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Time-delay stability (TDS) analysis is a method for quantifying interactions in multivariate

systems by identifying stable temporal relationships in time series data [1]. This method

has been used to create network representations of complex systems. As originally

presented, the TDSmethod relies on cross-correlation—a linear analysis that is restricted

to estimating relationships between unidimensional time series, and which, by itself,

often does not adequately characterize interactions between many non-linear complex

systems of theoretical and practical interest. Thus, modifying TDS so that it relies on

joint recurrence quantification analysis (JRQA), an intrinsically non-linear multidimensional

framework, and then comparing the ability of the two approaches to detect interactions in

non-linear systems is an important task. In the present work, we first show how TDS can

be extended using JRQA, a method which is capable of multidimensional assessment

of relationships in non-linear systems. In our application of JRQA, we introduce a

modification in the form of a weighting factor that accounts for the truncation of time

series that results from time-delayed JRQA. We also modify TDS by correcting for a

bias in the method and show how analogs of recurrence-based metrics can also be

obtained for TDS. We evaluate how TDS results obtained with JRQA compare to those

obtained with cross-correlation for known dynamics of coupled non-linear oscillators

and from unknown dynamics of multivariate behavioral signals measured from dyads

performing a joint problem-solving task. We conclude that TDS using cross-correlation

provides results that are comparable to those obtained with JRQA at a much-reduced

computational cost.

Keywords: recurrence quantification analysis (RQA), complex network analysis, interpersonal coordination,

physiological networks, joint recurrence quantification analysis

INTRODUCTION

Networks can usefully characterize a wide range of natural systems, including climate systems [2–
5], ecological systems [6, 7], social systems [8], and neurological systems [9–12]. Properties of
network representations of these systems often correspond to important features, including system
susceptibility to perturbations or control [13, 14], capacity of individual elements or communities
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of elements to influence or be influenced [15], and the predicted
propensity of systems to couple and exchange information [16–
18]. However, to create a network representation of a system,
the interaction or connectivity of the nodes (i.e., the individual
elements that are being modeled) must be measured [19]. This
process is not without its challenges, as measuring interactions
between real-world systems can be difficult.

Many studies that assess network structure in multivariate
time series data rely on linear methods like cross-correlation
to assess interactivity [20]. However, real-world systems
are frequently complex and non-linear, and consequently
exhibit non-stationarity and unpredictable dynamics [21–25].
Additionally, signals may be contaminated with non-stationary
changes in large scale structure or background noise (e.g.,
[26]). These properties can result in inaccurate estimations
of coupling strength when using common linear methods for
assessing statistical dependence [10, 27]. For instance, relying on
cross-correlation to determine coupling between non-stationary
systems can be misleading if the systems exhibit autocorrelation
[4], as slow variation in the signals can cause large covariances
between them even if there are no true interdependencies.
Additionally, cross-correlation relies on variation around a
location parameter (i.e., the mean of the time series), which
may cause problems if there is more than one such location
(e.g., a system with multiple basins of stability) or if there is no
persistent central point.

Recently, Bashan et al. [1] developed an approach to deal with
these limitations in cross-correlation by evaluating the temporal
stability of cross-correlations between signals, rather than relying
solely on themagnitude of correlation. Themethod, termed time-
delay stability analysis (TDS), relies on the general observation
that stable coupling relationships between systems transfer
fluctuations from one system to another at a consistent time
lag. Specifically, when time series are segmented into windows
and cross-correlation is calculated over a range these intervals,
long contiguous intervals during which the cross-correlation
reaches a maximum magnitude at a consistent delay correspond
to periods of strong coupling. This approach is similar to that of
estimating phase between oscillators [28] as it indexes coupling
strength through the consistency of temporal relationships
between signals rather than the magnitude of their structural
similarity. However, though Bashan and colleagues showed how
TDS can overcome limitations associated with naïve cross-
correlation, an outstanding question is whether this method can
be improved with techniques that are inherently more robust to
non-stationarity than cross-correlation, such as recurrence-based
methods. For example, joint recurrence quantification analysis
(JRQA), a multivariate extension of recurrence quantification
analysis (RQA; [29, 30]), is a robust non-linear technique for
assessing relationships in multivariate systems and has been
used to study coupling between systems of qualitatively different
dynamics [29, 31, 32].

In the present work, we compare two different instantiations
of the TDS method, one based on cross-correlation and another
based on JRQA. We also modify JRQA by applying a weighting
factor to its output to ensure measures are proportional to
the degree of truncation that occurs as a result of calculating

similarities between time lagged signals. We extend TDS by
introducing a new variable that is conceptually similar to the
RQA variable MAXLINE—a measure of dynamic stability in
recurrence quantification analysis [29]—and show how TDS
metrics can be used to index coupling between systems of non-
linear oscillators with different intrinsic characteristics, as well as
coupling in multivariate signals obtained from pairs of people
engaged in a verbal problem solving task. We use the TDS
metrics from the interpersonal data to create graphs that we then
summarize with a simple network metric (the number of edges)
to show how restricting hand movement during conversation
alters the global properties of networks depicting important
aspects of interpersonal coordination.

TDS
Bashan et al. [1] introduced TDS as a method for determining
coupling between complex signals based on cross-correlation.
Broadly, TDS works by segmenting each signal from a set of
multivariate time series data into overlapping windows and
then conducting bivariate cross-correlation analyses between all
pairwise combinations of the signals for each of the windows.
Specifically, for each window, TDS begins by measuring the delay
at which the absolute value of the cross-correlation between
two signals achieves a maximum. The process is iterated over
sliding windowed segments of the time series, and the result
is a time series of delays indexing the temporal relationship
between the signals. This time series is then summarized
to yield the percentage of contiguous time series segments
with similar temporal relationships between the systems being
analyzed, which is termed Percentage Time Delay Stability
(%TDS). Specifically, to calculate %TDS, each time series is first
transformed, e.g., by aggregation, so that each signal has identical
sampling rates and number of samples, N. Then, for each pair-
wise comparison between signals, the two time series of length
N are windowed into segments of length L with an advance of
a, which results in a total of NL =

(

N−L
a + 1

)

windows. For
each segment, s, the signals are normalized to zero mean and unit
variance (to remove large-scale trends and obtain dimensionless
units) and their cross-correlation is calculated for a range of
delays, τ ,

csxy (τ ) =
1

L

∑L

i = 1
xsi+(s−1)ay

s
i+(s−1)a+τ , (1)

where s is the segment being evaluated. The delay associated with
the maximum absolute value of the cross-correlation within each
segment is calculated as
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The resultant sequence of τ s
0 s=1,...,NL

is a time series representing
the temporal relationship between two signals. Long sequences
of τ0 that do not fluctuate beyond a given threshold correspond
to times of consistent temporal relationships and thus strong
coupling. %TDS is then calculated as the percentage of total
windows in τ

s
0 of lengthNτ0 for which nomore than a set number

of values of τ0 fluctuatemore than1τ0 seconds.When calculating
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%TDS, Bashan et al. [1] set their parameters to Nτ0 = 5 and
1τ0 = 1 and required that at least 4 windows be within 1τ0 for a
segment to be labeled stable, meaning that for each five segments
of τ

s
0, a section of segments was deemed stable if the maximum

difference in the values of four of the segments was no more than
1 s. We note that this approach can result in an inflationary bias
in the number of sections identified as stable, since particular
subsets of stable indices can be counted twice (i.e., if the second
through fifth segments fit the stability criteria, then with a sliding
window of one, in the next window, the first four segments would
also be labeled stable). In the present work, we compared only
against the first segment of a window, meaning that if any three
of the remaining four segments were within ±1τ0 of the first
segment in a window, then that segment was labeled as stable.
%TDS was then calculated as the ratio of stable segments to the
total number of segments evaluated, multiplied by 100.

JRQA
Recurrence quantification analysis (RQA), the method
underlying JRQA, is a tool for measuring patterning and
regularity in potentially non-linear or non-stationary time series
[29, 30, 33]. RQA depends upon the construction of a recurrence
matrix (R), usually obtained by identifying similar points in a
time series by thresholding neighborhoods around points in a
reconstructed phase-space,

Rij = 2
(

ǫ −
∥

∥

−→x i −
−→x j

∥

∥

)

, i, j = 1, . . . ,N, (3)

where N is the number of observed points, ǫ is a similarity
threshold and −→x i and

−→x j are vectors locating the system in
phase-space, ‖ ‖ is a norm, and 2(·) is the Heaviside function,
such that 2(x) = 0 if x < 0 and 2(x) = 1 otherwise.
The similarity threshold, ǫ, is a parameter that determines
whether vectors in the phase space are identified as recurrent,
i.e., as revisiting the same area of the phase space. Choosing an
appropriate value for ǫ can be difficult [34] and investigating the
impact of ǫ on RQA output is an active research topic [35, 36]; in
the present work, we use a nearest neighbor approach that does
not require an explicit ǫ to be set.

While RQA was originally introduced to evaluate single
systems, it has been extended in several ways to evaluate
aspects of similarity in multiple systems, including cross-
recurrence quantification analysis—a method for measuring
structural similarities in phase space trajectories that requires
the same dimensionality between the compared systems [27, 37,
38]—and joint-recurrence quantification analysis (JRQA), which
can estimate temporal coupling between systems of different
dimensionality [31]. In its simplest form, JRQA quantifies joint-
recurrence as the tendency of different systems, X and Y, to
revisit areas in their respective phase spaces at the same time (i.e.,
it quantifies the probability that recurrences are present at the
same locations in the recurrence matrices for each of the systems
compared). This in turn can be used to assess different types of
synchronization between systems [32]. Joint-recurrence (JR) is
calculated from the Hadamard product of two R’s,

JRXY
(

ǫx, ǫy
)

=
1

N2

∑N

i,j = 1
2

(

ǫix −
∥

∥

−→x i −
−→x j

∥

∥

)

× 2

(

ǫiy −

∥

∥

∥

−→y i −
−→y j

∥

∥

∥

)

, i, j = 1, . . . ,N, (4)

whereXY denotes that JR is obtained from systemsX and Y using
ǫix and ǫiy as similarity thresholds for the different systems and
the index i denotes that the thresholds are potentially different
for each point in the phase space (i.e., as would be the case
in a nearest neighbor approach). JRQA can be conducted from
R’s obtained by finding a fixed number of nearest neighbors
(i.e., 5% of possible neighbors) for all points [29]. However, this
approach will often result in asymmetric R’s. For example, a
distal point a in the phase space can have a nearest neighbor
b that in turn does not have a as one of its own nearest
neighbors. This loss of symmetry means some network measures
become more difficult to interpret [39] and also results in loss of
computational efficiency, which is problematic because JRQA is
much more computationally intensive than cross-correlation. To
address this, we symmetrized R by obtaining the logical matrix
(R + RT) > 0, where RT is the transpose of R. This assures
both that each point has a minimum number of neighbors and
that the recurrence matrix is symmetric. More refined methods
exist to induce symmetry in Rs obtained via a modified nearest
neighbor method (e.g., [40, 41]), but the approach taken here has
the advantage of being comparatively simple. Once symmetry is
imposed, JRQA can be conducted on the upper triangular portion
of the Rs, which can save significant computational time.

Importantly, JRQA has been generalized to account for time-
lags in the coupling between two systems [5, 32] and also to
account for differing base recurrence rates [5, 32]. To modify
JRQA to account for time delays between systems, a delay
parameter τ can be added to the calculation,

JRXYτ

(

ǫx, ǫy
)

=
1

N′2

∑N′

i,j=1
2

(

ǫix −
∥

∥

−→x i −
−→x j

∥

∥

)

× 2

(

ǫi+τ
y −

∥

∥

∥

−→y i+τ −
−→y j+τ

∥

∥

∥

)

,

i, j = 1, . . . ,N − τ , (5)

in which N′ = N − τ and −→y is shifted by τ units. This
analysis can capture the propensity of recurrences inX to precede
recurrences in Y . The complimentary analysis of JRYXτ is obtained
by interchanging the appropriate terms in equation 5, and the two
series can be concatenated after multiplying the resultant JRYXτ τ

index by−1. However, there are two important consequences for
JRQA that arise as a result of truncating time series by τ . First,
since JRQA is a statistical method, less confidence is obtained
with smaller samples compared to larger ones [29]. Second, as
truncation increases, the recurrence plots become smaller and
thus more influenced by points close the diagonal. These points
may in turn be dominated by tangential, rather than recurrent,
motion in the systems. This is often corrected by applying a
“Thieler window” to regions close to main diagonal in R’s, where
“close” is often defined by the decorrelation time of the time
series determined by either autocorrelation or average mutual
information [29, 42]. Here, we modified JRXYτ by applying a
weight to each value of τ proportional to the degree of truncation,
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FIGURE 1 | (A) τ0 time series for 36 Rössler systems in the phase coherent regime with randomized initial conditions using JRQA-based TDS (τ
jr
0 ) with ν set to 0.04

and k set to 0.15. The time starts at 48 s as this is the last time point in the first TDS window (with a window size set to 48 s with a 4.8 s advance). The dotted black

line marks the time coupling was initiated between the systems. Different instantiations of the systems are represented by different colored lines; the dark blue line is

the mean and the error bars are 95% confidence intervals. (B) The same systems evaluated with cross-correlation-based TDS (τC0 ).

JRXYτw
= JRXYτ

(

N′2−N′

2

)

(

N2−N
2

) . (6)

In the present work, we combine the TDS method with JRQA
and look for the value of τ for which the concatenated values
of JRXYτw

and JRXYτw
obtains a maximum between systems for each

time series segment s. These values are entered into TDS in the
same way as τ in the cross-correlation analysis described above.
For all analyses, we conduct JRQAwith a fixed number of nearest
neighbors (either 2.5% or 5%)—with neighbors obtained after
applying a Theiler window equal to the decorrelation time of
the time series determined by the average mutual information
method—and apply Equation 6.

DATA

Non-linear Oscillators—The Rössler
System
To evaluate the ability of the cross-correlation and JRQA-based
methods of TDS to accurately estimate the degree of coupling
between different systems, we applied both to data derived from
several coupled instantiations of the Rössler system over a range
of different intrinsic characteristics and coupling strengths. The
Rössler system is a non-linear oscillator capable of exhibiting
a range of dynamic responses, including fixed point behavior,
periodicity, and chaos, and it has been previously used as a
proof of concept of JRQA [31, 32]. We used the following set of
differential equations to specify the system,

ẋ1 = − (1+ ν) x2 − x3 + k
(

y1 − x1
)

ẋ2 = (1+ ν) x1 + a1x2

ẋ3 = 0.2+ x3(x1 − 10)

ẏ1 = −(1− ν)y2 − y3 + k
(

x1 − y1
)

ẏ2 = (1− ν)y1 + a2y2

ẏ3 = 0.2+ y3(y1 − 10), (7)

where ν is a frequency detuning term, a1 and a2 are free
parameters, and k is a diffusive coupling term that determines

the interaction strength between the two oscillators [31]. The
system was integrated using the MATLAB ode45 integrator
(MathWorks, Natick, MA) with a time-step of 0.01 for 560 s
(the first 200 s were removed to allow transitions, leaving 360 s
of data). In all simulations, the coupling parameter was set
to 0 for time 0–180 s (after the first 200 s were removed) and
to k for times >180 s (i.e., the coupling was “switched on”
halfway through the integration). These data were downsampled
by a factor of 10 for a final sample rate of 10Hz. We varied
the detuning parameter ν from 0 to 0.04 in increments of
0.02, resulting in three values of this parameter. The coupling
parameter k was varied between 0 and 0.2941 in increments of
0.0118, resulting in 26 values of this parameter. We evaluated

3 cases for each parameter setting: two Rössler systems in a

phase-coherent regime (a1 = a2 = 0.15); one Rössler in a phase-
coherent regime and one in the funnel regime (a1 = 0.2925;

a2 = 0.15); and both Rössler systems in the funnel regime
(a1 = a2 = 0.2925). For each comparison, we independently
simulated 108 systems using randomized initial conditions for
the six system coordinates sampled from a uniform distribution
ranging from zero to one, for a total of 25,272 instantiations of
the Rössler system.

In computing TDS, we set the window size to 48 s with a
4.8 s advance. For JRQA, delay embedding was not used; rather,
all three dimensions from each system were used to calculate
their respective recurrence matrices. Within each window, we
calculated TDS using both JRQA (conducted with a fixed
number of nearest neighbors set to 2.5%) and cross-correlation,

resulting in a time series τ0 for both JRQA (τ
jr
0 ) and cross-

correlation (τ c0). These values were evaluated for %TDS using
a window size of 5, and a threshold of 1 s. If four out of five
consecutive values of τ0 were within 1 s from the first time
point in the segment, that segment was considered stable. To
allow for transitions, only the last 19 segments of the coupled
and uncoupled portions of the time series were entered into
summary statistics (i.e., averaged values of %TDS were calculated
from between 91.20 and 177.60 s for the uncoupled sections and
between 268.80 and 355.20 s for the coupled sections; Figures 1,
2 below).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 February 2020 | Volume 6 | Article 1

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Tolston et al. Estimating Coupling Strength in Non-linear Systems

FIGURE 2 | Mean values of %TDS results from analyses of Rössler systems as a function of phase-regimes, coupling strength k, and detuning factor, ν for

JRQA-based (JR; left column) and cross-correlation-based analyses (C; right column). Row I: Two phase-coherent Rössler systems. Row II: One phase-coherent

and one funnel regime system. Row III: Two funnel regime systems. For all figures, dashed lines (usually lower) indicate %TDS for uncoupled systems and the solid

lines (usually higher) mark %TDS for systems after coupling is established. The shaded regions correspond to 95% confidence intervals obtained via a bias-corrected

percentile bootstrap with 500 resamples.

Results of the Analyses of the Rössler
System
Example time series of τ

jr
0 and τC0 for a coupling strength of k

= 0.15 from 36 iterations of Rössler systems with both systems
in the phase-coherent regime can be seen in Figure 1. The
effect of the onset of the coupling after 180 s (indicated by the
dashed lines) is apparent, as is a transition to a stable interaction
following the coupling onset.

Figure 2 shows the mean values of %TDS in the last 19

segments of the τ
jr
0 and τC0 time series in the coupled and

uncoupled systems for all parameters; shaded regions correspond
to 95% confidence intervals calculated with a bias-corrected
percentile bootstrap with 500 resamples. There are some notable
differences in the results obtained from the two methods, in that
TDS based on cross-correlation is often slightly more sensitive
to coupling strength, with a steeper response in %TDS as a
function of this parameter in phase-coherent to phase-coherent
and funnel regime to phase-coherent systems (rows I and II in
Figure 2). There is also a higher degree of separation between
these signals in %TDS obtained from cross-correlation compared
to %TDS obtained from JRQA as a function of the detuning
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parameter, ν. However, for all comparisons, the qualitatively
similar response in %TDS for both JRQA-based and cross-
correlation-based approaches is clear.

Interpersonal Dynamics
To test the ability of these methods to detect coupling in
noisy, non-stationary data, we re-evaluated data collected by
Tolston et al. [43]. In that experiment, dyads of randomly
paired individuals were asked to complete visual puzzles by
communicating with each other to uncover differences in their
respective pictures when they could neither see their partner
nor their partner’s picture. The experimental manipulation was
a repeated measures restraint placed on the hand movements of
neither participant, one participant, or both participants. This
resulted in two symmetric conditions in which both participants
were either free to move their hands (free-free; FF) or both had
their hand movements restrained (restrained-restrained; RR),
and one asymmetric condition in which one participant was
free to move his or her hands while the other participant’s
hands were restrained (free-restrained; FR). As expected, Tolston
and colleagues found that the asymmetric condition resulted
in significantly decreased similarities in postural dynamics
measured using cross-recurrence quantification analysis (CRQA)
at the waist, head, and hand, whereas the stability of joint
attention measured using CRQA was highest when both
participants were free to move their hands. However, the
previous study was limited by the requirement of CRQA
that the dimensionality of the phase-spaces of the systems
being compared were identical, preventing comparison between
different modalities (e.g., between gaze and postural dynamics).
In the present analyses, we used the TDS framework to
evaluate the stability of temporal relationships between different
modalities of the participants, including waist, head, hand,
gaze, and speech patterns. Details of the study can be seen in
Tolston et al. [43], but we briefly describe the experimental
procedure below.

The task consisted of finding differences in picture-puzzle
pairs, with each puzzle pair being visually identical except for
10 differences. Participants were able to see one picture from
each pair but were unable to see their partner or their partner’s
complementary picture. For each of their nine trials (3 in each
restraint condition), participants had 190 s to find differences in
their pictures by conversation. Prior to completing any puzzles,
participants were equipped with magnetic motion trackers, head-
mounted eye-trackers, and Bluetooth headphones. Postural data
was sampled from the waist, head, and right hand from each
participant. Pre-processing of the movement and gaze data is
described in Tolston et al. [43]. Information about the pre-
processing of the speech data is presented in Appendix A. For
the present analyses, all data were analyzed at a sampling rate of
30Hz, with a 30 s window and a 3 s advance. After processing
all data, 14 pairs of dyads had full data sets. A variation of
RQA maxline [29], TDSLMAX, was calculated as the longest
stable sequence of τ0. %TDS and TDSLMAX were calculated and
then averaged for each pair in each condition, for a total of 14
observations in each condition. Due to a lognormal distribution,
TDSLMAX was log transformed by adding one and taking the

natural logarithm of the TDSLMAX values. For phase space
reconstruction in support of JRQA [29], delays for the waist,
head, and hand were each set to 63 samples with an embedding
dimension of six. Delays for speech and gaze data were set
to 30 samples, with an embedding dimension of four and six,
respectively. Gaze data were embedded using a multidimensional
method [44, 45], where horizontal and vertical gaze trajectories
were embedded in the same space for a total of 12 dimensions
in the reconstructed phase-space. For all of these analyses, JRQA
was conducted with a fixed number of nearest neighbors set
to 5%.

Surrogate Analyses
To evaluate the degree of interpersonal coupling in the different
conditions, surrogate analyses were conducted for each of the
three conditions by randomly selecting 100 surrogate pairings
between virtual partners in the same condition (i.e., individuals
who participated in the study but did not compete the task
together) and calculating %TDS and TDSLMAX. These 100
values were then compared against the actual pairs using a one-
tailed percentile bootstrap with 5,000 bootstrap samples [46]
testing the null that the mean value of participant data was less
than or equal to the mean value of the surrogate data (α =

0.05). These p-values were corrected using the false discovery
rate correction [47]. Due to variations in network topology as
a function of the similarity threshold, calculations are reported
from the aggregation of a range of this parameter between 0.50
and 15s in increments of 0.50 s.

Results of the Analyses of the Tolston et al.
Interpersonal Data
The number of significant links per condition as a function of1τ0

and evaluation method for %TDS can be seen in Figure 3 and for
TDSLMAX in Figure 4. Summary plots of the mean values for
%TDS and TDSLMAX can be seen in Figure 5.

On average, the density of the network (i.e., the number
of significant links between time series identified by surrogate
analyses) was highest in the FF condition regardless of evaluation
method. Network densities for RR and FR were very similar,
though there is some evidence that coupling in postural
dynamics measured at the waist and hand was higher in
the RR condition relative to FR, which is consistent with
findings using CRQA. Not surprisingly, given the nature of
the task, the most reliable interactions between participants
were found in their speech and gaze dynamics. Investigations
of the network connections showed some differences in the
connectivity patterns identified by JRQA and cross-correlation-
based statistics, though in aggregate, the patterning in network
density as a function of movement constraints were similar
between the two approaches. However, JRQA-based statistics
appeared to have smaller windows of sensitivity over the 1τ0

parameter, while cross-correlation-based approaches were less
affected by variations in 1τ0 . This variation may be a result of
JRQA-based statistics being more sensitive to the task constraints
relative to cross-correlation-based statistics.
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FIGURE 3 | Figures summarizing graph density and topology for interpersonal data calculated using %TDS. Columns correspond to the three levels of hand restraint

placed on the interacting pairs. The first row shows the count of significant links as a function of the TDS similarity threshold (1τ0 ) for both JRQA-based and

cross-correlation-based measures. The second and third row are networks showing the significant links between person one (P1) and person 2 (P2) identified by the

JRQA-based and cross-correlation-based methods. The thickness of the lines in the graphs indicate the proportion of times that link was identified as significant over

all values of 1τ0 .

DISCUSSION

In the current project, we showed how TDS can be extended
using joint-recurrence quantification analysis (JRQA). We
evaluated how TDS metrics obtained with JRQA compare
to those obtained with cross-correlation for a variety of
multivariate systems, including systems of non-linear oscillators
and multivariate behavioral signals measured from dyads
performing a joint problem-solving task. Our findings are
consistent with previous claims regarding the robustness of
the TDS method and show that, despite limitations associated
with standard cross-correlation, cross-correlation in the TDS
framework offers sensitivity on par with a TDS approach that
uses JRQA.

Our findings show that in synthetic systems of non-
linear Rössler oscillators with known parameters and outputs,
even though JRQA was calculated using all dimensions of a
system, cross-correlation provided a qualitatively similar, and
perhaps better, ability to detect coupling. Cross-correlation-
based approaches were more sensitive to coupling strength
when there were larger differences between the systems (e.g.,

one Rössler system was phase-coherent and one was in the
funnel-regime). Though not reported, some of our analyses
indicated that output from both the JRQA and cross-correlation
methods showed dependence on number of samples and window
size in our analyses of the coupled Rössler systems, with
slight advantages evident in either approach depending on
the parameter selection. However, the general finding that
both JRQA and cross-correlation-based approaches to TDS
yield largely comparable results, with cross-correlation-based
approach showing higher overall sensitivity to interactions
between the systems over a range of parameters values, was
consistent across our simulations.

For behavioral systems with unknown parameters and
unknown dimensionality, we again found similarity in the
outputs between JRQA and cross-correlation. Additionally,
our current analyses partially contrast with, and perhaps
complement, those reported in Tolston et al. [43]. The previous
analyses showed that asymmetric restraints on movement
resulted in differences in overall postural dynamics relative to
conditions of symmetric restraint, while our current analyses
indicate a movement restraint placed on either one or both
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FIGURE 4 | Figures summarizing graph density and topology for interpersonal data calculated using TDSLMAX. Columns correspond to the three levels of hand

restraint placed on the interacting pairs. The first row shows the count of significant links as a function of the TDS similarity threshold parameter (1τ0 ) for both

JRQA-based and cross-correlation-based measures. The second and third row are networks showing the significant links between person one (P1) and person 2 (P2)

identified by the JRQA-based and cross-correlation-based methods. The thickness of the lines in the graphs indicate the proportion of times that link was identified as

significant over all values of 1τ0 .

participants in a dyad can result in significantly reduced
interpersonal coupling. We remark that Tolston et al. [43]
found a similar pattern of higher similarity in RR for head and
gaze dynamics, but the general trend was a negative influence
of asymmetry in restraint. We believe these differences can
be attributed to the fact that CRQA (used in [43]) measures
similarity in phase space trajectories and is not sensitive to
temporal coupling, whereas TDS measures temporally related
stability in coupling. Additionally, the low number of significant
links in the interpersonal networks brings to mind the issue
laid out by Shockley et al. [48], namely that there is often
a large degree of variation in the per subject pair levels
of coordination, which can reduce the power of a between-
participants analysis. The surrogate method we employed
here may be limited in a similar way, though the signals
that were most reliably linked, gaze and voice data, are
the ones that would reasonably have the strongest levels of
interpersonal couplings. The similarity in the findings from the
two approaches, combined with some demonstrated instances
of higher sensitivity in systems of non-linear oscillators, makes
the cross-correlation approach somewhat attractive, in that the

JRQA method takes substantially more computational time and
researcher effort than the cross-correlation approach, which
is faster to compute and has fewer parameters compared
to JRQA.

One limitation of the current approach is that it was restricted
to the estimation of bivariate dependencies. Importantly, it
has been documented that networks constructed via bivariate
correlation can result in “transitive closure” [9, 49] in which the
indirectly coupled nodes are identified as having a relationship
and can result in overly dense networks. Moreover, in order to
determine causality, infer directionality of coupling, or rule out
spurious relationships in multivariate systems in which strict
experimental control is limited or impossible, it will be necessary
to extend the current methods to use conditional dependencies
that consider the influences other variables [50]. Work has
already been conducted to extend the RQA framework in this
direction [51, 52] and it would be interesting to combine that
approach with the present one, potentially to identify causal
networks (e.g., [2]).

In addition, though we did not report individual values, we
make note that %TDS and TDSLMAX obtained using JRQA
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FIGURE 5 | Bar graphs summarizing graph density in terms of number of

significant links averaged over all values the TDS similarity threshold

parameter(1τ0 ) for both %TDS (Top) and TDSLMAX (Bottom). Error bars

represent ± 1 standard deviation.

were near ceiling for gaze data, which may be driven by large
similarities in gaze fixation time between participants. Further,
JRQA and cross-correlation-based approaches were capturing
different aspects of gaze coordination; cross-correlation, being
based on spatial variation, was sensitive to location fluctuations
in the gaze plane, while JRQA was sensitive to mutually
recurrent points (i.e., stable gaze fixations). The similarities and
potentially complementary differences of the two approaches
warrant further investigation.

Finally, it is possible that the expected benefits of using
multidimensional data that were not always apparent when
using JRQA to compute TDS may be realized by another non-
linear method, e.g., average mutual information [53]. Another
possibility for future work is that the method may be extended
or modified to look at shifted recurrence times (e.g., as in [32]),
rather than shifted time series. This approach would be more like
a cross-coherence analysis, and some preliminary investigations
conducted by the authors showed this method may be sensitive
to coupling even when there is a large amount of non-stationary
noise added to the system. Further, the current evaluations
of coupled oscillators looked only at the effects of feedback

coupling, but there are other types of coupling configurations,
including linear and non-linear interactions of model terms (i.e.,
[54]). We also note that, in addition to MAXLINE, other metrics
originating in RQA, like mean line length and entropy of line
distributions [29], could also be applied to the TDS framework.
We leave it to future work to continue to explore the strengths
and limitations of these many possibilities.
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APPENDIX A: AUDIO DATA
PRE-PROCESSING

Audio data were collected using Motorola H15 Bluetooth
Headsets worn by each participant. Because both participants
were in the same room when they were being recorded, each
participant’s audio data were at least somewhat contaminated
with the voice of their partner. To address this issue, audio
data were pre-processed using the noise reduction feature of
the audio program Audacity. To do so, the data were imported
into Audacity and a portion of the waveform was selected
where only the partner of the participant whose data was being
analyzed was heard to be speaking clearly for several seconds.
Next, a profile for this contamination was obtained, and the
reduction was applied to the full waveform with the following

parameters: noise reduction (dB) was set to 50, sensitivity was
set to 25, and frequency smoothing was set to 3. Following this
noise reduction, waveform data were aggregated by summation
of the squared amplitudes to a 30 Hz sample rate. These
data were then smoothed using a moving mean filter with a
window size equal to 15 samples (2 Hz). These data were then
standardized to have values between 0 and 1 and were converted
to a binary sequence indicating whether the participant was
talking by thresholding the amplitude time series. Finally, a
moving mode filter with a window size equal to 15 samples
was applied to the thresholded data. This process was repeated
for a range of thresholds for both participants and the set
of values that resulted in the largest negative cross-correlation
between the two binary signals were chosen for each pair
of signals.
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