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We study the formation of chimera states in 2D lattices with hierarchical (fractal)

connectivity. The dynamics of the nodes follow the Leaky Integrate-and-Fire model

and the connectivity has the form of a deterministic or a random Sierpinski carpet.

We provide numerical evidence that for deterministic fractal connectivity and small

values of the coupling strength, a hierarchical incoherent spot is produced with internal

structure influenced by the fractal connectivity scheme. The spot size is similar to

the size of the coupling matrix. Stable spots can be formed for symmetric fractal

connectivity, while traveling ones are found when the connectivity matrix is asymmetric

with respect to the center. For fractal coupling schemes spiral wave chimeras are

produced and curious stable patterns are reported, which present triple coexistence

of coherent regions, incoherent domains and traveling waves. In all cases, the coherent

domains demonstrate the lowest mean phase velocities ω, the incoherent domains show

intermediate ω-velocities, while the traveling waves show the highest ω-values. These

findings confirm previous studies on symmetric deterministic hierarchical connectivities

and extend here to slanted and random fractals.

Keywords: local synchronization, chimera states, leaky integrate-and-fire model, hierarchical connectivity,

deterministic fractals, random fractals

1. INTRODUCTION

A Chimera state is characterized by the unexpected coexistence of coherent and incoherent
domains in networks of coupled oscillators. Chimera states were first discovered in 2002 in a
system of coupled Kuramoto phase oscillators [1, 2] and were further established 2 years later in
a seminal work by Abrams and Strogatz [3]. They captivated scientific interest during the past
15 years due to their intriguing structural and dynamical properties and to potential applications
in physics [4–7], chemistry [8–10], and biology [11–16]. Although original studies referred to
coupled phase oscillators, later works have reported chimera states in coupled FitzHugh-Nagumo,
Hindmarsh-Rose, Van der Pol, and Leaky Integrate-and-Fire (LIF) oscillator networks [17–
24]. Most recent advances in the general domain of local synchronization are summarized in
review articles [25–29].

Previous studies on 2D nonlocal connectivity with periodic, toroidal boundary conditions have
demonstrated a variety of chimera patterns. Using the phase oscillator, the FitzHugh Nagumo
system or the LIF neuron oscillators chimera patterns emerged in the form of coherent and
incoherent single or multiple spots, rings, lines, and grids of spots [19, 30–34]. Some of these
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patterns, come as generalizations of the 1D chimera forms to 2D
geometry (e.g., spots and stripes), while others are new patterns
which do not have an analogy in 1D (e.g., spiral waves).

As early structural studies of the human brain, usingMagnetic
Resonance Imaging (MRI) techniques and Diffusion Tensor
Imaging (DTI) analysis, have captured fractal attributes and self-
similarities in the structure of the neuron axons network [35–
39], recent numerical studies have introduced fractal, hierarchical
connectivity in the simulations of networks of spiking neurons.
The use of Cantor-type connectivities in 1D ring networks has
demonstrated that the induced chimera states retain some of
the fractal features of the Cantor connectivity schemes [18, 21,
40–44]. More recently 2D simulations of chimera states were
attempted, using the LIF model with symmetric Sierpinski-
carpet connectivity and first evidence was provided that for
small values of the coupling strength single asynchronous spots
are formed which acquire hierarchical structure, reminiscent of
the Sierpinski connectivity matrix [45]. This was a first study,
providing evidence of hierarchical chimeras in 2D networks.

In the present study we confirm the presence of hierarchical
chimeras for different parameter values (especially for different
refractory periods) in 2D LIF networks and we extend our study
to slanted fractals and random fractal connectivity schemes.
We provide evidence of asymmetric hierarchical chimera states,
multiple incoherent spot chimeras with internal hierarchical
connectivity which fades away with time, as well as stable
patterns where coherent spots, incoherent domains, and traveling
waves coexist.

We would like to stress here, that the aim of this study is
not to simulate in detail the three-dimensional connectivity of
the human brain, based on the MRI recordings. Rather, this
research is inspired by the fractal and multifractal analysis of
the MRI images, which indicate that the neuron axons are
not homogeneously distributed in the brain but they span
a subspace with fractal dimension df ≈ 2.5. These fractal
attributes have been computed for length scales between [1 and
10 cm] using the box-counting technique [36–38]. The present
study aims to address the influence of fractal connectivity (as
opposed to the usual non-local connectivity) in the formation
of chimera states. Although chimera states with hierarchical
connectivity in one-dimensions have been studied inmany works
[18, 21, 41, 42, 44], the problem of hierarchical connectivity
in two-dimensions has not been adequately addressed. To this
end, several drastic simplifications were made due mostly to
limitations of computational resources: (a) the LIF model is
used which is a minimal model addressing the biological neuron
activity, (b) only restricted system sizes are considered as will be
described in the next section, (c) the connectivity was reduced
to a flat fractal kernel, and (d) periodic boundary conditions are
considered in order to retain the symmetry of interactions. All
these simplifications aim to avoid including toomany parameters
in the system and to focus on the mechanisms producing
hierarchical chimera patterns and 2D spiral wave chimeras.

In the next section we give a brief presentation of the
LIF model and its implementation on a 2D network with
deterministic and random fractal connectivity. In section 3.1 we
present our results when the fractal connectivity is deterministic

and symmetric, while the slanted fractal case is presented in
section 3.2. Our results on random fractal connectivity are
presented in section 4 where we report the finding of spiral
wave chimeras and chimeras exhibiting three different coexisting
domain types: coherent, incoherent and traveling waves. The
conclusions of this study are briefly summarized in the final
section 5 and relevant open issues are discussed.

2. THE MODEL AND THE CONNECTIVITY
SCHEMES

The LIF model for single neuron dynamics was introduced by
Louis Lapicque in 1907 and is in frequent use by computational
neuroscientists due to its easy numerical implementation, while it
retains the main dynamical features of biological neuron activity
[46–48]. In relation to collective neuron dynamics, coupled LIF
neurons were shown to produce chimera states under various
types of non-local connectivity schemes in 1D [22–24, 41, 49–51],
in 2D [19, 45], and in 3D [52].

In this section, we present the LIF coupling scheme in
2D using different fractal connectivity geometries. Namely,
after recapitulating the LIF dynamics in 2D for a generic
coupling matrix, we introduce the following coupling schemes:
(a) symmetric deterministic Sierpinski carpet, (b) slanted
deterministic Sierpinski carpet, and (c) random Sierpinski
carpet (which is almost always asymmetric). These coupling
schemes will be used in sections 3 and 4 for studying local
synchronization phenomena.

2.1. The LIF Coupling Scheme
The dynamics describing the temporal evolution of the potential
uij(t) of a neuron having Cartesian coordinates (i, j) is divided
in three phases: (i) the integration phase shown below in
Equation (1a) characterized by a linear differential equation
exhibiting an exponential increase of the membrane potential,
(ii) the abrupt resetting phase (Equation 1b) and (iii) a refractory
period (Equation 1c). These phases are expressed by the
following equations:

duij(t)

dt
= µ − uij(t)−

1

Nc

∑

kl∈{Nij}

σijkl
[

ukl(t)− uij(t)
]

(1a)

lim
ǫ→0

uij(tr + ǫ) → urest, when uij(tr) ≥ uth, r = 1, 2, · · · (1b)

uij(t) = urest, when tr ≤ t < tr + Tr , (1c)

On the right hand side of Equation (1a), the first two terms
correspond to the integration of the potential while the last
term accounts for the exchange between neuron (i, j) and other
neurons in the network.

The various parameters in Equation (1) have the following
interpretation: The variable uth defines the maximum value that
the potentials uij can take, after which the oscillators are reset to
their rest potential urest. The resetting times tr are counted by
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the index r = 1, 2, · · · . µ is the value that the potential of the
neuron (i, j) would asymptotically tend to if there was no resetting
condition, uth < µ. Tr is a refractory period after resetting,
during which the neuron potential remains at the rest state. Nc is
the number of neurons that are connected with the neuron (i, j).
These neurons are members of the set {Nij}.

In the present study we assume that all oscillators are identical,
they have identical parameters:µ, urest, uth andNc. For simplicity,
we also assume that the coupling is linear and every oscillator is
linked to all others through a couplingmatrix, whose element σijkl
links oscillators (i, j) and (k, l). The values of the matrix elements
may take any value (positive, negative, or zero), depending on the
connectivity of the network, but in the current study we restrict
the coupling matrix elements to the interval 0 ≤ σijkl ≤ 0.3 .

The solution of Equation (1) in the absence of coupling
provides the period Ts of the single neuron and the
corresponding phase velocity ωs (the subscript “s” stands
for “single”, uncoupled neuron), as:

Ts = ln
µ − urest

µ − uth
+ Tr , ωs = 2π/Ts. (2)

Although all neurons have the same parameters when uncoupled,
coupling induces local and global variations in the period of
the individual neurons and the network acquires a distribution
of mean phase velocities. This distribution characterizes the
collective behavior of the network. The mean phase velocity of
all coupled neurons ωij in a time interval 1t is computed as:

ωij =
2πZij(1t)

1t
(3)

where Zij(1t) is the integer number of full cycles that neuron
(i, j) has completed in the time interval 1t, and is computed
numerically during the simulations. The relative values of ω are
of central importance when studying chimera states, because they
differentiate between the coherent and incoherent domains. In
the coherent domains all the elements have commonmean phase
velocities, while the incoherent domains are characterized by a
distribution of ω-values [17].

2.2. Connectivity Schemes
In the present study the neuron oscillators are arranged on a 2D
lattice-network of sizeN×N. The three fractals used to construct
the connections of the LIF oscillators are Sierpinski carpets,
which are flat fractals with Hausdorff dimension ln 8/ ln 3 ≈

1.8928. The construction of the Sierpinski carpets is recursive and
follows three simple algorithms:

• The deterministic symmetric Sierpinski carpet: (a)We begin
with a square which we subsequently divide into 9 equal
smaller squares. (b) We then remove the central square and
this concludes the first iteration of the process. (c) We divide
each of the remaining 8 squares into 9 equal smaller squares
and remove the central one of each group of 9. (d) This
concludes the second iteration. (e) The same sequence of
dividing and removing can be applied arbitrarily many times
to obtain as many spatial scales as required [53, 54]. The
connectivity scheme which is produced is shown in Figure 1A.

• The deterministic slanted Sierpinski carpet: (a) We begin
with a square which we subsequently divide into 9 equal
smaller squares. (b) We then remove one of the 8 non-central
squares and this concludes the first iteration of the process. In
Figure 1Bwe have chosen to remove the lower right square. (c)
We divide each of the remaining 8 squares into 9 equal smaller
squares and remove the same one as in the previous iteration
(lower right squares) in each group of 9. (d) This concludes
the second iteration. e) The same sequence of dividing and
removing can be applied arbitrarily many times to obtain the
connectivity scheme depicted in Figure 1B.

• The random Sierpinski carpet: (a) We begin with a square
which we subsequently divide into 9 equal smaller squares.
(b) We then remove randomly one of the 9 squares and this
concludes the first iteration of the process. In Figure 1C we
have chosen to remove the central square. (c) We divide each
of the remaining 8 squares into 9 equal smaller squares and
remove one square at random from each group of 9. (d)
This concludes the second iteration. (e) The same sequence
of dividing and removing randomly can be applied arbitrarily
many times to obtain the connectivity of Figure 1C.

The resulting deterministic and random hierarchical pictures are
used as connection matrices. Namely, the central node (i, j) of
the connectivity scheme is only linked with all black nodes that
belong to the Sierpinski carpet surrounding it. The coupling of
other nodes is formed by translation of the fractals. To maintain
an identical coupling scheme for all nodes we use periodic
boundary conditions in both x− and y−directions, leading to a
torus geometry [45].

In all three cases, symmetric deterministic, slanted
deterministic or random hierarchical connectivity, if we
denote by {Nij} the set of all nonzero cells of the Sierpinski carpet
centered around the node (i, j) and denote by (k, l) any arbitrary
element of the system, then the coupling matrix elements σijkl
between nodes (i, j) and (k, l) take the form:

σijkl =

{

σ , ∀(k, l) ∈ {Nij}

0, elsewhere
(4)

In this study the coupling strength value σ is a positive constant,
common for all network connections [45]. As working parameter
set we use µ = 1, uth = 0.98, urest = 0 and N = 81, while N =

243 in some simulations. All simulations start with random initial
conditions. For the system integration the explicit Euler scheme
was used with integration step dt = 10−3. 4-th order Runge-
Kutta was also used as a test and the results were compatible
with the Euler scheme. The connectivity pattern was used directly
within the Euler scheme and the iteration time was 104 time units
for all reported simulations. The spatial coupling was performed
via direct convolution. Using an MPI parallel implementation of
the algorithm on multiple (usually 20–80) CPUs each simulation
took on average 8 CPU hours for 104 time units. The algorithms
are available online1.

1https://github.com/gArgyropoulos/LIF_2D (2019).
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FIGURE 1 | The Sierpinski carpets used as coupling matrices: (A) deterministic symmetric Sierpinski connectivity pattern, (B) deterministic slanted Sierpinski

connectivity pattern and (C) random Sierpinski connectivity pattern. In all cases three orders of iteration are used, based on a 3 × 3 initiation square.

In Table 1, we present collectively all the qualitative results
we obtained by scanning the parameters, 0.1 ≤ σ ≤ 0.3
and 0 ≤ Tr ≤ 2.0 (in time units). For the 2D LIF
scheme (Equation 1), it is relatively easy to find chimera
states in the parameter regions reported in Table 1. In these
regions there is little sensitivity to initial conditions and most
initial states end-up in the corresponding chimeras. Only
for intermediate parameter values, between domains which
support distinct chimera patterns, the different initial conditions
may result to different synchronization motifs. Overall, for
small σ values we observe spot chimeras many of which
present structure reminiscent of the features of the connectivity
matrix (see more in section 3). For larger values of σ

and Tr more intricate patterns arise such as multiple spots,
grids, stripes, spirals and even stable triple combinations of
coherent spots, incoherent domains and traveling waves. Details
on the particular patterns are given in sections 3, 4 and
the Table 1.

3. DETERMINISTIC FRACTAL
CONNECTIVITY

3.1. Symmetric Coupling
In a previous study, the present authors and T. Kasimatis
have used the symmetric coupling of Figure 1A to explore the
influence of the hierarchical connectivity in the form of 2D
chimera patterns [45]. For small positive values of the coupling
strength and medium values of the refractory period, Tr =

0.5 time units, they report spot chimera patterns with internal
structure reminiscent of the connectivity matrix. The chimeras
are best visualized in theω-profiles, when the spots are immobile.
For larger values of the coupling strength σ , stripe and grid
chimeras were reported which were mostly traveling and, as a
result, the hierarchical structure of the chimeras, visible in the
ω-profiles, was masked. In such cases one can always resort to
using the comoving frame to avoid that the motion of the spot
smooths out the ω-structure, but this is outside the scope of the
present study.

In the following we present evidence that hierarchical spot
chimeras are possible even for Tr = 0. In Figure 2A we present
the uij-profile for σ = 0.18 and Tr = 0. The internal structure

of an asynchronous spot chimera is visible but the hierarchical
scheme in Figure 2B is not as clear as it was in Argyropoulos
et al. [45], where Tr = 0.5 time units was used. In this realization
the incoherent elements are ordered in stripes parallel to the i-
direction. Depending on the initial conditions the stripes appear
parallel to the i− or to the j−direction, reflecting the square
geometry of the connectivity kernel. The grid-formations in
Argyropoulos et al. [45] (Figures 2B, 3B, therein) can be viewed
as coexistence/superpositions of stripes in both directions.

In Figure 3 we present the evolution of ω of two elements,
one belonging to the coherent domain (Figure 3A), and one
to the incoherent (Figure 3B). The calculations of ω were
performed in time windows of 1t = 30 time units. While in
the coherent domains the ω values stabilize mostly around 1.68
(with infrequent excursions to higher values), in the incoherent
domains the mean phase velocity alternates between the values
ω = 1.88 and ω = 1.68. This apparent bistability may reflect the
slight erratic motion of the incoherent domains. Their elements
may spent some time participating in the coherent domain and
other time in the incoherent and thus bistability is observed in
their mean phase velocity.

By increasing the system size it is possible to increase the
number of incoherent domains that the system can accommodate
(see Figure 4). They take the form of spiral wave multichimeras.
In the present case, each of the four incoherent domains is the
core region of a distinct spiral wave chimera. Around each core
there is a rotating phase wave with a large wavelength. Apart
from the number of asynchronous cores, larger systems (e.g.,
243×243 in the present case) can accommodate incoherent cores
with non-homogeneous internal structure, caused (as we believe)
by the hierarchical ordering of the connectivity matrix. This
is evident mainly in Figures 4A,B while in Figures 4C,D this
internal structure is gradually destroyed due to the tiny erratic
motion of the incoherent domains, giving rise to incoherent
cores composed of random phases. The filamented structure of
the incoherent domains in Figure 4A has been also found in
2D coupled phase oscillators [55]. In both cases the filaments
are observed in the 4-chimera states and for specific parameter
values. In the LIF case with fractal connectivity, these filaments
are short-lived and they dissociate passing via a hierarchical phase
(see Figures 4B,C) into becoming the stable incoherent domains
(see Figure 4D) of the spiral chimera.
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TABLE 1 | Collective presentation of the chimera patterns in the LIF model for σ ranging between (0.1–0.3) and Tr in the interval from 0 to 2.0 time units.

Trσ 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3

Deterministic Hierarchical Symmetric Coupling

0 sspot sspot sspot sspot sspot sspot sspot sspot sspot sspot sspot

0.1 sspot sspot sspot sspot sspot sspot sspot sspot hspot hspot hspot

0.2 sspot sspot sspot sspot sspot sspot hspot hspot spot s s

0.3 sspot sspot sspot sspot sspot sspot hspot spot s s s

0.4 sspot sspot sspot sspot sspot hspot hspot s s s s

0.5 sspot sspot sspot sspot sspot hspot s s s s s

0.6 sspot sspot sspot sspot sspot hspot s s s s s

0.7 sspot sspot sspot sspot sspot hspot s s s s tr

0.8 sspot sspot sspot sspot sspot hspot s s s s tr

0.9 sspot sspot sspot sspot hspot hspot s s s tr stripe

2.0 sspot sspot sspot hspot tr stripe stripe stripe tr mspots stripe

Deterministic Slanted Hierarchical Coupling

0 t t t t t t t t t t s

0.1 t t t t t t t t s s s

0.2 t t t t t t t s s s s

0.3 t t t t t s s s s s s

0.4 t t t t s s s s s s s

0.5 t t t t s s s s s s s

0.6 t t t s s s s s s s s

0.7 t t t s s s s s s s s

0.8 t t t s s s s s s s s

0.9 t t t s s s s s s s s

2.0 t s s s s s s s s s s

Random Hierarchical Coupling

0 spot spot spot spot spot spot spot spot spot spot spot

0.1 spot spot spot spot spot spot spot spot spot spot spot

0.2 spot spot spot spot spot spot spot spot spot s s

0.3 spot spot spot spot spot spot spot s s s s

0.4 spot spot spot spot spot spot spiral s s s spiral

0.5 spot spot spot spot spot spot spiral s s spiral s

0.6 spot spot spot spot spot spot spiral s s s s

0.7 spot spot spot spot spot spot s s s s s

0.8 spot spot spot spot spot s s s s s stripe

0.9 spot spot spot spot spot s s s s tr stripe

2.0 spot spot spot tr tr stripe stripe tr syn-spots syn-spot s

The annotation is mostly self explanatory: s, synchronized oscillations; t, triangle asymmetric spot; spot, single asynchronous spot; sspot, single asynchronous spot with striped ω-profile

(see Figure 2); hspot, hierarchical asynchrononous spot; tr, transient; syn-spot, synchronous spots; stripe, stripes; spiral, spiral wave chimera (see Figure 7).

In the 2nd row of Figure 4, first the long time ω-profile
is presented (Figure 4E). As the mean phase velocities change
during the transition time, we record here the ω-profile after
the four cores have stabilized to their full incoherent state.
The ω-histogram in logarithmic scale (Figure 4F) demonstrates
one very distinct peak at low frequencies which corresponds
to the coherent region and one distributed region in higher
frequencies, which correspond to the four incoherent spots,
collectively. There is no distinctive maximum related to the
incoherent cores due to the distributed ω− values in these
regions. In Figures 4G,H the temporal evolution of the ω-
values in the coherent and the incoherent domains are monitored
during the transition period. The incoherent elements are

frequently passing from low to high frequencies and thus have
higher average ω as compared with the coherent ones, which
mostly oscillate with low frequency. The development of this
pattern is presented in a short 30 s video included in the
Supplementary Material2.

3.2. Slanted Fractal Coupling
In the case of slanted deterministic coupling, with connectivity
depicted in Figure 1B, chimera patterns are produced which are
mostly traveling in the direction of the reflection symmetry axis

2Two videos related to Figures 4, 7 are added in the Supplementary Material

(2019).
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FIGURE 2 | (A) The potential profile and (B) the mean phase velocity profile for an asynchronous spot chimera realized for symmetric hierarchical coupling with

σ = 0.18 and Tr = 0. Other parameters are µ = 1, uth = 0.98, urest = 0 and N = 81. The simulations start from random initial conditions.

FIGURE 3 | The time evolution of ω for (A) element (i, j) = (0, 8) belonging to the coherent domain and (B) element (i, j) = (46, 39) belonging to the incoherent domain

of Figure 2. σ = 0.18 and Tr = 0. Parameters are as in Figure 2A.

of the kernel [56]. Because traveling is mostly accompanied by
erratic motion, it is difficult to detect the fractality in the ω-
profile. Figure 5 is a rare example of an immobile incoherent spot
where a meaningful ω-profile can be calculated. In Figure 5A the
uij-profile shows that the form of the chimera is not circular but
takes the arrow-like shape of the seeding connectivity, Figure 1B.
Besides u, also the ω−profile reflects the form of the connectivity
matrix, Figure 5B.

The external shape of the asymmetric spot, which mimics
the perimeter of the oblique connectivity kernel, supports
previous results in hierarchical 2D chimeras indicating that, for
appropriate choices of (small) coupling strengths, the form of
the kernel is mirrored in the ω-profile [45]. Here, the erratic
motion of the pattern does not allow the observation of potential
hierarchical internal structure in the ω−profile, induced as a
result of fractal connectivity schemes as in Argyropoulos et al.
[45]. A resolution of this issue involves the use of a comoving
frame, but this is outside the scope of the present study.

4. RANDOM FRACTAL CONNECTIVITY

Random connectivity is almost always asymmetric and this is the
case we consider here. As a general observation the asymmetry
of the connectivity pattern often causes motion of the chimera
patterns. As an example, for σ = 0.2 and Tr = 0.5 an erratically
traveling incoherent spot is formed, depicted in Figure 6. The

incoherent spot potential profile, uij, seems to present some
internal structure in the form of irregular vertical stripes (see
Figure 6A). To make an analogy, we remind of the more regular,
stripped structure that was reported in Figure 2 for deterministic
symmetric coupling. Here, the kernel is non-symmetric and this
fact together with the motion of the incoherent part makes
it difficult to discern any fine details in its ω−profile (see
Figure 6B). In Figure 6B the ω-profile has been calculated in
time windows of size 1t = 30 time units, where the incoherent
spot can be considered as almost immobile. As in all cases of
traveling patterns, the use of a comoving frame could resolve
possible patterns inside the incoherent part of the mean phase
velocity profile. Different realizations of the fractal coupling
matrix do not affect the number and sizes of the coherent and
incoherent domains of the chimera pattern, provided that the
fractal dimension and the hierarchical order are retained in the
different realizations.

Increasing slightly the coupling strengths while keeping Tr

to low values, the patterns become unstable. A typical example

is shown in Figure 7, where wave domains are shown spiraling

around the torus. The four spiraling regions have the form

of successive wavefronts with arrow-like shapes [55]. They

rotate around coherent cores which are characterized by different
wavelengths than the spiraling fronts. This is a new type of spiral
chimera composed by coherent waves with two different wave
lengths. Even in this case, we observe that the sizes of the spiraling
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FIGURE 4 | Top row: Spiral wave multichimera state with four incoherent cores in symmetric deterministic connectivity for system size 243× 243; the potential

profiles are depicted at times: (A) t = 1200, (B) t = 1800 (C) t = 2700 and (D) t = 10020 time units. Bottom row: (E) Mean phase velocity profile, (F) Typical

histogram of mean phase velocities, (G) Time evolution of ω on a node contained in the coherent regions and (H) Time evolution of ω on a node belonging to one of

the incoherent cores. Parameters are σ = 0.25 and Tr = 0.5 and N = 243. All other parameters are as in Figure 2A. Simulations start from random initial conditions.

A related video is included in the Supplementary Material.

FIGURE 5 | Chimera state with slanted fractal deterministic connectivity: (A) uij-profile and (B) ωij-profile. Parameters are σ = 0.2 and Tr = 0.1. All other parameters

are as in Figure 2A. Simulations start from random initial conditions.

fronts are similar to the size of the initiation connectivity pattern.
A related video is added in the Supplementary Material2.

For larger values of Tr coherent double spots and stripe
chimeras are formed, surrounded by the incoherent domains
(Figure 8). In the top row of Figure 8 we can see the formation
of a triple pattern (Figure 8A) composed by (i) a coherent
stripe crossed by a traveling wave [57], (ii) an incoherent stripe
surrounding the coherent region, while (iii) a third region
consisting of traveling waves appears within the incoherent
domain, at the top and bottom of the figure. The velocities of
the traveling waves and the oscillator frequencies are different
in the first and the third regions and this may support the
idea of bistability. The presence of the incoherent region serves
the purpose of continuity. Unlike the well known chimera
patterns which is composed of two types of domains (coherent

and incoherent), this is a curious chimera pattern which
consists of three different domain types: coherent traveling waves
with low velocity (region i), incoherent part (region ii) and
coherent traveling waves with high velocity (region iii). The
mean phase velocity distribution shows two maxima: one at
the low frequencies which corresponds to the coherent domain
and one in the high frequencies related to the high speed
traveling waves. The intermediate ω values are attributed to the
incoherent domain.

By increasing the coupling strength, σ = 0.26, the stripe
splits into two coherent spots, around which incoherent domains
develop (Figure 8B). Again, the two incoherent domains are
separated by spatial traveling patterns. Here the mean phase
velocity distribution shows only a distinct maximum in the
high frequencies which corresponds to the traveling waves. The
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FIGURE 6 | Single mobile spot in random fractal connectivity. Parameters are σ = 0.2 and Tr = 0.5. All other parameters are as in Figure 2A. Simulations start from

random initial conditions.

FIGURE 7 | Spiral wave chimeras around a coherent core for random hierarchical connectivity in LIF model; potential profiles are depicted at four instances: (A)

t = 3300 (B) t = 3360 (C) t = 3420 and (D) t = 3480 (in time units). Parameters are σ = 0.22 and Tr = 0.6. All other parameters are as in Figure 2A. Simulations

start from random initial conditions. A related video is included in the Supplementary Material.

two coherent spots have small sizes and their extent (size) is
relatively small, not enough to produce a maximum in the
low ω region in Figure 8F. Alternatively, the extent of “blue”
regions in Figure 8E which characterize the coherent cores is
similar to the extent of yellow regions which characterize the
incoherent domains and therefore the spectrum in Figure 8F

shows a plateau in the region of low mean phase velocities. The
ω-profiles demonstrate that the coherent spots and the stripe
acquire the lowest mean phase velocities, the incoherent domains
have intermediate ω-values, while the traveling wave regions
show the highest ω-values.

Related to the ω−profiles in the coherent domains (spots
and stripe) we may assume, similarly to the Kuramoto phase
oscillators, that the coupling term contribution in Equation (1a)
reduces to zero because oscillators in the coherent domains have
a phase difference of zero to their nonlocal neighbors. Unlike
the Kuramoto model, in the LIF model the coherent domains
present ω− values close (but not equal) to the uncoupled system.
In the incoherent domains the coupling term is not negligible
(because the oscillators in the nonlocal neighborhood have
different phases) and for the coupling strength we use in this
study we observe that ωincoh > ωcoh.

Calculations of the local order parameter in the uij profile
is often used to test synchronization in systems of coupled
oscillators [29]. The local order parameter rij around oscillator

(i, j) is defined as rij = 1
nc

∑

k,l exp
(

i φ(k, l)
)

. The phase φ(k, l)

of oscillator (k, l) is defined as φ(k, l) =
[

(2 π ukl)/uth
]

, so
that φ varies between 0 and 2π . The sum runs over the nc
first neighbors of the oscillator (i, j). In the present study the
immediate neighborhood is defined as a (3×3)-square around the
oscillator (i, j), and therefore nc = 8. The local order parameters
are depicted in Figure 9A for the state in Figures 7A, 9B for
the stripe of Figures 8A, 9C for the double coherent spots of
Figure 8D. The profile of the local order parameter confirms
the conclusions on the chimera profiles in all three cases, with
lighter colors indicating phase coherence and darker colors
phase incoherence.

In particular for the case of the stripe and the double coherent
spots (Figures 9B,C), the rij-values demonstrate coherence of
the uij values in the regions of the stripe and the spots,
respectively. To the best of our knowledge, these are new types of
chimera manifested in 2D geometries, which allow freedom for
coexistence of multiple stable domains with different oscillatory
features in each domain.

5. CONCLUSIONS AND OPEN PROBLEMS

In the present study we report on how details of the hierarchical
connectivity matrix modify the emerging chimera patterns in
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FIGURE 8 | Random hierarchical connectivity in LIF model. Top row: Stripe chimera for parameters σ = 0.22, Tr = 2.0. (A) uij-profiles, (B) ωij-profiles and (C)

distribution of ω-values. The P(ω) spectrum present two distinguishable maxima: one at the high ω-region which correspond to the traveling waves with short

wavelength and one in the low ω-values associated with the stripe. Bottom row: Double coherent spot chimera for σ = 0.26 and Tr = 2.0. (D) uij-profiles, (E)

ωij-profiles and (F) distribution of ω-values. The P(ω) spectrum presents only distinguishable maximum at the high ω-region which correspond to the traveling waves

with short wavelength. A peak in the low ω-values in (F) is not observable because the extent of the two coherent spots [“blue” regions in (E)] is of similar size to the

extent of the incoherent domains [“yellow” regions in (E)] and therefore a plateau appears. The dashed lines in (C,F) serve as eye guides. All other parameters are as in

Figure 2A. Simulations start from random initial conditions. Other related images are available in the Supplementary Material.

FIGURE 9 | The local order parameter rij for (A) the spiral wave chimera as depicted in Figures 7A, (B) the stripe chimera of Figures 8A, (C) the double coherent

spots of Figure 8D.

2D toroidal geometry. Using as working model the Leaky
Integrate-and-Fire oscillator, we present numerical evidence (see
Table 1) that traces of the hierarchical connectivity motif are
demonstrated only for small values of the coupling strength
σ (Figure 2). For large σ values, the exchange between the
oscillating elements is strong, the dynamics develop fast and
erratic motion or traveling patterns emerge which destroy
the formation of hierarchical ordering within the incoherent
domains of the chimera states. A complete list of our simulation
results is outlined in Table 1.

The introduction of asymmetric (not rotationally invariant)
coupling kernels, in the form of deterministic or random fractals,
has induced spiral wave chimeras and traveling or erratically
moving chimeras. In particular, for connectivity schemes with
random hierarchical kernels and for low refractory period, we

report a novel spiral wave chimera with a coherent core which is
different from the spiral wave chimeras reported in the literature
which rotate around incoherent cores. For larger values of the
refractory period we also report a peculiar type of chimera which
include three types of domains: coherent (in the form of coherent
spots or stripes), incoherent and traveling waves. These chimera
states are stable and emerge also for small values of the coupling
strength. For symmetric hierarchical coupling and large system
sizes spiral wave multichimeras are possible. These are composed
by ordered spiral waves on the torus rotating around multiple
cores consisting of asynchronous oscillators.

Regarding traveling chimera states, to study quantitatively
their ω-profiles in future studies it could be useful to use a
comoving frame, which moves with the velocity of the traveling
pattern. This way one could extract the correct frequencies, since

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 July 2019 | Volume 5 | Article 35

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Argyropoulos and Provata Chimera States: 2D Fractal Connectivity

all nodes will be fixed either to the coherent or to the incoherent
domains, without alternating between them.

From this study the rich variety of chimera patterns is evident,
especially in 2D geometries, which give enough freedom for
creation and stabilization of diverse forms. We have seen that by
increasing the size of the system, e.g., from 81× 81 to 243× 243,
it is possible to stabilize multichimera states, even for stochastic
fractal connectivity. Apart from increasing the system size, other
ways of pinning the traveling patterns (see e.g., Isele et al. [58]
and Ruzzene et al. [59]) could be used in order to clarify the
presence of hierarchical patterns in the ω− profile within the
incoherent domains.

Another class of related problems concerns the dimensionality
of the fractal kernels. In the present study flat fractals were
considered with Hausdorff dimension ln 8/ ln 3 ≈ 1.8928
as connectivity matrices. It would be interesting to consider
kernels with different dimensionality and study the chimera
patterns which are produced. Other open problems include the
introduction of hierarchical connectivity in three-dimensions
to explore the chimera patterns and other synchronization
phenomena which emerge. Further extensions include the use of
realistic connectivity schemes obtained directly fromMRI images
in order to address applications related to synchronization of
brain neurons.
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Figure S1 | Depicts the distribution of ω values P(ω) of the oscillator which have

local order parameter greater than 0.25 (these are about 90%).

Figure S2 | Depicts the distribution of ω values P(ω) of the oscillators which have

local order parameter less than 0.25.

Figure S3 | Depicts the distribution of ω values P(ω) of the oscillators which have

local order parameter greater than 0.5.

Figure S4 | Depicts the distribution of ω values P(ω) of the oscillators which have

local order parameter less than 0.5.

Video S1 | Rotating fronts in synchronous background. Corresponds to Figure 7.

Video S2 | Creation of 4 asynchronous sports with evolving internal structure.

Corresponds to Figure 4.
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