (2011).

4. Lerdahl F, Krumhansl CL. Modeling tonal tension. Music Percept. (2007)

24:329–66. doi: 10.1525/mp.2007.24.4.329

5. Murail T. The revolution of complex sounds. Contemp Music Rev. (2005)

24:121–35. doi: 10.1080/07494460500154780

6. Murail T. Target practice. Contemp Music Rev. (2005) 24:149–71.

doi: 10.1080/07494460500154814

7. Fineberg J. Spectral music. Contemp Music Rev. (2000) 19:1–5.

doi: 10.1080/07494460000640221

8. Ilie G, Thompson WF. A comparison of acoustic cues in music and

speech for three dimensions of affect. Music Percept. (2006) 23:319–30.

doi: 10.1525/mp.2006.23.4.319

9. Bigand E, Parncutt R, Lerdahl F. Perception of musical tension in short chord

sequences: the influence of harmonic function, sensory dissonance, horizontal

motion, and musical training. Percept Psychophys. (1996) 58:125–41.

doi: 10.3758/BF03205482

10. Pressnitzer D, McAdams S, Winsberg S, Fineberg J. Perception of musical

tension for nontonal orchestral timbres and its relation to psychoacoustic

roughness. Percept Psychophys. (2000) 62:66–80. doi: 10.3758/BF03212061

11. Farbood MM, Price KC. The contribution of timbre attributes to musical

tension. J Acoust Soc Am. (2017) 141:419–27. doi: 10.1121/1.4973568

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 June 2020 | Volume 6 | Article 18

http://www.oxfordmusiconline.com/subscriber/article/grove/music/09055
http://www.oxfordmusiconline.com/subscriber/article/grove/music/09055
https://doi.org/10.1525/mp.2007.24.4.329
https://doi.org/10.1080/07494460500154780
https://doi.org/10.1080/07494460500154814
https://doi.org/10.1080/07494460000640221
https://doi.org/10.1525/mp.2006.23.4.319
https://doi.org/10.3758/BF03205482
https://doi.org/10.3758/BF03212061
https://doi.org/10.1121/1.4973568
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Hadrava and Hlinka A Dynamical Systems Approach to Spectral Music

12. Hutchinson W, Knopoff L. The acoustic component of Western consonance.

J New Music Res. (1978) 7:1–29. doi: 10.1080/09298217808570246

13. Stolzenburg F. Harmony perception by periodicity detection. J Math Music.

(2015) 9:215–38. doi: 10.1080/17459737.2015.1033024

14. Lee KM, Skoe E, Kraus N, Ashley R. Neural transformation of dissonant

intervals in the auditory brainstem. Music Percept. (2015) 32:445–59.

doi: 10.1525/mp.2015.32.5.445

15. Bidlack RA. Music From Chaos: Nonlinear Dynamical Systems as Generators

of Musical Materials. San Diego, CA: University of California (1990).

16. Boon JP, Decroly O. Dynamical systems theory for music dynamics. Chaos.

(1995) 5:501–8. doi: 10.1063/1.166145

17. Hennig H, Fleischmann R, Fredebohm A, Hagmayer Y, Nagler J, Witt A, et al.

The nature and perception of fluctuations in human musical rhythms. PLoS

ONE. (2011) 6:e26457. doi: 10.1371/journal.pone.0026457

18. Coombes S, Lord GJ. Intrinsic modulation of pulse-coupled integrate-and-fire

neurons. Phys Rev E. (1997) 56:5809. doi: 10.1103/PhysRevE.56.5809

19. Lots IS, Stone L. Perception of musical consonance and dissonance. J R Soc

Interface. (2008) 5:1429–34. doi: 10.1098/rsif.2008.0143

20. Heffernan B, Longtin A. Pulse-coupled neuron models as investigative

tools for musical consonance. J Neurosci Methods. (2009) 183:95–106.

doi: 10.1016/j.jneumeth.2009.06.041

21. Ushakov YV, Dubkov AA, Spagnolo B. Spike train statistics for consonant and

dissonant musical accords in a simple auditory sensory model. Phys Rev E.

(2010) 81:041911. doi: 10.1103/PhysRevE.81.041911

22. Large EW,Almonte FV, VelascoMJ. A canonical model for gradient frequency

neural networks. Phys D. (2010) 239:905–11. doi: 10.1016/j.physd.2009.11.015

23. Large EW. A Dynamical systems approach to musical tonality. In: Huys R,

Jirsa VK, editors. Nonlinear Dynamics in Human Behavior. Vol. 328 of Studies

in Computational Intelligence. Berlin; Heidelberg: Springer (2011). p. 193–211.

doi: 10.1007/978-3-642-16262-6_9

24. Large EW, Almonte FV. Neurodynamics, tonality, and the

auditory brainstem response. Ann NY Acad Sci. (2012) 1252:E1–7.

doi: 10.1111/j.1749-6632.2012.06594.x

25. Large EW, Kim JC, Flaig NK, Bharucha JJ, Krumhansl CL. A

neurodynamic account of musical tonality. Music Percept. (2016) 33:319–31.

doi: 10.1525/mp.2016.33.3.319

26. Murdock J. Normal Forms and Unfoldings for Local Dynamical Systems. New

York, NY: Springer-Verlag (2003). doi: 10.1007/b97515

27. Lerud KD, Almonte FV, Kim JC, Large EW. Mode-locking neurodynamics

predict human auditory brainstem responses to musical intervals. Hear Res.

(2014) 308:41–9. doi: 10.1016/j.heares.2013.09.010

28. Kim JC, Large EW. Signal processing in periodically forced gradient

frequency neural networks. Front Comput Neurosci. (2015) 9:152.

doi: 10.3389/fncom.2015.00152

29. Kim JC, Large EW. Mode locking in periodically forced gradient

frequency neural networks. Phys Rev E. (2019) 99:022421.

doi: 10.1103/PhysRevE.99.022421

30. Parncutt R. Template-matching models of musical pitch and

rhythm perception. J New Music Res. (1994) 23:145–67.

doi: 10.1080/09298219408570653

31. ClausenM, Fortenbacher A. Efficient solution of linear diophantine equations.

J Symbol Comput. (1989) 8:201–16. doi: 10.1016/S0747-7171(89)80025-2

32. Krumhansl CL, Kessler EJ. Tracing the dynamic changes in perceived tonal

organization in a spatial representation of musical keys. Psychol Rev. (1982)

89:334. doi: 10.1037/0033-295X.89.4.334

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Hadrava and Hlinka. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 June 2020 | Volume 6 | Article 18

https://doi.org/10.1080/09298217808570246
https://doi.org/10.1080/17459737.2015.1033024
https://doi.org/10.1525/mp.2015.32.5.445
https://doi.org/10.1063/1.166145
https://doi.org/10.1371/journal.pone.0026457
https://doi.org/10.1103/PhysRevE.56.5809
https://doi.org/10.1098/rsif.2008.0143
https://doi.org/10.1016/j.jneumeth.2009.06.041
https://doi.org/10.1103/PhysRevE.81.041911
https://doi.org/10.1016/j.physd.2009.11.015
https://doi.org/10.1007/978-3-642-16262-6_9
https://doi.org/10.1111/j.1749-6632.2012.06594.x
https://doi.org/10.1525/mp.2016.33.3.319
https://doi.org/10.1007/b97515
https://doi.org/10.1016/j.heares.2013.09.010
https://doi.org/10.3389/fncom.2015.00152
https://doi.org/10.1103/PhysRevE.99.022421
https://doi.org/10.1080/09298219408570653
https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1037/0033-295X.89.4.334
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	A Dynamical Systems Approach to Spectral Music: Modeling the Role of Roughness and Inharmonicity in Perception of Musical Tension
	1. Introduction
	2. Methods
	2.1. Model Analysis

	3. Results
	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


