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Many practical applications involve the resolution of large-size inverse problems, without

providing more than a moderate-size sample to describe the prior probability distribution.

In this situation, additional information must be supplied to augment the effective

dimension of the available sample. This is the role played by covariance localization in the

large-size applications of the ensemble Kalman filter. In this paper, it is suggested that

covariance localization can also be efficiently applied to an approximate variant of the

Metropolis/Hastings algorithm, by modulating the ensemble members by the large-scale

patterns of other members. Modulation is used to design a (global) proposal probability

distribution (i) that can be sampled at a very low cost (proportional to the size of the state

vector, with a small integer coefficient), (ii) that automatically accounts for a localized prior

covariance, and (iii) that leads to an efficient sampler for the augmented prior probability

distribution or for the posterior probability distribution. The resulting algorithm is applied

to an academic example, illustrating (i) the effectiveness of covariance localization,

(ii) the ability of the method to deal with non-local/non-linear observation operators

and non-Gaussian observation errors, (iii) the possibility to deal with non-Gaussian

(even discrete) prior marginal distributions, by including (stochastic) anamorphosis

transformations, (iv) the reliability, resolution and optimality of the updated ensemble,

using probabilistic scores appropriate to a non-Gaussian posterior distribution, and

(v) the scalability of the algorithm as a function of the size of the problem. The

evaluation of the computational complexity of the algorithm suggests that it could

become numerically competitive with local ensemble Kalman filters, even in the absence

of non-local constraints, especially if the localization radius is large. All codes necessary

to reproduce the example application described in this paper are openly available from

github.com/brankart/ensdam.
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1. INTRODUCTION

One possible route to solving large-size inverse problems is to decompose the global problem into
a collection of local problems, with appropriate techniques to make the connection between them.
In the Ensemble Kalman Filter (EnKF, [1]), covariance localization by a local-support correlation
matrix [2] has been the key development that made EnKF applicable to large-size problems inmany
disciplines like meteorology, oceanography or hydrology (e.g., [3–5]). The method ensures that the
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global problem remains correctly formulated, with a valid
global covariance connecting the local problems. In square-
root filters, like the Ensemble Transform Kalman Filter (ETKF,
[6]) or the Singular Evolutive Extended Kalman filter [SEEK,
[7], domain localization [8, 9] is usually applied because
covariances are not explicitly computed in these filters. In this
case, however, no Bayesian interpretation of the global problem
can be provided. An interesting solution to apply covariance
localization to square root filters is to modulate the square-
root of the ensemble covariance by a modal decomposition
of the localizing correlation matrix [10–14]. This produces an
important augmentation of the ensemble size, at the expense
of a substantial increase of the numerical cost [as discussed
in 14]. Despite the cost, Zhu et al. [15] applied this technique
as an ensemble augmentation method to cope with non-local
observations in an oceanographic application of the EnKF.

Nevertheless, if localization is a major asset to solve large-
size problems, it can also become the main drawback of
the algorithm. This usually occurs when important sources
of information cannot be taken into account by the local
problems. In the framework of the ensemble Kalman filters,
specific developments of the localization method have thus
been explored to avoid missing the non-local information. For
instance, Barth et al. [16] introduced modifications to covariance
localization to cope with non-local dynamical constraints on
the state of the system, and Farchi and Bocquet [14] applied
a randomized SVD technique to construct a global augmented
ensemble with localized covariance. Another important issue in
atmospheric or oceanic applications is the multiscale character
of the global correlation structure. A fine localization is needed
to capture the smallest scales, at the price of losing the direct
observation control on the larger scales. Adjustments to standard
localization have thus also been proposed, either by using
different localization windows for different scales [17–20], or
by applying localization after a spectral transformation of the
prior ensemble [21, 22]. These developments still follow the
original idea of covariance localization, which is to transform the
global ensemble covariance so that it can be decomposed into
local pieces.

In this paper, a possible alternative to this route is explored
by noting that the modulation method applied by Bishop
et al. [13] to the ETKF can be used to design a very efficient
(global) proposal probability distribution for an approximate
variant of the Metropolis/Hastings algorithm [see for instance
[23], for a description of the Metropolis/Hastings algorithm].
This proposal distribution automatically accounts for the prior
ensemble covariance, with localization, at a sampling cost that
is only proportional to the size of the state vector (with a small
integer coefficient). Bymoving outside of the Kalman framework,
the method is, in principle, able to deal optimally with non-linear
observation operators and non-Gaussian observation errors. The
main limitation is in the prior distribution, which is assumed
Gaussian, with zero mean and unit variance. A non-linear
transformation (anamorphosis) is thus applied to each state
variable before the observational update of the ensemble to
obtain a Gaussian marginal distribution (with zero mean and
unit variance). What is used from the prior ensemble is thus:

(i) an estimate of the marginal distribution for each state variable
and (ii) the linear correlation structure (with localization)
after transformation (something similar to a rank correlation
between the original variables). In addition, by solving the
problem globally rather than locally, the method should be better
suited to deal with non-local observations, non-local dynamical
constraints or multiscale problems.

The paper is organized as follows. The application example
that is used to illustrate the method is described in section 2.
The anamorphosis transformation that is used to cope with
non-Gaussian (even discrete) marginal distributions is presented
in section 3. The ensemble augmentation approach, based
on the modulation of the prior ensemble, is introduced in
section 4, showing how it can be adapted to fit in the MCMC
algorithm. The observational update of this augmented ensemble
is then discussed in section 5, with special emphasis on the
sensitivity to localization and on the impact of the non-
local/non-linear observations, using probabilistic scores adapted
to the diagnostic of a non-Gaussian problem. Finally, the
computational complexity of the algorithm, which remains a
major concern, is quantified and discussed in section 6.

2. APPLICATION EXAMPLE

An academic application example is used throughout this paper
to illustrate the practical behavior of the algorithms that are
presented. This example is designed to be complex enough to
demonstrate the generality of the method, but simple enough to
make the results easy to display and evaluate.

2.1. Prior Probability Distribution
The target of the inverse problem is to estimate a field on the
surface of a sphere: x(θ ,φ), where θ is the polar angle and φ,
the azimuthal angle, and x can be any variable of interest. The
field x(θ ,φ) is discretized on a regular grid, with δθ = δφ = 2π

Nφ
,

where Nφ is the number of grid points along the equator. The
reference example used in the paper is made with Nφ = 360
(to have a grid resolution of 1◦), but higher resolution grids will
be used in section 6.3 (up to 1/16◦). The size of the discretized
vector x is thus n = Nθ × Nφ , with Nθ = Nφ/2 + 1 (to include
the poles).

The prior probability distribution for x(θ ,φ) is constructed as
follows. We first define the random field z(θ ,φ) by:

z(θ ,φ) =
lmax
∑

l=0

l
∑

m=−l
wlmσlmYlm(θ ,φ) (1)

where Ylm(θ ,φ) is the spherical harmonics of degree l and
order m, σ 2

lm
is the variance of the field along each spherical

harmonics, wlm are N (0, 1) random coefficients, and lmax is the
maximum degree l used to define z. Second, we compute x(θ ,φ)
from z(θ ,φ) by applying the non-linear transformation:

x = max
[

exp(az)− δ, 0
]

(2)

where a and δ are positive parameters. The exponential
transforms the normal z numbers into a lognormal number; the
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shift by δ generates a finite probability to have a negative value;
and this finite probability is then concentrated to zero by the
maximum function.

The spectrum of z(θ ,φ) in the basis of the spherical harmonics
is defined by:

σ 2
lm ∝

1

1+ l2/l2c

(

1−
m

l

)α

with

lmax
∑

l=0

l
∑

m=−l
σ 2
lm = 1 (3)

where lc is the characteristic degree controlling the typical length
scale of the random field and α is the anisotropy parameter
(α = 0 for an isotropic random field). In the reference example,
the parameters are set to lc = 6.4, lmax = 90, α = 2,
δ = 0.8. With the higher resolution grids, lc and lmax are
increased proportionally to Nφ to keep the same ratio between
the typical length scale and the grid resolution (i.e., to increase the
number of degrees of freedom proportionally to the size n of the
state vector).

Figure 1 illustrates 4 vectors x sampled from this prior
probability distribution. The fields are smooth, except along
the borders of the zero areas, inhomogeneous, with a variance
increasing with latitude, and distinctly anisotropic, with larger
correlation length scales in the zonal direction. The field is
positive, with a substantial probability (about 25%) of being
equal to zero. This was important to illustrate the ability of
the method to deal with non-Gaussian marginal probability
distributions, including the case of discontinuous cumulative
distribution functions. This situation is indeed ubiquitous in

geophysical applications as for instance in the estimation of
precipitations, tracer concentrations, sea ice thickness, etc.

In our example, the prior probability distribution for x

is only known through a sample of limited size m. In the
reference example, the sample size is set to m = 100,
but sensitivity experiments are performed with smaller m. In
practical applications, it can indeed be very difficult to produce
a large sample, especially if it is obtained from an expensive
ensemble model simulation.

2.2. Observation System
Three types of observations of x(θ ,φ) are assumed available:

(a) the value of x(θ ,φ) at several locations (θj,φj), j = 1, . . . , p;
(b) the location of the maximum of x(θ ,φ);
(c) the fraction of the surface of the sphere where x(θ ,φ) is equal

to zero.

Observations (a) are local, with a linear observation operator,
while observations in (b) and (c) are non-local, with a non-linear
(even non-differentiable) observation operator. In the example,
they will be used jointly or separately to illustrate the ability of
the method to deal with various types of observations.

Observations (a) are assumed unbiased, with observation
errors following a gamma distribution (to keep observations
positive). The observation error standard deviation is specified
as a constant fraction of the expected value. In the example, this
constant is set to σ̃a = 20%.

Observation (b) is assumed unbiased, with observation
errors following a Gaussian-like distribution on the sphere.

FIGURE 1 | Sample of 4 vectors x from the prior probability distribution.
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In practice, it is generated by sampling a random azimuth for
the perturbation with uniform distribution between 0 and 2π ,
and a random distance from the reference point, using a
χ2 distribution with 2 degrees of freedom for the square of the
distance. The observation error standard deviation is specified as
a fraction of the circumference of the sphere. In the example, it is
set to σ̃b = 5% (which corresponds to an angle of 18◦).

Observation (c) is assumed unbiased, with observation errors
following a beta distribution (to keep observations between 0
and 1). The classic parameters α and β of the beta distribution
are specified in terms of the mean µ = α

α+β and sample size

ν = α + β , so that the observation error variance is equal

to σ 2 = µ(1−µ)
ν+1 , which can be specified by the maximum

standard deviation σ̃c = 1
2
√
ν+1 (occurring if µ = 0.5). In the

example, it is set to σ̃c = 0.1%.
In the application, the observations are simulated from a

reference field xt , hereafter called the true field. This true field is
drawn from the probability distribution defined in section 2.1 (as
the prior ensemble), but this is an independent additional draw,
which is only used to simulate the observations and to evaluate
the final results.

Figure 2 shows the true field xt that is used throughout this
paper, together with the spatial locations of observations (a),
which have been sampled from a uniform density on the sphere.
In the reference example used in the paper, the coverage ratio is
set to ρa = 1/100 (one observation in every 10◦ × 10◦ box at
the equator), which corresponds to a total of 420 observations
on the sphere. The coverage of the local observations is here
kept very sparse to better see the sensitivity of the results to
localization and to the global observations, but experiments will
be performed using denser observation networks (up to 659,839
local observations in the 1/4◦ grid).

3. ENSEMBLE ANAMORPHOSIS

In this paper, a non-linear transformation is applied to all
components of the vector x, so that their marginal distribution
becomes a normalized Gaussian distribution N (0, 1). This

condition on the marginal distribution is indeed a prerequisite to
the application of the ensemble augmentation method and to the
ensemble observational update presented in sections 4 and 5. The
anamorphosis transformation Ai, associated to each variable xi
of the vector x, produces the transformed variable zi = Ai(xi).
By combining these univariate transformations, we can write the
transformed vector: z = A(x).

This section is organized as follows. In subsections 3.1 and 3.2,
the algorithm to estimate the transformationA from the available
ensemble and to apply the transformation is briefly summarized
(see [24] for more details). In subsection 3.3, an extension of the
algorithm is proposed to deal with the problem of discrete events.

3.1. Computation of the Transformation
Our basic assumptions to compute the transformation A are that:
(i) the probability distribution of x is described by an ensemble
of moderate size, so that the transformation A can only be
approximately identified, and (ii) the size of the vector x can be
very large so that the practical algorithm (to compute and apply
A and A−1) must contain as few operations as possible.

Let F(x) be the cumulative distribution function (cdf)
corresponding to the marginal probability distribution of a
variable x of the state vector, and G(z) be the cdf of the target
distribution (the normalized Gaussian distribution in our case).
Then, the forward and backward anamorphosis transformation,
transforming x to z and z to x are given by:

z = G−1
[

F(x)
]

and x = F−1
[

G(z)
]

. (4)

The whole problem thus reduces to estimating F(x) from the
available ensemble.

A simple and numerically efficient solution to this problem
is to describe F(x) by a set of quantiles x̃k of the ensemble,
corresponding to the ranks rk, k = 1, . . . , q [i.e., such that
F(x̃k) = rk], and by linear interpolation between the quantiles.
The transformation functions (corresponding to every variable x
of the state vector) are thus completely described by the quantiles
of the ensemble.

FIGURE 2 | True field xt (Left) and observation coverage (Right).
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3.2. Application of the Transformation
The transformation is then piecewise linear and works by
remapping the quantiles x̃k of the ensemble on the corresponding
quantiles z̃k of the target distribution:

A(x) = z̃k +
z̃k+1 − z̃k

x̃k+1 − x̃k
(x− x̃k) for x ∈ [x̃k, x̃k+1], (5)

A−1(z) = x̃k +
x̃k+1 − x̃k

z̃k+1 − z̃k
(z − z̃k) for z ∈ [z̃k, z̃k+1]. (6)

This transformation is monotonous and bijective between the
intervals [x̃1, x̃q] and [z̃1, z̃q], providing that the quantiles are
all distinct (see section 3.3 for a generalization to non-distinct
quantiles). The direct consequence of these properties is that
anamorphosis transformation preserves the rank of the ensemble
members and thus the rank correlation between variables (see
[24] for more details about the effect of the transformation
on correlations).

In principle, the transformation of x to z also requires
including the backward transformation A−1 in the observation
operator to compute the observation equivalent: y = H

[

A−1(z)
]

,
where H is the observation operator. Since A−1 is non-linear by
construction, this can be a problem if the observational update
is unable to cope with a non-linear observation operator. In this
case, a transformation must also be applied to observations y to
keep a linear relationship between the transformed x and y. In
this paper however, since the method described in section 5 can
cope with a non-linear observation operator, no transformation
of the observations is necessary. This greatly facilitates the
application of anamorphosis transformation, since we will be able
to use untouched observations, with their native non-Gaussian
observation error probability distribution. Anamorphosis is only
applied to the prior ensemble, not to the observations.

3.3. Discrete Events
In many practical applications, there can be problems in which
a finite probability concentrates on some critical value xc of
the state variable. In this case the cdf F(x) is discontinuous
and the standard anamorphosis transformation described by
Equation (5) does not apply.

To generalize the algorithm, we can imagine the discontinuity
in F(x) as the limit of a very steep slope (as illustrated in Figure 3).
As long as there is a slope (left panel), we know which value of the
rank r = F(x) corresponds to every value of x: a small uncertainty
in x just produces a larger uncertainty in r when the slope is
steeper. As soon as the slope becomes a step (right panel), we do
not know anymore which rank r, between rmin and rmax, should
correspond to xc.

The solution is then to make the transformation stochastic
and transform x to a random rank (with uniform distribution)
between rmin and rmax: z ∼ U (rmin, rmax) for x = xc.
In this way, the forward transformation will transform the
marginal distribution of all variables to the target distribution as
required, the discrete events being transformed into a continuous
variable by the stochastic transformation; and the backward
transformation will transform it back to a discrete event, by
transforming all ranks between rmin and rmax to xc.

FIGURE 3 | As long as there is a slope in the cdf (Left), we know which value

of the rank r = F (x) corresponds to every value of x. As soon as the slope

becomes a step at xc (Right), we do not know anymore which rank r,
between rmin and rmax, should correspond to xc.

In the above scheme, it is important that the ranks r
are sampled independently for different members, but not
necessarily for different components xi of x. We have thus
the freedom to introduce spatial correlation in the sampling
of the ranks r. If the transformed ensemble is meant to be
updated with the assumption of joint Gaussianity (as will be
done in section 5), a reasonable option is to avoid destroying
the ensemble correlation structure where part of the members
display the discrete event x = xc. This can be done by using
the same random rank for all variables from the same member.
In this way, decorrelation can only be amplified where members
move from a critical value (x = xc) to a non-critical value
(x 6= xc).

This is illustrated in Figure 4, showing the same 4 members
as in Figure 1 after anamorphosis transformation. The marginal
distributions are approximately Gaussian everywhere; the zero
area is transformed to different values for different members (the
rank is constant for a given member, but not the transformed
value); discontinuities can occur along the border of the zero
areas. The effect of the transformation on the correlation
structure will be discussed later in section 4.1.

4. ENSEMBLE AUGMENTATION

Amajor difficulty with ensemble methods is that large ensembles
are expensive to produce, while the accuracy of the statistics
improves quite slowly with the ensemble size. Methods to
artificially increase the ensemble size at low numerical cost can
thus be very helpful. The approach that is used here to generate
an augmented ensemble is to localize the correlation structure of
the original ensemble using the modulation method described in
Bishop et al. [13]. In this method, ensemble augmentation and
localization are obtained together by computing each member of
the augmented ensemble as the Schur product of one member of
the prior ensemble with one column of the square root (or modal
decomposition) of the localizing correlation matrix.

In the developments below, we will make use of the following
property associated to this method: if x1 and x2 are two
independent zero-mean random vectors with covariance C1

and C2, then the covariance of their Schur product x1 ◦ x2
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FIGURE 4 | Anamorphosis transformation of the 4 vectors x displayed in Figure 1.

is the Schur product of their covariance (C1 ◦ C2). Our plan
is to apply this operation repetitively by computing the Schur
product of one ensemble member with the large-scale patterns of
several other members. In this way, localization will be obtained
implicitly, in the sense that the characteristics of the localizing
correlation matrix will depend on the statistical structure of the
prior ensemble.

In this section and in the rest of the paper, it is assumed
that the prior distribution is Gaussian, with zero mean and unit
variance. This can be obtained by anamorphosis transformation
as explained in the previous section. However, if the prior
distribution is already close enough to being Gaussian, it can be
better not to apply anamorphosis, but a linear transformation
to center and reduce all variables. For this reason and to be
compliant with the standard notation, we will keep using x as the
name of the state vector, even if it corresponds to the transformed
vector z from the previous section.

4.1. Localizing Correlations by Schur
Products With Large-Scale Patterns
Let us suppose that every ensemble member xi, i = 1, . . . ,m

is associated to its corresponding large-scale component x
(j)
i ,

for several truncation wave numbers j = 1, . . . , s, where s is
the number of available large-scale patterns for each ensemble
member. Then, we can construct multiple Schur products like:

x̃π = xα ◦
(

x
(1)
β ◦ . . . ◦ x

(1)
γ

)

◦ . . . ◦
(

x
(s)
ψ ◦ . . . ◦ x

(s)
ω

)

(7)

modulating one member of the original ensemble by the
large-scale pattern of several other members. In computing
this product, it is assumed that the member indices π =
(α,β , . . . γ . . . ψ . . . ω) are all different so that the same member
is never used twice in the same product.

Figure 5 illustrates large-scale patterns corresponding to the
4 transformed members displayed in Figure 4. They have been
obtained by projecting the full-scale fields on the spherical
harmonics, and by keeping only the large-scale components of
the series, up to degree l1 = 6. They are also renormalized
to restore a unit ensemble standard deviation. In our reference
example, only one truncation wave number (corresponding to
degree l1, illustrated in Figure 5) is used (s = 1), and the
associated multiplicity is set to P1 = 4. This means that the
product is obtained by multiplying the original member with
4 large-scale patterns. In our experiments, l1 is thus the only
remaining parameter controlling localization, since s and Pj, j =
1, . . . , s are kept unchanged.

The covariance of x̃π is then:

Cπ =< x̃π x̃
T
π >= C◦

(

C(1) ◦ . . . ◦ C(1)
)

◦. . .◦
(

C(s) ◦ . . . ◦ C(s)
)

(8)
where C is the correlation matrix of the original ensemble,
and the rest of the product is the localizing correlation. One
important condition on the localizing correlation matrix is that
all elements must be non-negative, to avoid changing the sign
of correlation coefficients in C. In Equation (8), this condition is
easily verified by using an even Schur-power for each of the C(j),
j = 1, . . . , s. In this way, by using an even number of vector

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 November 2019 | Volume 5 | Article 58

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Brankart Implicitly Localized MCMC Sampler

FIGURE 5 | Large-scale pattern of the 4 transformed vectors displayed in Figure 4.

in each parenthesis of the product in Equation (7), we can be
sure that we (implicitly) localize the ensemble covariance with
a positive-element correlation matrix.

In Figure 6, this effect is illustrated by explicitly computing
the correlation structure with respect to a reference location
close to the equator in the Eastern Pacific. The first line displays
the correlation C of the original ensemble (after anamorphosis
transformation as displayed in Figure 4), computed with 100
members (left panel) and 500 members (right panel). We see that
the long-range correlation structure is degraded if the ensemble
size is reduced, so that localization is needed; and we note that
the correlation structure remains smooth and regular despite
the stochastic anamorphosis transformation (resulting from the
probability peak at x = 0). The second line (left panel) displays
the correlation C(1) of the corresponding large-scale patterns
(displayed in Figure 5) and (right panel) the fourth Schur power
of C(1), which is used as localizing correlation matrix. We see
that it is everywhere positive (because of the even power), that
the long-range correlations are reduced close to zero (because
of the multiple product of small numbers), and that anisotropy
is automatically taken into account (following the shape of
the large-scale correlation structure). The third line (left panel)
shows the localized correlation, again explicitly computed with
Equation (8), i.e., as the Schur product of the top left and middle
right panels of the figure. We see that localization is effective:
the significant correlations are preserved and the long-range
correlations are reduced close to zero. That the same effect can
be obtained implicitly by ensemble augmentation remains to be
checked (see section 4.2).

From the above discussion, it must be emphasized that the
characteristics of the localizing correlation matrix intimately
depend on the correlation structure of the multiscale prior
ensemble. In this example, localization can be obtained because
the prior ensemble correlations are decreasing with the distance
to non-significant remote correlations, so that they can be
reduced close to zero by P products (providing that P is large
enough), while the local correlations can be preserved by using
large-scale patterns. Such a decrease of the ensemble correlations
with the distance is the very assumption supporting the use of
localization itself, with the justification that it is quite a common
behavior in many applications, but if very substantial remote
correlations exist in the prior ensemble, they can be preserved
by the implicit method that is proposed here, and something
different from localization will be produced.

The key property of Equation (7) for augmenting the original
ensemble is the very large number of vectors x̃π that can be
generated by different combinations of the original members.
With P Schur products (i.e., by combining P large-scale patterns
to one original member), the number of possible combinations is:

Ñ =
m!

(m− P − 1)!
∏

j Pj!
with P ≤ m−1 and

∑

j

Pj = P (9)

wherem is the size of the original ensemble, Pj is the multiplicity

of every scale j = 1, . . . , s in the product, and Ñ is the number
of products that can be generated. For instance, for m = 100,
P = 10 and all Pj (j = 1, . . . , 5) equal to 2, the maximum number
of products that can be generated is as large as 100!/(89! 25) ≃
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FIGURE 6 | Correlation maps with respect to a reference location on the equator in the Eastern Pacific: 100-member prior correlation (top left), 500-member prior

correlation (top right), 100-member correlation for the large-scale patterns (middle left), localizing correlation (middle right), localized correlation (bottom left) and

correlation associated to a 500-member augmented ensemble (bottom right).

1.767 × 1020. The importance of the possibility to generate so
many different products will be discussed later in section 5.1. For
now, it is sufficient to see that, in our simple example, a full rank
augmented ensemble can already be obtained withm = 20, s = 1
and P1 = 4, since, in this case, Ñ = 77520, which is larger than
the size of the state vector: n = 65160. By exploring the state
space by linear combination of these products, we could solve the
inverse problem globally without rank approximation.

4.2. Sampling of the Augmented Ensemble
From the Schur products in Equation (7), members of
the augmented ensemble can then be obtained by random
linear combinations:

xi =
1
√

Ñ

Ñ
∑

K=1
w
(K)
i x̃π(K) (10)

where xπ(K) is the Schur product obtained with
combination π(K) of one original member and several large-

scale patterns, and w
(K)
i are independent random coefficients

with N (0, 1) distribution. The augmented correlation structure
is approximately given by Equation (8), and the marginal
probability distributions are still N (0, 1), at the only condition
that the variance of the xπ(K) is everywhere equal to 1, which
follows directly from Equation (7).

In practice, the sum in Equation (10) is computed iteratively,
as the result of the sequence:

x
(0)
i = 0 ; x

(K+1)
i = αK x

(K)
i + βK w

(K)
i x̃π i(K) (11)

with

αK =
√
K

√
K + 1

and βK =
1

√
K + 1

. (12)
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Equation (11) is exactly equivalent to Equation (10) if Ñ
iterations are performed, except that we introduce an important
modification: instead of browsing successively all possible
combinations π(K), K = 1, . . . , Ñ of the members used in
the Schur product, we draw a random combination π i(K)
from all possibilities at iteration K, and this draw is performed
independently for every member i of the augmented ensemble.
In this way, the augmented members are constructed iteratively
by involving progressively more and more Schur products. The
drawing of independent π i(K) for different members speeds up
the diversity of the members xi in the augmented ensemble, even
after a moderate number of iterations.

Figure 7 illustrates 4 vectors xi from the augmented ensemble,
as obtained after only N = 1000 iterations of Equation (11).
This means that not all possible Schur products are combined
to build each member of the augmented ensemble (since N ≪
Ñ). The vectors are displayed after backward anamorphosis
transformation, so that they can be directly compared to
the members of the original ensemble displayed in Figure 1.
The comparison shows that the shape of the local structures
looks similar in the augmented and original ensemble, but
the large-scale structures that existed in the original ensemble
are no more present in the augmented ensemble, as a result
of localization. The correlation structure of the augmented
ensemble (computed from 500members) is displayed in Figure 6
(bottom right panel). We see that localization is effective, and
very similar to the expected localized correlation computed
with Equation (8) and displayed in the bottom left panel
of the figure. The small remaining difference only results

from the limited size of the augmented ensemble that has
been used.

5. ENSEMBLE OBSERVATIONAL UPDATE

The observational update is based on the Bayes theorem:

pa(x) = p(x|yo) ∼ pb(x) p(yo|x) (13)

where pb(x) is the prior probability distribution for the state of
the system, p(yo|x) is the conditional probability distribution for
the observations yo given the state x of the system, and pa(x) is
the posterior probability distribution for the state of the system,
conditioned to observations yo.

In the following, it is assumed that pb(x) is Gaussian, with
N (0, 1) marginal distributions, and with a correlation structure
described by the augmented ensemble (as described in the
previous section); but no assumption ismade on p(yo|x), and thus
on pa(x). The objective of the observational update is to produce
a sample of pa(x).

5.1. Ensemble MCMC Algorithm
Equation (11) defines the transition probability

distribution q(x
(K+1)
i |x(K)i ) of the MCMC chains, which rules the

probability of transitioning from state x
(K)
i to state x

(K+1)
i . From

this definition, the expected value of x
(K+1)
i is set to αK x

(K)
i , and

the probability of the random perturbation is everywhere zero,
except in the directions of the Ñ Schur products xπ . In these

FIGURE 7 | Sample of 4 vectors from the augmented ensemble.
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directions, the probability distribution is a univariate Gaussian,
with standard deviation βK (times the Euclidian norm of the
Schur product). The transition probability distribution is thus
not a regular n-dimensional probability distribution: it is made
of a large number of one-dimensional distributions in many
possible directions.

To modify the probability distribution sampled by a Markov
chain, it is possible to transform the transition probability by

introducing an acceptance probability θ(x
(K+1)
i , x

(K)
i ):

q′(x(K+1)i |x(K)i ) = q(x
(K+1)
i |x(K)i ) θ(x

(K+1)
i , x

(K)
i ) (14)

where q is now the proposal probability distribution, and
q′, the transformed transition probability distribution. For
instance, with any regular n-dimensional proposal probability
distribution, we could obtain a Metropolis/Hastings algorithm to
sample pb(x), by using the acceptance probability:

θb(x
(K+1)
i , x

(K)
i ) = min

{

pb(x
(K+1)
i ) q(x

(K)
i |x

(K+1)
i )

pb(x
(K)
i ) q(x

(K+1)
i |x(K)i )

, 1

}

. (15)

This choice would verify the local balance condition
q′(x′|x) pb(x) = q′(x|x′) pb(x′), which would ascertain
the convergence of the chains toward a sample of pb(x).
On the contrary, with the singular transition probability
in Equation (11), the local balance condition cannot be

strictly verified, because there is no return path from x
(K+1)
i

to x
(K)
i . There is thus no guarantee that the Markov chains

in Equation (11) rigorously converge toward a sample of the
n-dimensional distribution pb(x), or even that they converge
toward a stationary distribution.

Despite of this, we here make the approximation that the
local balance condition is verified in Equation (11). This means
assuming that the contraction by the factor αK together with
the perturbation βKw

(K) along a random Schur product xπ is
in approximate equilibrium with pb(x) (locally in K). Thus,
even if the asymptotic probability distribution sampled by the
ensemble of Markov chains is not perfectly stationary, the
fluctuations around pb(x) are assumed negligible. In other words,
what we do is to replace the classic multivariate n-dimensional
proposal distribution (which would ensure local balance) by a
large number of one-dimensional distributions (in many possible
directions) and assume that this is not affecting too much the
local balance condition. The accuracy of this approximation is
likely to depend on the ability of the Ñ directions of perturbations
to provide an appropriate pseudo-random sampling of the n-
dimensional state space. For example, in our application, with
m = 100 and P = 4, the number of sampling directions is
Ñ ≃ 3.76 × 108, which means that there are about 5,800 times
more sampling directions than dimensions. This gives confidence
that the approximation should be acceptable, even if further work
is certainly needed to evaluate the quality of this approximation
as a function of Ñ, and thus as a function of P.

With this assumption, it is then very easy to modify the
Markov chains in Equation (11) to sample pa(x) rather than pb(x)
using the same argument as in the Metropolis/Hastings

algorithm. To satisfy the modified local balance condition
q′(x′|x) pa(x) = q′(x|x′) pa(x′), we just need to introduce the
acceptance probability:

θa(x
(K+1)
i , x

(K)
i ) = min

{

p(yo|x(K+1)i )

p(yo|x(K)i )
, 1

}

(16)

accounting for the modification of the observation likelihood,
according to Equation (13). Draws increasing the observation
likelihood (θa = 1) are always accepted, while draws
decreasing the observation likelihood are only accepted with
probability θa < 1. With this acceptance probability, we
expect that the modified transition probability is in local balance
with pa(x), at the same level of approximation as the original
transition probability with pb(x).

In practice, to compute the acceptance probability θa, we
introduce the observation cost function:

Jo(x) = − log p(yo|x) (17)

so that,

θa = min
[

exp(δJo), 1
]

with δJo = Jo(x(K+1))− Jo(x(K))
(18)

where δJo is the variation of the cost function resulting from the
perturbation of x(K). In our example, the cost function is the sum
of the contributions from the 3 types of observations (defined in
section 2.2):

Jo = Joa + Job + Joc (19)

where,

Joa = −
p
∑

j=1
log p

{

yoa,j |Ha,j[A
−1(x)]

}

(20)

Job = − log p
{

yob |Hb[A
−1(x)]

}

(21)

Joc = − log p
{

yoc |Hc[A
−1(x)]

}

(22)

correspond, respectively, to the gamma, normal and beta
distributions associated to observations (a), (b) and (c). In
the computation of Jo, inverse anamorphosis must be applied
to x to go back to the original variables before applying the
observation operators Ha,j, Hb, Hc corresponding to the 3 types
of observation.

Figure 8 illustrates 4 members from the updated ensemble,
as obtained (after N = 106 accepted draws) by introducing the
acceptance probability (18) in the iteration of Equation (11).
The vectors are displayed after backward anamorphosis
transformation, so that they can be directly compared to the
members of the prior ensemble (in Figure 1), to the members of
the augmented ensemble (in Figure 7), and to the true state (in
Figure 2). The comparison suggests that (i) the local correlation
structure is similar in the prior and posterior ensemble (which
indicates that it has been correctly used to fill the gap between
observations), (ii) all members of the posterior ensemble have
gained close similarity to the true state, (iii) the large-scale
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FIGURE 8 | Sample of 4 vectors x from the updated ensemble.

patterns of the true state are even quite adequately retrieved
from the observation network (despite localization), (iv) the
information brought by the observations has been sufficient
to strongly reduce the spread of the posterior ensemble (as
compared to the prior ensemble), (v) a significant posterior
uncertainty remains, which needs to be quantitatively evaluated
(see next subsection).

Anticipating the final summary of the algorithm given in
section 6.1, it must already be emphasized that the only inputs of
the algorithm are: (i) the multiscale transformed prior ensemble
(illustrated in Figures 4, 5), and (ii) the observations (with their
associated error distributions). No other intermediate results, like
the Schur products or the augmented ensemblemembers, need to
be precomputed and stored. The posterior ensemble illustrated in
Figure 8 is the direct result of the application of iteration (11),
using Equation (7) to sample and compute a Schur product
(from the multiscale prior ensemble) and Equations (17–20) to
compute the acceptance probability (from the observations and
their associated error distributions).

5.2. Evaluation of the Results
The standard protocol to evaluate the performance of ensemble
simulations is to measure the reliability and the resolution of the
ensemble using verification data [25, 26]. In our example, the true
field xt (displayed in Figure 2) will be used as verification data.
Reliability is then a measure of the consistency of the ensemble
with the true field xt . By construction, the prior ensemble is
perfectly reliable, since xt is drawn from the same probability
distribution. Resolution is a measure of the accuracy of the

ensemble, or the amount of information that it provides about the
true field. In our example, the prior ensemble does not provide
much useful information about the true state; the resolution is
thus poor.What is expected from the observational update is thus
that the resolution can be improved (by the information brought
by the observations), without degrading reliability.

In this paper, reliability and resolution will be measured
using the continuous rank probability score (CRPS), following
the decomposition of Hersbach [27]. Figure 9 (left and middle
panels, red curve) shows for instance the evolution of the
reliability and resolution of the updated ensemble as a function
of the iteration index K in the Markov chains. From this
figure, we see that (i) reliability is quickly obtained (after <100
iterations) and then deteriorates to a maximum (at about the
same level of reliability as the prior ensemble) before improving
slowly, and (ii) resolution steadily improves from the beginning
to the end. This means that the ensemble spread is steadily
reduced, but remains always sufficient to maintain consistency
with the true state. The steady improvement of the solution (after
reliability has reached its maximum) means that the intermediate
ensembles (obtained before convergence, maybe after a few
thousand iterations in this example), can be viewed as valuable
approximations which can be produced and delivered more
quickly than the optimal solution.

The above scores tell us how much the updated ensemble has
improved as compared to the prior ensemble, but they do not tell
us if we made the best possible use of the available observations.
Is the updated ensemble close enough to observations to be
consistent with the probability distribution of observation errors?
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FIGURE 9 | Reliability (Left), resolution (Middle) and optimality (Right) scores as a function of the number of accepted iterations. The scores are shown for the

solutions obtained without localization (black curve), with optimal localization (l1 = 6, red curve), with not enough localization (l1 = 1, blue curve), and with too much

localization (l1 = 64, green curve). They can be compared to the score of the prior ensemble (thick dashed horizontal line).

To evaluate this, we use the optimality score proposed in the
Appendix. In short, this score is obtained by computing the
rank roij of every observation yoj , j = 1, . . . , p in the probability

distribution for observation errors p(yoj |xi), conditioned on every

member xi, i = 1, . . . ,m of the ensemble. If optimality is
achieved, this rank is uniformly distributed between 0 and 1.
To obtain a single score, we transform this uniform number
into a N (0, 1) number, and take the mean square, according
to Equation (A7). This defines the optimality score, which is
expected to be equal to 1 (for p→∞ andm→∞).

Figure 9 (right panel) shows the evolution of this optimality
score as a function of the iteration index K in the Markov
chains. From this figure, we see that the score steadily improves
from the beginning to the end, to reach a value that is close
to 1 at convergence. This means that the updated ensemble
is progressively moving close to the observations, but remains
far enough at the end to be consistent with the probability
distribution of observation errors.

The ensemble scores described above illustrate the steady
improvement of the solution with the number of iterations.
A key element of the algorithm is then to decide how many
iterations to perform before stopping. This convergence criterion
is application dependent and must be considered as an additional
input of the algorithm (supplied by the user). In our example, the
optimality score could be used to check convergence, because it is
the main property of the method that we want to ascertain (and
because the other scores defined above could not be used since
they are based on the true field). In practice, the Markov chains
could be stopped when the optimality score is below a given level
or when its variation with K is below a prescribed tolerance.

5.3. Sensitivity to Localization and
Ensemble Size
The only free parameters of the algorithm are the parameters
controlling localization (through ensemble augmentation with
Schur products). These parameters are: (i) the operators that are
applied to obtain each scale of the multiscale ensemble from

the original ensemble, and (ii) the number of times that each
scale of the multiscale ensemble is used in the computation of
the Schur product. In our example, only one additional scale
is included in the multiscale ensemble, and it is used 4 times
in the computation of the Schur products, so that there is only
one remaining free parameter: the maximum degree l1 that has
been used to obtain the large-scale patterns (in Figure 5) from
the original ensemble (in Figure 1). In the results discussed in
sections 5.1 and 5.2, we used the value of l1 for which the best
scores have been obtained, but the quality of the results is very
sensitive to l1. The optimal tuning of the localization parameters
is thus a very important problem.

First, we examine how the system behaves if the parameter l1
is moved away from its optimal value. In Figure 9, the blue curve
corresponds to less localization (larger l1) and the green curve, to
more localization (smaller l1). In both cases, reliability is lost and
resolution is worse. With not enough localization, the optimality
score remains well above 1, which means that the updated
members are unable to move close enough to the observations:
the constraint imposed by the prior distribution is too strong,
more localization is thus needed. With too much localization, the
initial decrease of the optimality score is slower, because more
degrees of freedom need to be adjusted to observations, but on
the long run, the solution is moving closer to the observations.
However, this is done at the price of reliability and resolution:
less localization would improve the solution.

Second, we examine the variations of the scores at
convergence, as a function of the localization parameter (l1)
and the ensemble size (m). In Figure 10, the variations of the
final scores as a function of l1 can be interpreted as explained
above. In this figure, the red line corresponds to the nominal
ensemble size (m = 100, used in all figures above), and the blue
line corresponds to a smaller ensemble size (m = 50). With a
smaller ensemble size, the optimal value of l1 is slightly larger,
since there are more non-significant correlations to eliminate
by localization. The resolution and reliability are also worse,
since there is less meaningful information coming from the
augmented ensemble.
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5.4. Impact of the Non-local/Non-linear
Observations
To illustrate the impact of observing the location of the
maximum of the field (observation yo

b
), Figure 11 shows the

ensemble distribution for the location of the maximum, as
obtained (a) from the prior ensemble (top left panel), (b) from
the updated ensemble using the local observations only (top right
panel), (c) from the updated ensemble using all observations
(bottom left panel), and (d) from the updated ensemble using
observation yo

b
only (bottom right panel). In the prior ensemble,

the probability to find the maximum is uniform in longitude,
and increases with latitude (as a result of the increase of the

standard deviation with latitude). With the local observations

only, the uncertainty in the location of the maximum is already

substantially reduced, but the posterior probability is still splitted
into several distinct areas, which correspond to the areas where

the true field is large, and between which the algorithm can
hesitate in placing the maximum, if the local observation system

is not dense enough.With all observations, most of the remaining
uncertainty in the location of the maximum has been canceled
(except in 3 or 4 members), which means that the constraint
applied by the observation yo

b
has been taken into account by

the algorithm. With observation yo
b
only, the posterior ensemble

displays a wide variety of fields (very much like the prior

FIGURE 10 | Final reliability (Left), resolution (Middle), and optimality (Right) scores as a function of localization degree l1. The red line corresponds to the nominal

ensemble size (m = 100, used in all figures above), and the blue line, to a smaller ensemble size (m = 50).

FIGURE 11 | Distribution of the location of the maximum, as obtained: from the prior ensemble (top left), from the updated ensemble using the local observations

only (top right), from the updated ensemble using all observations (bottom left), and from the updated ensemble using observation yob only (bottom right).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 November 2019 | Volume 5 | Article 58

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Brankart Implicitly Localized MCMC Sampler

ensemble, since yo
b
is not very informative on the structure of

the field), but all with their location of the maximum close to the
observed location.

To illustrate the impact of observing the fraction of the sphere
where the field is equal to zero (observation yoc ), Figure 12
shows scatterplots of this fraction, as obtained (a) from the prior
ensemble (top left panel), (b) from the updated ensemble using
the local observations only (top right panel), (c) from the updated
ensemble using all observations (bottom left panel), and (d) from
the updated ensemble using observation yoc only (bottom right
panel). In this figure, we observe the same kind of behavior that
was observed in Figure 11 for the location of the maximum: a
large prior uncertainty, which is already substantially reduced
by the local observations, and which is almost canceled out by
the direct observation of yoc (alone or together with all other
observations). In this case, however, the verification of the global
constraint on the zero surface (x-axis) does not mean that it is
locally consistent with the true field (y-axis). This depends on the
local observations; but we can see that the global constraint also
helps improving the local consistency.

These results suggest that the algorithm was able to
deal adequately with the nonlocal/nonlinear/nondifferentiable
observations yo

b
and yoc . This was done by using statistics from

a moderate size ensemble, complemented by a parameterized
localization of the ensemble correlation structure. To cope
with non-local observation operators, the problem is solved
globally with implicit localization. To cope with non-linear/non-
differentiable observation operators, the conditioning of the prior
ensemble to the observations is performed using an ensemble
of MCMC chains converging toward a sample of the posterior
probability distribution.

6. COMPUTATIONAL COMPLEXITY

This last section is dedicated to evaluating the numerical
cost of the algorithm as a function of the dimension of
the problem. This requires providing a final summary of the
algorithm (in section 6.1), from which computational complexity
formulas can be derived (in section 6.2). Lastly, scalability
experiments are performed to evaluate the performance of
the method as a function of the size of the problem
(in section 6.3).

6.1. Summary of the Algorithm
The overall algorithm can be splitted into 3 phases:
preprocessing, iteration of the Markov chains, postprocessing:

1. Preprocessing involves:

(a) Identification of the anamorphosis transformation
functions:

for all (state variables: j = 1, . . . , n) do
compute the quantiles of the prior ensemble qjl, l =
1, . . . , q
store the quantiles (defining transformations Aj

and A−1j )
end for

FIGURE 12 | Distribution of the fraction of the sphere where the field is equal

to zero (x-axis) and where both the field and the true field are equal to zero

(y-axis), as obtained: from the prior ensemble (top left), from the

updated ensemble using the local observations only (top right), from the

updated ensemble using all observations (bottom left), and from the updated

ensemble using observation yoc only (bottom right).

(b) Anamorphosis of the prior ensemble:

for all (state variables: j = 1, . . . , n) do
for all (ensemble members: i = 1, . . . ,m) do
compute transformed variable xij ← Aj(xij)

end for

end for

(c) Scale separation in the prior ensemble:

for all (scales: σ = 1, . . . , s) do
for all (ensemble members: i = 1, . . . ,m) do

compute large-scale pattern x
(σ )
i corresponding to xi

renormalize x
(σ )
i to restore a unit ensemble standard

deviation
end for

end for

2. For each iteration of the Markov chain (K = 1, . . . ,N):

(a) Generate the random parameters required to compute
perturbations:

for all (ensemble members: i = 1, . . . ,m) do

draw new π
(K)
i and w

(K)
i

if (parallel execution) then

broadcast π
(K)
i and w

(K)
i from one processor to all

others
end if

end for

(b) Compute and apply ensemble perturbations:

for all (observed variables: j) do
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for all (ensemble members: i = 1, . . . ,m) do

get member index α from π
(K)
i

initialize the product: x̃ij ← xαj
for all (products: k = 1, . . . , P with scale σ (k)) do
get member index α to use in the product from

π
(K)
i

compute the product: x̃ij ← x̃ij × x
(σ )
αj

end for

apply perturbation: x
(K+1)
ij ← αKx

(K)
ij + βKw

(K)
i x̃ij

end for

end for

(c) Compute the observation cost function Jo:

for all (ensemble members: i = 1, . . . ,m) do
for all (observed variables) do
apply backward anamorphosis

end for

for all (observations: k = 1, . . . , p) do
evaluate contribution to cost function
add contribution to Jo

end for

if (parallel execution) then
sum contributions to Jo from all processors

end if

end for

(d) Check if the perturbation is accepted:

compute acceptance probability θa

draw decision from acceptance probability
if (parallel execution) then
broadcast decision from one processor to all others

end if

if (accepted) then
for all (non-observed variables) do

compute the corresponding product (using π
(K)
i )

apply the corresponding perturbation (using w
(K)
i )

end for

go to iteration K + 1
else

iterate steps (a), (b), (c), (d) once more
end if

3. Postprocessing involves:

(a) Backward anamorphosis of the posterior ensemble:

for all (state variables: j = 1, . . . , n) do
for all (ensemble members: i = 1, . . . ,m) do
compute backward transformed variable xij ←
A−1j (xij)

end for

end for

One of the most salient feature of this algorithm is that
most operations are performed independently for every state
variable j = 1, . . . , n. The main exception is in step 1c (in
the preprocessing): scale separation is the only step of the
algorithm where the spatial location of the variables is taken into
account and from which localization is subsequently obtained.

Everywhere else, there is no direct coupling of the computations
performed for two different state variables.

On the other hand, in step 2c, in the loop over observations
(k = 1, . . . , p), the algorithm is computing Jo as the sum
of contributions from every observations. This amounts to
assuming that observation errors are independent. This is here
needed to make the algorithm efficient enough, but solutions
exist to relax this assumption (see conclusions).

With these two features (independence of the computations
for every variable and every observation), the parallelization
of the algorithm on a large number of processors is both
very easy and very efficient. Each processor has only to deal
with a small segment of the state vector and a small segment
of the observation vector, and there need not be any special
connections between the state variables and the observations that
are treated by a given processor. Interactions between processors
only involve:

• the broadcasting of the random parameters π
(K)
i and w

(K)
i ,

• the summing up of the contributions to the cost function Jo,
• the broadcasting of the acceptance decision,

and, in the presence of global observations:

• the exchange of the information required to apply the global
observation operator.

6.2. Dependence Upon Problem
Dimensions
If the number of iterations N is large, the overall cost of
the algorithm is dominated by steps 2b, 2c and 2d. Their
computational complexity (leading behavior for large size
problems) can be estimated as follows:

C2b ∼ νNnhmP, C2c ∼ νNmCJ , C2d ∼ N(n− nh)mP
(23)

where N is the number of iterations (i.e., the number of accepted
draws), νN is the total number of draws (i.e., including the
rejected draws), n is the number of state variables, nh is the
number of state variables involved in the observation operator,
m is the ensemble size, P is the number of Schur products, and
CJ is the cost associated to the evaluation of the cost function Jo

(including the backward anamorphosis transformation). In the
case of local observations, CJ is proportional to the number p of
local observations: CJ ∼ pQ, whereQ is the cost of the evaluation
of Jo for one single observation.

To evaluate the complexity leading behavior C of the overall
algorithm, three possibilities can be distinguished:

1. There are only local observations (nh = p):

C ∼ νNmp (P + Q). (24)

If P and Q are of order 1, the cost C is then a moderate factor
times νNmp. It is thus linear in m and p, but depends on the
ability to keep νN inside reasonable bounds.
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2. There are global observations, i.e., all state variables are
necessary to compute the cost function (nh = n):

C ∼ νNmnP + νNmCJ . (25)

If the second term (CJ = pQ + C
glob
J ) is negligible (as in our

example), the cost is then proportional tom and n (rather than
m and p).

3. There are no global observations, many non-observed
variables and/or very few rejected draws (so that νnh < n).
In this case, the cost of step 2d can become dominant:

C ∼ NnmP. (26)

In good approximation, the overall cost C of the algorithm thus
depends on the size of the problem (proportional tomp in case 1
or to mn in cases 2 and 3) and the number of iterations or draws
that are necessary to reach the solution (νN in cases 1 and 2 or N
in case 3).

The linearity of the cost in m and p or in m and n is the
key feature of this algorithm. This is not straightforward to
obtain because the probability distribution to sample must be
constrained by the covariance structure of the prior ensemble,
with appropriate localization. In such a situation, the classic
approach to generate perturbations with an adequate correlation
structure is to compute linear combinations of ensemble
members and to apply localization operators. In the context of
an MCMC sampling algorithm, this would make the sampling of
the proposal distribution of the algorithm much too expensive to
be applicable to large-size problems. Conversely, the use of a non-
regular proposal distribution that can be sampled by computing
the Schur product of P vectors (P≪m) is the approximation that
reduces the cost of the sampling to Pp or Pn (i.e., independent
of m and of the localization scale). This simple scheme accounts
for the structure of the prior probability distribution (i.e., the
ensemble covariance, with localization), at a cost that is similar
to the cost of the evaluation of the observation cost function for
local observations (a factor P against a factorQ). The cost of each
iteration is thus made about as small as it can be.

As a comparison, the computational complexity (leading
behavior for large size problems) of the Local Ensemble
Transform Kalman filter (LETKF, with domain localization,
or LETKFm, with modulation to approximate covariance
localization), and of the Local Ensemble Kalman filter (LEnKF,
with covariance localization) can be written:

CLETKF ∼ m2pd, CLETKFm ∼ m2pdρ2a , CLEnKF ∼ m2pdρ2o
(27)

where m is the ensemble size, p is the total number of
observations, d is the average number of local domains in which
each observation is used, ρa is the ensemble augmentation ratio
(resulting frommodulation), and ρo is the root mean square ratio
between the number of observations used in every local domain
and the ensemble size. These complexity formulas stem from
the assumptions that, in each local domain, the leading cost of
the ETKF is proportional to the number of observations times

the square of the ensemble size (to obtain the transformation
matrix), and the leading cost of the EnKF is proportional to the
cube of the number of observations (to perform the inversion in
the observation space).

To compare with the MCMC sampler, in the case of local
observations only, with complexity (24), we compute the number
of iterations than could be performed to reach the same cost as
each of these algorithm:

NLETKF ∼
md

ν(P + Q)
, NLETKFm ∼

mdρ2a
ν(P + Q)

,

NLEnKF ∼
mdρ2o
ν(P + Q)

. (28)

For instance, with the following numbers: m ∼ 100, d ∼ 10000
(similar to the localization used in our example application),
ν ∼ 10 (about the ratio obtained in our application when there
are many observations, see Table 1), P + Q ∼ 10 (assuming
Gaussian observation errors, as in the Kalman filters, so that Q is
kept small), ρa ∼ 10 (a modest augmentation ratio) and ρo ∼ 10
(only 10 times more observations than in our reference example,
which was poor in local observations), we obtain:

NLETKF ∼ 104, NLETKFm ∼ 106, NLEnKF ∼ 106. (29)

The question of the cost then depends on the number of iterations
that is necessary to reach a similar performance, in terms of
reliability, resolution and optimality. This is likely to be very
dependent on the specificities of every particular application. For
instance, the number of iterations required is certainly much
smaller if the prior ensemble is already quite consistent with
the observations (as in a warmed up ensemble data assimilation
system), as compared to our example application, in which
the prior ensemble is very uninformative. From the above
formulas, we can also see that the cost of traditional localization
is proportional to the number of times (d) each observation
is used, and thus to the square of the localization radius (in
two dimensions), whereas in the MCMC sampler, the cost of
localization is independent of the localization radius. TheMCMC
sampler is thus probably less efficient if the decorrelation length
scales are small and if the observations can only produce a local
effect, but it can also be viewed as a possible option to apply
covariance localization at a lesser cost to problems that are more
global and that require larger localization scales.

6.3. Scalability Experiments
Tables 1, 2 summarize the result of scalability experiments that
have been performed by varying the number of dimensions
(in Table 1) and the number of observations (in Table 2). The
number of dimensions is increased by refining the resolution of
the discretization grid (from 1◦ to 1/2◦, 1/4◦, 1/8◦, and 1/16◦),
and by decreasing all length scales proportionally (i.e., the
characteristic length scale of the random field 1/lc and the
localization length scale 1/l1). The observation coverage is
increased from 1 to 2% between the 1/2◦ and the 1/4◦ grids
for technical reasons (to be sure to have at least one observation
associated to the subdomain of each processor). The ensemble
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TABLE 1 | Dependence of the solution on the size of the problem.

Grid resolution 1◦ 1/2◦ 1/4◦ 1/8◦ 1/16◦

Dimensions (n) 64,800 259,200 1,036,800 4,147,200 16,588,800

Observation coverage 1% 1% 2% 2% 2%

Number of

observations (p)
420 1,683 13,151 52,799 211,687

Ensemble size (m) 100 100 100 100 50

Characteristic scale (lc) 6.4 12.8 25.6 51.2 102.4

Localization scale (l1) 6 12 24 48 96

Results with global observations (N = 105)

Reliability (×10−3) 2.01 4.14 14.8 13.3 7.86

Resolution (×10−3) 66.9 62.3 71.5 71.7 76.2

Optimality 1.01 1.07 1.50 1.83 2.17

Rejection factor (ν) 1.14 1.34 4.80 9.95 9.05

Number of processors

used

64 256 1024 2048 2048

Clocktime 24:14 55:41 3:36:07 10:21:36 13:36:49

Results without global observations (N = 105)

Reliability (×10−3) 1.64 2.54 15.1 14.1 8.03

Resolution (×10−3) 69.0 63.7 73.8 73.0 76.4

Optimality 0.92 0.99 1.51 1.83 2.17

Rejection factor (ν) 1.15 1.39 4.98 9.98 9.04

Number of processors

used

64 256 1024 2048 2048

Clocktime 7:58 12:20 1:17:18 3:29:48 2:25:06

TABLE 2 | Dependence of the solution on observation coverage.

Observation

coverage

1/16 1/8 1/4 1/2 90%

Number of

observations (p)
41,181 82,403 164,789 329,397 659,839

Reliability (×10−3) 13.5 12.4 11.5 11.0 10.6

Resolution (×10−3) 64.8 60.9 58.6 57.1 56.4

Optimality 1.84 1.89 1.92 1.93 1.93

Rejection factor (ν) 11.56 13.65 16.20 18.71 15.32

Clocktime 1:32:11 3:27:44 2:52:38 5:20:30 5:33:28

The following parameters are kept constant: grid resolution (1/4◦), ensemble size (m =
100), number of processors (2,048), number of iterations (5×104), no global observations.

size is decreased from 100 to 50 members between the 1/8◦ and
the 1/16◦ grids to reduce the memory requirement. The impact
of the number of observations (in Table 2) is studied using
the 1/4◦ grid, without global observations and with a reduced
number of iterations (5× 104 instead of 105).

Visually, the results of all these experiments look similar to
what is shown in this paper for the 1◦ grid. Only the scale
is different and there is thus a lot more structures on the
whole sphere, but the spread and structure of the prior and
updated ensembles as well as the closeness between the posterior
members and the true field look similar. However, looking
at the quantitative scores (reliability, resolution, optimality),
we see that the solution is generally worsening as the size

of the problem increases. The optimality score, in particular,
indicates that the updated ensemble is further away from the
observations (up to 2.17 times the observation error variance for
the 1/16◦ experiment, which corresponds to an rms difference
with observations about 50% too large). The reason for this is
certainly that more iterations are needed to reach convergence
in problems that have more degrees of freedom that can be
controlled by the available observations. In this case, this has no
obvious effect on the visual evaluation of the solution because
the improvement of the resolution score remains quite good
whatever the grid resolution, from about 0.13 for the prior
ensemble (for all grids) to about 0.07 for the updated ensemble
(from about 0.065 for the coarse grids to about 0.075 for the fine
grids). This analysis of the scores is confirmed in Table 2, where
the reliability and resolution scores are steadily improving using
more and more observations (for a given number of iterations),
while optimality is more and more difficult to achieve.

Similarity, for the global constraints, the results of the
experiments show that the control of the position of the
maximum is still effective at all grid resolution, even if, for the
finest grids (1/4◦, 1/8◦, and 1/16◦), the residual error becomes
progressively too large as compared to observation error. On the
contrary, the control of the surface where the field is equal to zero
remains good for the coarse grids (1◦ and 1/2◦), quite effective on
the 1/4◦ grid, but is suddenly completely lost in the finest grids
(1/8◦ and 1/16◦), probably because the solution is still too far
from convergence.

Clocktimes provided in the tables are only indicative of the
numerical cost because they somehow depend on the changing
behavior of the computer, and because these experiments are not
intended to provide an accurate measure of the computational
scalability of the algorithm. In principle, according to the
complexity formulas, the cost should be proportional to the
product of p, m and ν, divided by the number of processors
(which are the only relevant parameters varying in these
experiments). As a departure to this rule, we observe in the
tables that the clocktime also decreases with the number of
observations per processor, which suggests that the cost of
communications (performed for each of the νNm evaluations of
the cost function) is here non-negligible. It must also be noted
that these experiments involved the non-Gaussian features of
the algorithm (non-Gaussian observation error and backward
anamorphosis transformation in the observation operator),
which can lead to a cost one order of magnitude larger, as
compared to Gaussian problems (because of the larger Q factor
in the complexity formulas).

Overall, what we can conclude is that the number of
iterations N required to reach convergence and the rejection
factor ν are growing with the size of the problem, when a lot of
information must be extracted from the observations. This can
be traced back to the Markov chains in Equation (11), which
are very well suited to sample the prior distribution (ν = 1,
small N), but less and less efficient if the posterior distribution
is more and more different from the prior distribution. One
possible approach to reduce this difficulty could thus be to
split the observation vector into pieces (assuming independent
observation errors), and apply the whole algorithm (including
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preprocessing and postprocessing, as explained in section 6.1)
serially to each piece of the observation vector. In this way, the
information gain at each step would be smaller, and the efficiency
of the overall algorithm could be improved.

7. CONCLUSIONS

In this paper, an approximate variant of the Metropolis/Hastings
algorithm has been proposed to sample the posterior probability
distribution of a Bayesian inverse problem. It was thought
as a possible alternative to the ensemble observational update
that is applied in local ensemble Kalman filters, but the range
of possible applications may be wider. The main assumption
of the algorithm is in the shape of the prior probability
distribution, which is assumed jointly Gaussian (possibly after
anamorphosis transformation accounting for non-Gaussian
marginal distributions). As compared to more general methods
(like particle filters), this is the price to pay to make the method
more efficient and less demanding in terms of ensemble size. As
compared to less general methods (like localized Kalman filters),
the main benefit is that no assumption is made on the posterior
distribution, so that non-linear data constraints are possible. The
method also offers the following possibilities or perspectives,
which could not be discussed in this paper.

7.1. Multivariate State Vector
In principle, the method is directly generalizable to problems
involving several variables, spanning several dimensions,
including time, even if this should be verified in practice
(especially if anamorphosis is applied). Localization can
indeed be applied (or not) along each dimension by using
appropriate scale separation operators. Correlations between
different variables (or along any dimension) can be kept
untouched by localization (as in local ensemble Kalman filters)
by using the same modulation patterns for all variables (or for
all slices).

7.2. Scale Separation Operator
The modulation patterns used in the Schur products can be
obtained in several other ways, for instance by sampling patterns
with a specified global correlation matrix (explicit localization)
or by using different sorts of scale separation operators. It
might even be imagined to use a wider class of “simplification”
operators, the main condition being probably that they have to
remove structures from the original members, i.e., to decrease
entropy of the prior Gaussian distribution.

7.3. Correlated Observation Errors
In the evaluation of the computational complexity in section 6,
it was assumed that observation errors were independent. This
limitation can possibly be relaxed by augmenting the observation
vector with dependent observations (as proposed by [28] for
Gaussian errors, using derivatives of the original observations).
This can be an appropriate compromise as long as the numerical
cost remains linear in the number of observations.

7.4. Size of the Updated Ensemble
To simplify the presentation, it has been assumed throughout
the paper that the size of the updated ensemble is the same as
the size of the prior ensemble, but this is not a limitation of the
method. The size of the updated ensemble is freely adjustable;
updated members can be computed altogether or separately; and
more updated members can be added at will if needed. In this
case, the cost of the algorithm depends on the size of the updated
ensemble, not on the size of the prior ensemble.

7.5. Multiscale Applications
Multiscale structures can be incorporated in the algorithm in
at least three ways: (i) by directly constraining the spectral
amplitudes, considered as global observations (as in [22]), (ii) by
including more than one large-scale in the Schur product in
Equation (7), to obtain a multiscale localizing correlation, and
(iii) by explicitly including large-scale products (for instance
combining only s = 2 and s = 3) in the definition of the
augmented ensemble in Equation (10). In the latter case, the
proposal distribution would include a specified proportion of
large-scale perturbations, which might speed up the convergence
of the large scales.

7.6. Dynamical Constraints
Another important asset of the MCMC sampler is the possibility
to cope with non-local/non-linear dynamical or structural
constraints. They can be introduced as additional terms in the
cost function to complement and distort the prior Gaussian
distribution (using the same approach as [29]). The main
limitation is that they must be cheap enough to be evaluated
a large number of times. Low-complexity models can be
explicitly included in the iterative inversion process, to cope with
prominent dynamical features, while full-complexity models can
only be used externally as a constraint to the moderate-size
prior ensemble.
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APPENDIX

Optimality Score
Let x be the random vector describing the state of the system
(in state space, of dimension n), and y be the random vector
describing related observed quantities (in observation space, of
dimension p). y is related to x by the stochastic observation
operatorH:

y = H(x, ǫ) (A1)

where ǫ is a random vector describing uncertainties in the
observation system. This may include the classic additive
observation error, but also more intricate sources of uncertainty
in the modeling assumptions supporting the relation between x

and y.
Let p(x) be the prior probability density function (pdf) for

the state of the system, and p(y|x) be the conditional pdf for
the observed quantities, given the state of the system. This
conditional pdf describes the effect of uncertainties in the
observation system in Equation (A1). Then, the joint pdf for x
and y can be written in two ways:

p(x, y) = p(x) p(y|x) = p(y) p(x|y) (A2)

where p(y) is the prior pdf for y, and p(x|y) is the conditional pdf
for x, given y.

Given observations yo, the posterior pdf for the state of the
system is then given by:

p(x|y = yo) =
p(x, yo)

p(yo)
=

p(x) p(yo|x)
p(yo)

. (A3)

This corresponds to extracting a slice in p(x, y) at y = yo,
normalized by the constant p(yo). For high-dimension problems
(large n and p), this operation may become expensive and
may thus require approximations in p(x), in p(y|x) and in the
method used to extract the appropriate slice from p(x) p(y|x).
Approximations in p(x) include for instance the use of a Gaussian
model to describe the pdf, and the use of a moderate size
ensemble (possibly augmented by a localization assumption) to
estimate the Gaussian parameters. If these approximations are
correct, then the posterior pdf p(x|y = yo) must be consistent
with the assumptions made about the dependence between x

and y, i.e., with the assumptions made in Equation (A1). This
means that the density of the possible y resulting from p(x|y =
yo), through p(y|x), must be consistent with yo.

However, as usual, checking this consistency would in
principle require a large number of possible observation
vectors yo resulting from independent experiments applied to
the system. The posterior pdfs p(x|y = yo) resulting from each
of these yo would browse many possible slices p(x, yo) in p(x, y),
so that the consistency could be checked by computing statistics
over many possible yo. In practice, however, we assume here
that we have only one observation vector yo, so that we need to
replace the statistics over many possible yo by statistics over the

components yoj , j = 1, . . . , p of yo. To do this, we need to assume

that their observational uncertainties are independent:

p(y|x) =
p
∏

j=1
p(yj|x) (A4)

and to define a statistics that is identically distributed for all j, so
that the results obtained for different j can be mixed to compute
an aggregate score.

One first statistics that would be appropriate to check that the
posterior pdf is consistent with observational uncertainty is:

Co
ij = − log

[

p(yoj |xi)
]

(A5)

where xi, i = 1, . . . ,m is sampled from the posterior pdf (i.e.,
one member of the updated ensemble in our case). This statistics
would be interesting because it is the contribution of yoj to the cost

function associated to member xi, and because its expected value
is the conditional entropy of yj with respect to x. However, the
probability distribution for Cij is not identical for all i and j, and
would need to be transformed before computing a global score.

To obtain a more practical score, another option is
to compute:

roij = P(yoj |xi) (A6)

where P(yj|x) is the cumulative distribution function
corresponding to p(yj|x). rij is thus the rank of the observation yoj
in the conditional distribution for yj, given the ensemble
member xi. For a pair (x, y) sampled from p(x, y) in
Equation (A2), this rank is uniformly distributed between
0 and 1 (by construction of y from x), so it must be for a
random xi sampled from a random slice at y = yo. Here, the
random yo has been replaced by using independent components
yoj of yo. It is thus important to note that roij must not be

uniformly distributed between 0 and 1 for every j, but only if
enough independent yoj have been used. Finally, to obtain one

single score rather than a set of ranks, we transform the rij into
Gaussian numbers, and compute the mean square according to:

zoij = G−1(roij) ; z2 =
1

mp

m
∑

i=1

p
∑

j=1
zoij

2. (A7)

The final score is then z2, which must be equal to 1, for m→∞
and p→∞. A score below onemeans that the updated ensemble
is too close to the observations, and a score above one means that
the updated ensemble is too far from the observations.

In the particular case of an additive Gaussian
observational uncertainty:

yj = Hj(x)+ ǫj with p(ǫj) =
1

√

2πσ 2
j

exp

[

−
1

2

ǫ2j

σ 2
j

]

(A8)
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where σj is the observation error standard deviation associated

to yj, the score z2 reduces to:

z2 =
1

mp

m
∑

i=1

p
∑

j=1

(

yoj −Hj(xi)

σj

)2

(A9)

which exactly corresponds to checking the average value of the
cost function:

z2 =
2

mp

m
∑

i=1

p
∑

j=1

[

Co
ij − log

√

2πσ 2
j

]

(A10)

as proposed by Talagrand [30]. In the Gaussian context, this
score (χ2 criterion) can be decomposed into residual error
(ensemble spread) and observation misfit with the ensemble
mean. The more observational information, the smaller the
ensemble spread, and the larger the observation misfit to the
ensemble mean.
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