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INTRODUCTION

In discussing Equation (39) (Equation (25) of Bocquet [1]), Farchi and Bouquet [2] state that
“This perturbation update has been rediscovered by Bishop et al. [3] and included in their gain
ETKF (GETKF) algorithm. However, the update formula used in the GETKF is prone to numerical
cancellation errors as opposed to Equation (39)”. Here, we note:

(i) The predecessor of the GETKF eigenvalue form of themodified gainmatrix equation appeared
in Posselt and Bishop [4, 5]—before Bocquet [1].

(ii) The spectral shift theorem reduces the differences in the numerical cancellation errors referred
to by Farchi and Bouquet.

(iii) The eigenvalue form enables Wang et al.’s [6] corrections for ensemble rank deficiency.
(iv) A proof of the equivalence of the eigenvalue form and Bouquet’s form.

On page 12, Farchi and Bouquet [2] also state that “Such an extension had been discussed by Bishop
et al. [3] but without numerical illustration.” This is incorrect. Lei et al. [7] used the GETKF to
show that model space ensemble covariance localization provided satellite data assimilation (DA)
performance comparable to 3DEnsVar.

To be specific about the forms of the modified gain matrix, let
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where K is the total number of ensemble members in the
ensemble forecast and where the n-vector x

f
i is the ith member

of the prior ensemble forecast and where the p-vector H
(

x
f
i

)

is

the ith member of the prior ensemble forecast of the p-vector
y of p observations. When p<K, the numerical cost of the pxp
eigen decomposition

H̃Zf
(

H̃Zf
)T

= EŴpxpE
T (2)

is less than the K × K eigen decomposition

(

H̃Zf
)T

H̃Zf = CŴK×KC
T . (3)

In (2), E is a pxp eigenvectormatrix for which EET = ETE = Ipxp,
Ŵpxp is a pxp diagonal matrix of eigenvalues. In (3), C is a K × K

orthonormal matrix of eigenvectors
(

CCT = CTC = IK×K

)

and
ŴKxK is a K × K diagonal matrix of eigenvalues. At least K-
p of the eigenvalues in ŴK×K will be equal to zero in the case
of K>p. Equation’s (2) and (3) are directly connected to the

verbose singular value decomposition H̃Zf = EpxpŴ
1/2
pxKC

T
K×K

where Ŵ
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pxK =
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where 0px(K−p) is a px(K−p)

matrix of zeros. However, since the columns of C associated with
zero eigenvalues cannot contribute to products of the matrix H̃Zf

with other vectors, it is more efficient to work with the concise svd

given by H̃Zf = EpxpŴ
1/2
pxp

(

LKxp

)T
where LKxp lists the p columns

of CK×K having non-zero eigenvalues. Posselt and Bishop [4, 5]
note that LKxp is given by
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and hence can be computed without performing an eigen
decomposition of the larger K × K matrix in (3). Posselt and
Bishop [4, 5] prove that for a linear observation operator H̃, if
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The analysis perturbations are given by Xa = Za
√
K − 1, hence,
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where Xf = Zf
√
K − 1 (7)

is the perturbation update equation implied by Posselt and
Bishop [4, 5].

In the above notation, and when propagation of small
amplitude ensemble perturbations by the non-linear model is
replaced by the propagation of raw ensemble perturbations by the
non-linear model (i.e., no tangent linear model approximation is
made), Bocquet’s Equation (25) [1] for the ensemble perturbation
update takes the form,
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A fundamental difference between (7) and (8) is
that while Bouquet multiplies Zf by the KxK matrix
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Posselt and Bishop multiply it by the Kxp matrix
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[
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(
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]

. When K>p, Posselt and Bishop’s

form only requires the eigenvector decomposition of a pxp
matrix, whereas Bouquet’s form requires the inversion of a larger
K × K matrix. However, when p>K, the eigen decomposition
(3) is cheaper than (2), LKxp becomes identical to the K × K

matrix CK×K and H̃Zf = EpxKŴ
1/2
K×KC

T
K×K becomes the

concise svd of H̃Zf . In this case, EpxK is efficiently given by

H̃ZfCK×KŴ
−1/2
K×K = EpxK and (7) becomes
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Dividing Equation (9) by
√
K − 1 recovers Equation (24) of

Bishop et al. [3].
The above shows that Bishop et al.’s Equation (24) [3] was

not “rediscovered” from Bocquet’s [1] form as implied by Farchi
and Bocquet [2]. It is an extension of Posselt and Bishop’s [4, 5]
eigenvalue form to the case of K>p. Equation (9) is just an
eigenvalue form of the modified gain matrix of Whitaker and
Hamill’s [8] Ensemble Square Root Filter.

EQUIVALENCE OF (9) AND (8)

Bocquet’s Equation (25) [1] can be derived from (9) with the
following steps:

(i) Drop the dimension subscripts and manipulate
[

I− (Ŵ + I)−1/2
]

Ŵ−1 as follows

Ŵ−1
[

I− (Ŵ + I)−1/2
]

= Ŵ−1
[

I− (Ŵ + I)−1/2
] [

I+ (Ŵ + I)−1/2
]

[

I+ (Ŵ + I)−1/2
]−1

= Ŵ−1
[

I− (Ŵ + I)−1
] [

I+ (Ŵ + I)−1/2
]−1

= Ŵ−1
[

(Ŵ + I) (Ŵ + I)−1 − (Ŵ + I)−1
]

[

I+ (Ŵ + I)−1/2
]−1

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 March 2020 | Volume 6 | Article 2

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bishop et al. Commentary: Efficiency of Covariance Localisation
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Equation (13) is equivalent to (8) and Bocquet’s Equation (25) [1].

NUMERICAL ISSUES, CONDITION

NUMBERS, AND UNDERSTANDING

Numerical cancellation errors increase when the condition
number of the matrix increases. Let us define the scalars γmax

i
and γmin

i to, respectively, denote the maximum and minimum
of the eigenvalues listed in the eigenvalue matrix Ŵpxp. The

condition number of
(
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)T
H̃Z is κ
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matrix
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has the eigenvalue decomposition
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and hence has κ

[
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i +α

γmin
i +α

which is bounded

above by
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i
α

+ 1 where α is a positive scalar. Hence, α

can be chosen to create a matrix that is better conditioned

than

[

(

(

H̃Z
)T
H̃Z+ I

)

+
(

(

H̃Z
)T
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)1/2
]

. Once the eigen

decomposition C3CTof (14) has been obtained, one obtains the

eigenvalues required by the GETKF or ETKF using Ŵ = 3 − αI.
Thus, condition number differences between the Bouquet and
eigenvalue form are easily eliminated.

The eigenvalue form lends understanding to the performance
of DA schemes in much the same way that Empirical Orthogonal
Functions lend understanding to climate variability. Wang et al.
[6] used this understanding to correct gross aspects of the
eigenvalue overestimation that occurs when the size of the
ensemble is much smaller than the rank of the true observation
space forecast error covariance matrix.

DISCUSSION

Bocquet [1] and Farchi and Bocquet [2] may have overlooked
Posselt and Bishop’s [4, 5] work because:

(i) It is difficult to find all relevant literature to one’s own work.
(ii) Bishop et al. [3] did not cite Posselt and Bishop [4, 5].
(iii) The equivalence of Posselt and Bishop’s [4, 5] form and

Bocquet’s [1] form is not obvious.

Similarly, Bishop et al. [3] overlooked Bocquet’s [1] work because
of (i) and (iii). This note serves to clarify the origins and uses of
modified gain matrices used in ensemble DA.
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