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1. INTRODUCTION

In this article we provide a short survey on continuous-time portfolio selection. Continuous-
time portfolio selection has played a pivotal role in modern theory of asset pricing by developing
the intertemporal capital asset pricing model [1]. It is now a central theme of research in
quantitative finance.

Continuous-time portfolio selection was born and grown, when there was a need to develop a
multi-period model of asset management. The models of Markowitz [2] and Roy [3] provided a
foundation of modern portfolio analysis, establishing risk-return trade-off as a central concept in
the analysis. The models, however, were static and did not accommodate changes in economic
environment. Merton [4, 5] made a pioneering contribution by casting portfolio selection in a
multi-period continuous-time framework.

Optimal control theory and continuous-time stochastic analysis were main tools for Merton’s
pioneering research. He used Bellman’s dynamic programming to solve the portfolio selection
problem. Pontryagin’s maximum principle was another achievement in optimal control theory.
Bismut [6] extended the maximum principle to stochastic processes and applied it to the
continuous-time portfolio selection problem. He showed that the problem could be solved more
easily by the maximum principle. The dual martingale approach was developed based on Bismut’s
contribution and has provided an efficient approach to solve the problem in a complete financial
market; the dual value function satisfies a linear partial differential equation, whereas the value
function of the primal problem satisfies a highly non-linear Hamilton-Jacobi-Bellman equation.

We explain two classes of models which have potential to be applied to practice, life-cycle models
with retirement andmodels protecting against decline in consumption. Models of the first class can
be used as a tool for lifetime planning, including saving and investment for retirement. Models of
the second class can be used when it is necessary for individuals or institutions to protect against
decline in spending power.

The rest of the article proceeds as follows. Sections 2 and 3 provide basic framework for
continuous-time portfolio selection: section 2 explains the static model of investment and section
3 explains development of dynamic models and Merton’s contribution. Sections 4, 5, and 6 explain
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methodological development: section 4 explains the maximum
principle and Bismut’s approach, section 5 discusses the dual
martingale approach, and section 6 provides a brief survey on
attempts to provide concrete solutions to the portfolio selection
problem. Sections 7 and 8 explain two applications: section 7
explains life-cycle models including choice of optimal retirement
time and section 8 discusses models protecting against decline in
spending power. Section 9 concludes.

2. PORTFOLIO SELECTION: RISK-RETURN
TRADEOFF

Traditionally people chose investment portfolios based on
two methods, fundamental analysis and technical analysis.
Fundamental analysis refers to discovering the fundamental
value (or intrinsic value) of an asset by using publicly available
information, e.g., news about companies, markets, and economy.
Fundamental analysts forecast future cash flows from an asset
based on the information and discount them by an appropriate
discount rate and calculate the fundamental value (see e.g., [7]).
Technical analysis focuses on analyzing price charts and forecasts
future price trend based on the information in the charts.

The idea of risk was always there, as the famous maxim “do
not put all your eggs in one basket.” Fundamental analysts used
discount rates higher than the risk-free rate for risky cash flows.
Risk was, however, at the background of investors’ thoughts,
never coming in front.

Academic research changed the practice. Two academic
papers, one by Markowitz [2] and another by Roy [3], brought
the idea of risk to the foreground and provided a technically
feasible framework to construct an investment portfolio based on
the trade-off between risk and return.

Markowitz proposes to construct a portfolio by using a
solution to the following problem:

Problem 1.

max
θ

θ ′µ

subject to

θ ′6θ ≤ σM ,

where θ is the vector of dollar amounts (or alternatively, weights)
invested in assets, µ is the vector of mean returns on assets and 6

is their covariance matrix.

Problem 1 asks to find a portfolio which maximizes the mean
return given maximum possible variance. Both Markowitz and
Roy use variance as a measure of risk and seek to find a portfolio
with restriction on its variance. The analysis to construct an
investment portfolio based on answers to Problem 1 is called
the mean variance analysis, and has been the major tool for
investment analysis.

3. DYNAMIC MODELS OF PORTFOLIO
SELECTION: SAMUELSON AND MERTON

The mean variance approach has been a main paradigm for
practical investment analysis. The main reason for its success is
its simplicity; one needs only to estimate the means, covariances
of asset returns. Of course, there exist problems such as solving
an optimization problem and estimating the large covariance
matrix when the number of assets is large. The problems,
however, have provided a continuous impetus for research and
the practical implementation of the approach has been one of
the most active research areas. A more serious economic issue
about the mean variance approach is its static nature; it is based
on one-period models and does not consider changes which
occur in the economic environment over a time span longer
than the one period model can accommodate. The problem is
not just technical and asks to develop a dynamic framework for
investment, which takes the changing economic environment
explicitly into consideration.

Samuelson [8] studies a multi-period model of investment
in discrete time and provides a solution using the dynamic
programming developed by Bellman [9, 10]. Merton [1, 4, 5]
extends Samuelson’s analysis by formulating the problem in
continuous time. We provide an explanation of Merton’s model.

The economy is described by a vector Xt = (X1,t , . . .XM,t)
′ of

state variables, which satisfies the dynamics

dXt = ν(t,Xt)dt + 6(t,X(t))dBt , (1)

where Bt = (B1,t , . . . ,B
′
K,t) is an K-dimensional standard

Brownian motion and ′ denotes the transpose of a matrix1.
There exist one risk-free asset and N risky assets. The price of

the riskless asset P0,t evolves according to

dP0,t

P0,t
= r(t,Xt)dt. (2)

The (cum-dividend) price Pt = (P1,t , . . . , PN,t)
′ evolves following

the dynamics

dPt

Pt
= µ(t,Xt)dt + σ (t,Xt)dBt . (3)

We normalize P0,0 = 1, P0 = 1, where 1 is the N−vector of 1’s.
An investor’s objective is to maximize the utility function

U = E

[

∫ T

0
e−δtu(ct)dt + e−δTV(WT)

]

, (4)

where E denotes expectation, δ is the subjective discount rate, u
is a concave strictly increasing function, called felicity function,
ct is the rate of consumption at t and WT is the investor’s
wealth at T. We will use simpler notation rt ,µt , νt ,6t , σt for
r(t,Xt),µ(t,Xt), ν(t,Xt),6(t,Xt), σ (t,Xt), respectively.

1The Brownian motion is defined on a filtered probability space (�,F , (Ft)t≥0,P),

where the filtration (Ft)t≥0 is generated by the Brownian motion (Bt)t≥0 and

augmented by null sets.
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Samuelson and Merton’s framework of maximizing the utility
function has been a standard framework for studying portfolio
selection. We will utilize the same framework in this survey [see
explanations following (33), (34), (43)].

Let πt = (π1,t , . . . ,πN,t)
′, where πi,t denotes the dollar

amount invested in the i-th asset at time t. We assume self-
financing of the agent’s wealth, i.e., there exists no inflow into the
agent’s wealth nor outflow of from it. Under the self-financing
assumption, the investor’s wealth at time t, Wt , satisfies the
dynamics: given initial wealth W0 = W [see pages 1560–1561
of Karatzas et al. [11] for more details],

dWt =

[

rt(Wt − ct −

N
∑

i=1

πi,t)+ µ′
tπt

]

dt + π ′
tσtdBt

=
[

rtWt − ct + (µt − rt1)
′πt)

]

dt + π ′
tσtdBt .

(5)

We require that

Wt ≥ 0 for every t ∈ [0,T]. (6)

The condition precludes an arbitrage opportunity [12].
State variable Xt , wealth Wt , and time t provide sufficient

information to answer the investor’s optimization problem, and
consequently, the maximized value of the investor’s utility can
thus be expressed as a function of (t,Wt ,Xt), which we will call
the value function and denote by V(t,Wt ,Xt), or simply by V if
there is no possibility of confusion.

The investor’s optimization problem is time consistent and
satisfies Bellman’s principle of optimality. The principle implies
the Hamilton-Jacobi-Bellman (HJB) equation

max
ct ,πt

E[dV]

dt
− δV = 0. (7)

By Itô’s lemma we have

dVt =
[

Vt + VW(rWt − ct + (µt − rt1)
′πt)+ V ′

Xνt

+
1

2
VWWπ ′

tσ
′
tσtπt

+
1

2
6′

tVXX6t + V ′
WX6tσ

′
tπt

]

dt

+ (V ′
Wσt + V ′

X6t)dBt , (8)

where we use the subscript notation for partial derivatives2.
Accordingly, Equation (7) implies

max
ct ,πt

[

Vt + VW(rWt − ct + (µt − rt1)
′πt)

+ V ′
Xνt +

1

2
VWWπ ′

tσ
′
tσtπt

+
1

2
6′

tVXX6t + V ′
WX6tσ

′
tπt

]

− δV = 0. (9)

2 That is, Vt =
∂V
∂t ,VW = ∂V

∂Wt
,VX = ∂V

∂Xt
,VWW = ∂2V

∂W2 ,VXX = ∂2V
∂X2 .

The first-order conditions are given by the following

ct = (u′)−1(VW), (10)

πt = −
VW

VWW
(σtσ

′
t )
−1(µt − rt1)+

V ′
WX

VWW
6tσ

′
t (σtσ

′
t )
−1. (11)

Merton [1] derives the HJB equation and the expression for
optimal consumption and portfolio in the first-order conditions.
According to Equation (11) the investor’s optimal portfolio of
risky assets has two components: the first component is an
investment in the mean-variance efficient portfolio and the
second component is an investment to cope with changes in
the economic environment. The first is the investment in the
efficient portfolio in the static mean variance analysis, and is
called the myopic component. The second component exists due
to changes in the investment opportunity. Merton’s framework
extends the mean variance analysis to a dynamic setting in which
the economy changes over the course of time.

The HJB equation is highly non-linear when the optimal
consumption and portfolio in the first-order-conditions are
substituted for ct and πt . Merton [4, 5] provide a concrete
solution to the HJB equation for the case the investment
opportunity is constant, i.e., r(t,Xt),µ(t,Xt), σ (t,Xt) do not
depend on Xt and are constant. He discovers the solution by
guessing-and-verifying, i.e., he conjectures a specific form for
the solution and verifies it to be a solution by plugging it into
the equation.

4. MAXIMUM PRINCIPLE

The investor’s optimization problem in Merton’s continuous
time model is a stochastic optimal control problem. Merton
employs Bellman’s approach to optimal control problems to solve
the consumption/portfolio selection problem. Pontryagin et al.
[13] propose another approach to optimal control problems
and derive the maximum principle. Dorfman [14] applies the
principle to the theory of economic growth. Bismut [6] extends
it to a stochastic environment and applies it to Merton’s problem
[15]. Here we explain Bismut’s approach. Bismut considers the
case with a deterministic investment opportunity. We assume
N = 1 for simplicity of exposition. We consider the following
equation for the adjoint variable pt

3 :

dpt = µp,tdt + θp,tdBt , p0 = λ. (12)

Then, we can define the HamiltonianHt of the system as follows

Ht ≡ e−δtu(ct)+ pt(rtWt − ct + (µt − rt)πt)+ θp,tσtπt . (13)

The maximum principle can now be stated as follows:

∂Ht

∂ct
= e−δtu′(ct)− pt = 0, (14)

∂Ht

∂πt
= (µt − rt)pt + θp,tσt = 0, (15)

e−δTV ′(WT) = pT , (16)

3pt is different from the asset price Pt in (3) and is the adjoint variable.
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and the expected change in pt is given by

µp,t = −
∂Ht

∂Wt
= −rtpt , (17)

Equation (15) implies

θp,t = −θtpt , where θt ≡
µt − rt

σt
. (18)

The quantity θt is commonly called themarket price of risk or the
Sharpe ratio of the risky asset. Now Equations (17) and (18) imply
the following dynamics for pt :

dpt

pt
= −rtdt − θtdBt , p0 = λ (19)

Hence, pt is given by

pt = λe−
∫ t
0 (rs+

1
2 θ2s )ds−

∫ t
0 θsBs . (20)

and optimal consumption c∗t is determined by

c∗t =
(

u
′
)−1

(yt), (21)

where yt is the marginal utility of consumption at optimum
defined by

yt ≡ eδtpt . (22)

Thus, the optimal consumption policy (ct)
T
t=0 is determined once

the initial value λ of the marginal value of capital is known.
We will now proceed to determine the initial value λ of pt .
By the martingale property, we have

W0 = H0W0 = E

[∫ t

0
Hscs ds+HtWt

]

for t ∈ [0,T].

where

Ht ≡ e−
∫ t
0 (rs+

1
2 θ2s )ds−

∫ t
0 θsBs , (23)

In particular,

W0 = E

[

∫ T

0
Htct dt +HTWT

]

. (24)

We have shown that the dynamic wealth evolution equation
implies the budget constraint (24), which we will call the
static budget constraint. Conversely, suppose that a consumption
policy (ct)

T
t=0 satisfying (24) is given. Then, by the martingale

representation theorem (Theorem 4.2, Ch. 3, [16]), there exists
an admissible (πt)

T
t=0 such that capital evolves according to the

wealth evolution equation. This shows that the dynamic capital
evolution equation and the budget constraint are equivalent.

We would like to find λ which makes the resource constraint
hold as equality. For this purpose we plug the optimal

consumption in (21) into the left-hand side of (24) and derive
the following:

W0 = E

[

∫ T

0
Htc

∗
t dt +HTW

∗
T

]

= E

[

∫ T

0
Ht(u

′)−1(λHt) dt +HT(V
′)−1(λHT)

]

, (25)

where W∗
T is the wealth at T when the agent follows the optimal

consumption and portfolio strategies. We can find λ from the
above equation.

5. THE DUAL MARTINGALE APPROACH

Bismut’s stochastic maximum principle and its application
to consumption/portfolio selection allows one to transform
the dynamic wealth evolution equation into a static budget
constraint. Bismut rederives Merton’s solution for the case where
the investment opportunity set is deterministic. Pliska [17],
Duffle and Huang [18], Karatzas et al. [19], and Cox and Huang
[20] extend the idea to a general case.

Let

θt ≡ (σt)
−1(µt − rt1) (26)

and define

Ht ≡ e−
∫ t
0 rsdsZt where Zt ≡ e−

1
2

∫ t
0 |θs|

2ds−
∫ t
0 θ ′sdBs . (27)

Ht in Equation (27) is called the stochastic discount factor and is
equal to that in Equation (23) if the θt and rt are deterministic.

If θt satisfies a regularity condition, then Zt is a martingale and
in this case we can show that the wealth evolution equation and
the following static budget constraint is equivalent:

E

[

∫ T

0
Htctdt +HTWT

]

≤ W0. (28)

Then, one can obtain a solution to the consumption/portfolio
selection problem by using the Lagrangian:

L = E

[

∫ T

0
e−δtu(ct)dt + e−δTV(WT)

]

+ λ

(

W − E

[

∫ T

0
Htctdt +HTWT

])

. (29)

The Lagrangian based on the static budget constraint provides
a fundamental tool to solve a portfolio selection problem in
continuous time [see explanations following (39) and (44)].

The first-order conditions are

c∗t = (u′)−1(yt), ,W∗
T = (V ′)−1(yT). (30)

where yt ≡ λeδtHt .
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We can determine λ by plugging the optimal consumption
and bequest into the budget constraint which holds as equality
at the optimum.

Defining the dual value function J at t by

J(t, yt) ≡ Et

[

∫ T

t
e−δ(s−t)(u(cs)− csys)ds

+ e−δ(T−t)(V(WT)− yTWT)
]

,

(31)

where ys = eδsHs and Et[·] = E[· | Ft]. Notice that J
can be expressed as a function of (t, yt) and the Feynman-Kac
theorem implies J satisfies a linear PDE. Under suitable regularity
conditions the following duality relationship is valid:

V = inf
λ>0

[J + λW0]. (32)

6. CONCRETE SOLUTIONS

Merton proposed the continuous-time consumption/portfolio
selection problem in a stochastic economic environment.
Concrete solutions, however, were not obtained for the
stochastically changing economic environment until 1990s.
Brennan et al. [21] obtain a concrete solution by solving the
non-linear HJB equation numerically. Kim and Omberg [22]
obtain a closed-form solution to the HJB equation for the case
where the dynamics of asset prices follow affine processes. In this
case one can transform the partial differential equation into an
ordinary differential equation of the Riccati type and obtain a
closed-form solution in special cases. Liu [23] extends Kim and
Omberg’s approach to a general stochastic market environment
and proposes an approach to obtain a concrete solution by
solving the Riccati equations numerically.

7. RETIREMENT AND LIFE-CYCLE
PORTFOLIO SELECTION

So far we have treated the optimal consumption/investment
problem without consideration of lifetime planning or
retirement. Lifetime planning, including labor supply decisions,
is a crucial feature for practical application of the theory.
Retirement is a major concern of an individual; it represents
enjoying more leisure but a once-and-for-all cessation of wage
income for the individual. In this section we provide a survey on
recent research which studies lifetime planning and the effects of
a retirement decision on optimal portfolio and consumption.

Bodie et al. [24] study a model of flexible labor supply before
retirement, introducing a trade-off between labor and leisure.
They consider an agent with the following utility function:

U = E

[

∫ T

0
e−δtu(ct , Lt)dt + e−δTV(WT)

]

, (33)

where T is the time of retirement, Lt is the rate of leisure the
agent enjoys at time t, u(c, L) is increasing and concave in c and
L, and V(WT) is the continuation utility function of wealth at

retirement. The maximum possible leisure rate is 1, and 1 − Lt
is the labor supply of the agent. The agent receives wage income
at a rate equal to wt(1 − Lt) where wt is the wage rate at t; the
lower the leisure, the higher the labor supply, and the higher
the income. Bodie et al. [25] extend the model by considering
stochastic investment opportunity and wage rate.

These studies, however, assume the retirement time as fixed
and exogenously given. Including choice of retirement time
in the life-cycle consumption and portfolio selection model
raises a technical challenge, since it involves optimal choice of
retirement time, an optimal stopping problem, as well as choice of
consumption and portfolio at each instant. Karatzas and Wang
[26] make a contribution in this regard by characterizing a
condition for the existence of a solution to the mixture problem
of optimal stopping and optimal choice of consumption. Choi
and Shim [27] study the open problem proposed by Karatzas
and Wang [26] in which the agent continues to consume
and invest after the retirement. An infinitely-lived live agent
chooses optimal retirement time as well as consumption and
portfolio. The agent’s period utility function has two components
before retirement, utility of consumption and disutility of labor;
disutility of labor is subtracted from utility of consumption.
Thus, retirement is a choice to avoid disutility of labor foregoing
labor income.

Fahri and Panageas [28] study the choice of retirement time,
optimal consumption and investment. They assume the agent
has a Cobb-Douglas utility of labor and leisure and the choice of
leisure is binomial, i.e., a constant level before retirement which
jumps to a higher level after retirement. They also consider a
finite horizon problem to understand the effect of aging on the
choices. Choi et al. [29] study a similar problem with a flexibility
in leisure choice. They introduce the choice of retirement time
in a model similar to that of Bodie et al. [24], namely, the
period utility function is a constant elasticity of substitution
(CES) function and the labor/leisure choice is flexible up to
a certain limit. After retirement the agent enjoys a full level
of leisure, which is higher than the maximum leisure before
retirement. Dybvig and Liu [30] study a model similar to that of
Fahri and Panageas [28] and investigate implications for portfolio
selection and asset pricing, considering liquidity constraints and
uninsurable income risk.

Yang and Koo [31] investigate the model of Choi and Shim
[27] in a finite horizon with a general period utility function and
provide conditions for the existence of a solution and establish
properties of optimal policies. Their analysis depends on the
theory of partial differential equations (PDEs). In particular,
they use the comparison theorem for the PDEs to characterize
the optimal retirement boundary and to establish comparative
static results.

Bae et al. [32] investigate the optimal consumption,
investment, and retirement time problem of infinitely lived agent
who receives a constant stream of social insurance payment after
retirement. They adopt the approach of Yang and Koo [31] and
analyze the properties of optimal consumption, investment, and
retirement time analytically.

To understand the portfolio selection problem with
retirement option in detail, we explain the problem studied
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by Choi and Shim [27]. They use dynamic programming. We
use, however, the dual martingale approach explained in section
5, following Yang and Koo [31].

The objective of the agent is to maximize the following utility
function

U = E

[∫ ∞

0
e−δt

(

u(ct)− l11t<τ

)

dt

]

(34)

where l is a constant describing disutility of labor and τ is the
retirement time of the agent. The agent receives a stream of labor
income at a constant rate ǫ before retirement.

For simplicity of exposition, we assume that the financial
market is composed of one risky asset and one riskless asset and
the expectation µ and volatility σ of the rate of return on the risk
asset are constant and the risk-free rate r is also constant. The
agent’s wealth satisfies the following dynamics at time t.

dWt =
[

rWt − ct + ǫ11t<τ + (µ − r)πt

]

dt + πtσdBt . (35)

The agent’s wealth satisfies following conditions

Wt ≥ −
ǫ

r
, t ∈ [0, τ ), Wt ≥ 0, t ∈ [τ ,∞). (36)

Let θ ≡ (µ − r)/σ and Ht ≡ e−rtZt where Zt ≡ e−
1
2 θ2t−θBt as

in section 5. Then, by applying the dual martingale approach in
5, we have the following static budget constraint, adopted to the
existence of a stopping time:

E

[∫ τ

0
Htctdt +Hτ

(

Wτ +
ǫ

r

)

]

≤ W +
ǫ

r
, ∀τ ∈ S , (37)

where S is the set of F stopping times taking values in [0,∞].
The objective function of the agent can be rewritten as

U = E

[∫ τ

0
e−δt

(

u(ct)− l
)

dt + e−δτU(Wτ )

]

, (38)

where U denotes the value function of the investor after
retirement, i.e., it is the investor’s maximized utility of after
retirement.

For a fixed stopping time τ , we consider the following
Lagrangian:

L = E

[∫ τ

0
e−δt

(

u(ct)− l
)

dt + e−δτU(Wτ )

]

+ λ

[

W +
ǫ

r
− E

[∫ τ

0
Htctdt +Hτ

(

Wτ +
ǫ

r

)

]]

.

(39)

The first-order conditions yield

c∗t = (u′)−1(yt) for t ≥ 0, and W∗
τ = (U ′)−1(yτ ), (40)

where yt ≡ λeδtHt .
The dual value function V̂ is defined by

V̂ ≡ sup
τ∈S

E

[∫ τ

0
e−δt

(

ũ(yt)− l
)

dt + e−δτ V̂(yτ )

]

, (41)

where ũ(y) is the convex conjugate of u, i.e., ũ(y) ≡

maxc≥0(u(c)− yc),4 V̂(y) ≡ Ṽ(y)− y ǫ
r and Ṽ(y) is the dual value

function of the post-retirement problem.
One can show that the dual value function satisfies a

variational inequality and obtain the optimal stopping time τ ∗

as the first hitting time of a boundary characterizing a unique
solution to the variational inequality. The following duality
relationship is valid [31].

V(W) = inf
y>0

[

V̂(y)+ y
(

W +
ǫ

r

)]

. (42)

8. PROTECTION OF SPENDING POWER

In this section we discuss models which explicitly consider
protection of spending power. In the 1980s portfolio insurance
strategies, designed to provide a floor value for a portfolio, were
popular. The strategies bought put options or used synthetic
replication of put options. Brennan and Schwartz [34], Basak [35,
36], and Grossman and Zhou [37] investigate effects of portfolio
insurance on equilibrium asset prices and returns. There may
exist adverse equilibrium effects of portfolio insurance, as some
of the literature has shown. Moreover, the strategies impose
terminal dates for protection of wealth arbitrarily, without having
a rationale for the choice. People usually roll the strategies over
when the target dates come. Dybvig [38] shows that rollover of
portfolio insurance is inefficient.

In order to avoid the arbitrariness of the target dates,
people consider putting restrictions continuously on flow of
consumption, not on wealth on an arbitrary future date.
A typical restriction is the monotonicity constraint, which
stipulates that consumption can never decline over time. An
investor’s consumption strategy subject to the constraint is
called consumption ratcheting. Based on the original idea of
Duesenberry [39] and Dybvig [40] formulates an economic
model for consumption ratcheting and provides optimal
consumption and portfolio strategies in closed form. Riedel [41]
extends the results of Dybvig [40] to a general utility function
with a pricing kernel generated by a Lévy process, and Watson
and Scott [42] consider a finite horizon model. Riedel [41] and
Watson and Scott [42], however, do not consider investment
strategies in their models. In a recent work Jeon et al. [43] analyze
optimal portfolio strategies in consumption ratcheting models
both with a finite horizon and with an infinite horizon.

We will now provide an explanation of the infinite-horizon
consumption ratcheting model, following the approach by Jeon
et al. [43]. For an exogenously given consumption level c0−,
an investor’s objective is to maximize the following utility
function by choosing a non-decreasing consumption process c
and portfolio π of assets:

U ≡ E

[∫ ∞

0
e−δtu(ct)dt

]

, (43)

4See Rockafellar [33] for definition and use of the convex conjugate of a concave

function in convex analysis.
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where the utility function u(c) is a twice continuously
differentiable, strictly concave, strictly increasing function with
a suitable regularity condition. Since the consumption process is
non-decreasing, we need

W0 >
c0−

r
,

i.e., wealth is greater than the level which is necessary to sustain
the previously given level of consumption. By using the static
budget constraint developed in section 5, we can write down the
Lagrangian as follows:

L ≡E

[∫ ∞

0
e−δtu(ct)dt

]

+ λ

(

W0 − E

[∫ ∞

0
Htctdt

])

=E

[∫ ∞

0
e−δt(u(ct)− λeδtHtct)dt

]

+ λW0,

(44)

where yt = λeδtHt .
From the Lagrangian (44), we choose the non-decreasing

consumption process (ct)
∞
t=0 to maximize L and thus introduce

the dual problem5.

J(y, c) = sup
(ct)∈ND(c)

E

[∫ ∞

0
e−δt(u(ct)− ytct)dt

]

, (45)

where ND(c) denotes the set of all non-decreasing, right
continuous with left limits processes (et)

∞
t=0 starting at c.

According to Jeon et al. [43], we can show that the following
duality relationship holds:

V(W0, c0−) = inf
y>0

(

J(y, c0−)+ yW0

)

. (46)

The dual problem in (45) involves the choice of a non-decreasing
process (ct)

∞
t=0 which is called a singular control problem. By

a standard approach to the singular control problem (see [44],
[45]), the dual value function J(y, c) satisfies the following
HJB equation:

max
{

LJ(y, c)+ u(c)− yc, Jc(y, c)
}

= 0,

for (y, c) ∈ (0,∞)× (0,∞),
(47)

where the differential operator L is given by

L =
θ2

2
y2

∂2

∂y2
+ (δ − r)y

∂

∂y
− δ.

From the HJB Equation (47), the agent’s optimal consumption
strategy can be characterized by two regions in the state space,
the inaction regionNR and the increasing region IR. There exists
a free boundary z̄ such that the two regions NR and IR can be
represented by

NR ={(y, c) | Jc(y, c) < 0} = {(y, c) | y > z̄u′(c)},

IR ={(y, c) | Jc(y, c) = 0} = {(y, c) | y ≤ z̄u′(c)}.
(48)

5Usually, the dual problem of a maximization problem involves minimization.

Here the problem still involves a maximization. We, however, call it the dual

problem, since the important variable is the marginal utility of wealth yt , the dual

variable to wealth, in the problem.

FIGURE 1 | NR and IR regions and consumption adjustment.

If the initial consumption level c0− is such that (y0, c0−)
lies in the increasing region IR, it jumps immediately to
the inaction region NR. Suppose the level of consumption
is such that (y0, c0−) lies in side the NR region. The level
of consumption stays constant while the marginal utility of
wealth process yt is inside the NR-region. The consumption
is adjusted upward if and only if the process yt goes
below u′(ct−)z̄, so that the pair (y0, c0−) is restored to the
inaction region. Figure 1 illustrates the regions and adjustment
of consumption.

If we define the discretionary wealth as wealth in excess
of the perpetuity value of current consumption (the level of
wealth required to maintain the current rate of consumption)
we can show that the optimal portfolio π is proportional to the
discretionary wealth, i.e.,

πt =
θ(1−m2)

σ

(

xt −
ct

r

)

, for all t ≥ 0. (49)

This relationship is independent of the agent’s felicity
function and depends only on the subjective discount
rate and the market parameters as shown by Dybvig
[40] and Koo et al. [46]. Dybvig [47] discusses potential
application of the consumption ratcheting model to practical
asset management.

Choi et al. [48, 49] study an extension of the model
in which the agent can adjust consumption downward with
mental adjustment costs and explore its application to practical
asset management.

9. CONCLUSION

We have provided a survey on continuous-time
portfolio selection. We have explained technological
development such as the dynamic programming method,
application of the maximum principle, and the dual
martingale approach. We have also explained models of
practical importance.

Of course, we cannot discuss all the important contributions
in this short survey. For example, we have not explained
models with frictions such as transaction costs, uninsurable
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income risk, and taxes. We leave them as topics for a
separate survey.
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