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A synthesis of recent progress is presented on a topic that lies at the heart of both

structural engineering and non-linear science. The emphasis is on thin elastic structures

that lose stability subcritically—without a nearby stable post-buckled state—a canonical

example being a uniformly axially-loaded cylindrical shell. Such structures are hard

to design and certify because imperfections or shocks trigger buckling at loads well

below the threshold of linear stability. A resurgence of interest in structural instability

phenomena suggests practical stability assessments require stochastic approaches and

imperfection maps. This article surveys a different philosophy; the buckling process and

ultimate post-buckled state are well-described by the perfect problem. The significance

of the Maxwell load is emphasized, where energy of the unbuckled and fully-developed

buckle patterns are equal, as is the energetic preference of localized states, stable, and

unstable versions of which connect in a snaking load-deflection path. The state of the

art is presented on analytical, numerical and experimental methods. Pseudo-arclength

continuation (path-following) of a finite-element approximation computes families of

complex localized states. Numerical implementation of a mountain-pass energy method

then predicts the energy barrier through which the buckling process occurs. Recent

developments also indicate how such procedures can be replicated experimentally;

unstable states being accessed by careful control of constraints, and stability margins

assessed by shock sensitivity experiments. Finally, the fact that subcritical instabilities

can be robust, not being undone by reversal of the loading path, opens up potential

for technological exploitation. Several examples at different length scales are discussed;

a cable-stayed prestressed column, two examples of adaptive structures inspired by

morphing aeroelastic surfaces, and a model for a functional auxetic material.

Keywords: instability, elastic, buckling, sub-critical, localization, path-following, mountain-pass

1. INTRODUCTION

Bernard Budiansky famously used to say “everybody loves a buckling problem” [1, 2] and this
resonates today in a number of significant ways. First, it reflects that buckling is a process of
instability, and instabilities have always held a macabre fascination for children and adults alike.
From the collapse of a pile of bricks to the deliberate demolition of buildings or the catastrophic
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failures of large urban areas in the aftermath of a natural
disaster, instabilities hold a central place in human experience
and consciousness. But there is a newer, more modern, context—
that structural instabilities can also be harnessed for the greater
good. See, for example, the recent paper by Reis [3] who
coined the phrase buckliphilia for the exploitation of instability
in counterpoint to buckliphobia, the safety-conscious avoidance
of collapse.

The purpose here is to review modern developments in
the theory and analysis of buckling instabilities, both in the
work of the present authors and by others. In the process, we
draw particular attention to new techniques of analysis—often
applied to classical thorny buckliphobic problems—and highlight
potential areas of buckliphilic exploitation. We place particular
emphasis on the interplay between analytical, numerical and
experimental techniques, showing how we pick our way through
a plethora of unstable post-buckling equilibrium states, to focus
on practically relevant solutions.

With its origins in singularity, or catastrophe, theory [4, 5],
the non-linear analysis of structural buckling can be cast in
the framework of static bifurcation theory. Broadly speaking,
the instability of a trivial, unbuckled state, upon varying an
external load parameter, falls into one of three categories:
supercritical, subcritical or transcritical; see Figure 1. The former
is sometimes called a safe bifurcation because, as shown in
panel (A), the post-buckled path emerges smoothly out of the
unbuckled equilibrium path, and hence stability can be safely
tracked under slow variation of the applied load. In contrast,
subcritical bifurcations, as seen in panel (B), have been termed
dangerous [6], because the structure would irreversibly jump
to a post-buckled state (not shown) that is a long way from
the trivial one. Such jumps in elastic structures tend to give
rise to energy loss, accompanied by a significant “bang,” and
often lead to permanent non-elastic deformation or collapse.
Transcritical instabilities (C) lie somewhere in between and are
often associated with a loss of reflection symmetry. There is an
extensive literature on understanding and classifying buckling
instabilities, see for example Thompson and Hunt [7] and
references therein. This paper shall concern instabilities that lead
to large irreversible jumps.

Subcritical bifurcations, exemplified by the classic responses
of thin elastic shells, are known to carry distinctive features,
such as the likelihood of extreme imperfection-sensitivity and
wide experimental scatter, and certainly merit a general overview.
The canonical example is that of the axially-loaded cylindrical
shell, of interest to rocket designers, aircraft and storage tank
manufacturers, as well as in the construction of buffers to absorb
mechanical energy. Here, instability under realistic conditions
occurs significantly below the critical load of the system as
determined from linear stability analysis of the perfect problem,
absent from imperfections.

One approach to deal with such imperfection-sensitivity is
through stochastic methods. Eliashakoff, Arbocz, and others
pioneered developments, such as the international databank
of imperfections (see [8, 9]) and references therein. While
such methods appeal at one level, from a modeling point of
view there is also significant sensitivity to the precision of

FIGURE 1 | (A) Supercritical, (B) subcritical, and (C) transcritical buckling

instabilities and their unfolding in the presence of small symmetry-breaking

effects. Heavy lines: perfect system. Light lines: imperfect system. Solid lines:

stable. Broken lines: unstable under controlled load.

the chosen numerical method, and useful analyses typically
require many Monte Carlo realizations. Also, from a practical
perspective, estimating a safety margin of a particular specimen
would necessitate comprehensive imaging and analysis of all its
imperfections. Unfortunately for modern, lightweight composite
structures, such imperfections often occur beneath the surface
layer and are hard to characterize in practice. There has therefore
long been a search for a lower-bound criterion below which a
violently subcritical structure, such as a cylindrical shell cannot
buckle. One such phenomenological idea is that of a “reduced
stiffness” approach [10], but such simple design formulae still
require a full understanding of the non-linear elastic equilibrium
states of the shell.

Methods based on sensitivity to perturbations have received
a recent resurgence of interest inspired by theories of critical
transitions in fluid dynamics, see for example [11, 12]. The
focus in these works is sensitivity not to imperfection but to

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 July 2019 | Volume 5 | Article 34

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Champneys et al. Happy Catastrophe

dynamic shocks; how large a dynamic perturbation in the form
of a small tap or localized impact would be needed to induce
buckling. It is not clear yet whether such ideas represent a realistic
prospect for a practical non-destructive test for a particular
specimen. Nevertheless, we shall argue in section 5 below that
small localized shocks can allow engineers to explore the critical
mountain pass unstable equilibrium that provides the route
to buckling.

Fundamentally, this paper takes a deterministic rather than
stochastic point of view. Starting with the perturbation methods
introduced by the Dutch engineer [13], there is a rich tradition
of using pseudo arc-length continuation to track unstable post-
buckling solutions emerging from classical bifurcation points
[14–18]. Supplemented by energy landscape considerations
providing information on stability, these methods can be
interpreted fundamentally as implicit analytical approaches to
studying equilibrium solutions and their buckling paths. On
the other hand, stochastic formulations, primarily explicit, after
the introduction of quasi-realistic imperfection types and shapes
and often employing Monte Carlo techniques, can be used to
track expected dynamical behavior for particular specimens (see
e.g., [19, 20]). Clearly, both approaches carry inherent advantages
and disadvantages, and should be regarded as complementary.

A key idea is that the perfect problem, devoid of imperfections
or shocks, can give theoretical and practical insight into
how structures buckle subcritically. We shall emphasize the
significance of the Maxwell load, the level at the fundamental
and periodic buckle patterns have the same energy (see e.g.,
[21]) and section 4 below. Nearby spatially localized equilibria
are energetically preferable. But to find such states, we need
to overcome an energy barrier, in the form of snaking or
concertina pattern of unstable states connected by sequences of
folds. Numerically, these patterns can be captured using pseudo-
arclength continuation, going back to Riks [22]. But how can we
embed such a methodology in modern finite-element analyses?
How can one access such unstable paths in an experiment? What
is the best approach to understanding energy barriers? These
are the questions this paper seeks to answer. We shall also keep
in mind the perspective [3] that buckling instabilities, rather
than to be avoided at all costs, can, in principle, be beneficial
happy catastrophes.

The rest of this paper is outlined as follows. Section 2
gives a brief overview of non-linear post-buckling analysis
of subcritical problems, starting from the pivotal work of
Koiter, and including some general comments on analytical
perturbation methods. A motivating simple pin-jointed “knee”
model is presented as well as the classical problem of the
axially loaded cylindrical shell. Section 3 surveys recent progress
in computational path-following methods applied directly to a
finite element representation to compute stable and unstable
paths, with illustrations for a simple snap-through structure
as well as the more complex cylindrical shell. Section 4 then
considers computational energy-based methods that are able to
identify Maxwell loads and mountain-pass solutions, again with
reference to the cylindrical shell. Section 5 considers emerging
experimental ideas to implement the numerical methods
from the previous sections, via carefully controlled laboratory

procedures. Section 6 surveys three examples, at different length-
scales and from distinct engineering domains, that attempt
to exploit subcritical buckling instabilities: prestressed stayed
columns, adaptive aeroelastic structures, and a structural model
for auxetic materials. Finally, section 7 draws conclusions and
suggests avenues for future work.

2. LARGE AMPLITUDE POST-BUCKLING
ANALYSIS

Before the advent of modern computer-based methods, non-
linear post-buckling of elastic structures was largely dealt with
by systematic asymptotic analysis; i.e., perturbation procedures
based on Taylor expansions about the critical bifurcation point
[7, 23]. The pioneer of this field was Warner T. Koiter (1914–
1997), beginning with his PhD thesis, completed during the
Second World War [13]. Local perturbation analysis can be
highly instructive in highlighting fundamental properties like
underlying symmetries and symmetry-breaking, yet its range of
validity typically is limited. This observation is by no means new.
Koiter, for example, in discussing the buckling of a spherical shell
under external pressure in 1969 [24], states:

“In the problem of the spherical shell under external pressure

the systematic perturbation procedure is only valid in a range

of load factors within a fraction of the order h/R of the critical

load, and for deflections of the order (h/R)1/2 times the shell

thickness. It follows that the systematic perturbation procedure

at the critical point has little, if any, practical significance for the

present problem.”

Here h represents the shell thickness and R the radius. He went
on to suggest the following:

“A far more powerful method of achieving a second

approximation to the post-buckling behavior was also developed

already in our earlier work [13, section 38]. It consists of an

evaluation of the quartic terms in the energy expression not at

the critical load itself, but at the actual value of the load factor

under consideration.”

The reference is of course to his thesis [13], which did not
appear in English until 1967 and was never published in the open
literature. Koiter was a deeply humble man.

Inmore recent years Koiter’s ideas have been supplemented by
other asymptotic techniques, such as expansions at the so-called
Maxwell load [25] and pseudo arc-length continuation which
will be explained in section 3 below. Throughout this article we
will apply our ideas to the recurring infinite-degree-of-freedom
example of the axially-compressed cylindrical shell. But first, let
us introduce a simple single degree-of-freedom example.

2.1. A Simple Motivating Example
Consider the simple mechanical model of Figure 2. A linear
spring k is placed in-line with a “knee” comprising two
finite-length rigid links hinged with a rotational spring, and
compressed by an axial force P as shown. The rotational spring
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FIGURE 2 | (A) Schematic of a simple knee model. (B–D) Load-deflection diagrams for the case of (B) an elastic rotational spring, (C) rigid–plastic rotational spring

and (D) elasto-plastic rotational spring.

can take various characteristics—elastic, rigid-plastic or elasto-
plastic, as shown in the insets. It is also assumed that the arms
can pass through one another without restriction.

The system has two degrees-of-freedom, with associated
generalized coordinates1 and θ that respectively describe in-line
displacement and rotation of the rigid link elements. It has three
distinct possibilities for equilibrium. First, we have the simplest
state in which the rotational spring does no work and the in-line
spring simply squashes to give a fundamental equilibrium path
describing the pre-buckling state:

P = k1. (1)

Second, under the condition that the knee rotation θ continues to
grow in the positive sense, the potential energy function for the
post-buckling response is either

V = 1

2
K(2θ)2 + 1

2
k[1 − L(1− cos θ)]2 − P1,

when the rotational spring is elastic with rotational stiffness K, or

V = 2Mpθ + 1

2
k[1 − L(1− cos θ)]2 − P1,

if it has passed its limiting plastic moment Mp. In each case, the
first two terms are the strain energies in the rotational and in-
line springs, respectively; the final subtracted term is the work
done by the dead load P. When the rotational spring is in the
plastic state, its energy contribution can be seen as quasi-strain

energy, i.e., the work done in moving the joint through positive
rotation, without necessarily being able to release this work if
the rotation is reversed. Responses are then readily obtained in
closed form from the two equilibrium equations ∂V/∂θ = 0 and
∂V/∂1 = 0.

The fundamental and post-buckling paths are plotted in
Figure 3. for the three possibilities of Figure 2. There are several
points worthy of note. For the elastic system of Figure 2A

the initially-stable pure-squash fundamental equilibrium state
reaches a supercritical bifurcation point B where it becomes
unstable, whereupon one branch of the stable post-buckling path
is then followed. Post-buckling analysis of this type of behavior
responds well to the perturbation method [7].

The rigid-plastic system on the other hand has no bifurcation
point, and this highlights one of the key issues to be addressed in
this paper. Over much of the range, the fundamental and post-
buckling paths, although being relatively well-separated in the
P−θ plot, lie close to one another in the P−1 diagram.Moreover,
although the paths approach each other asymptotically, they
never meet; the bifurcation exists only at infinite load. Yet when
the load is high, buckling could certainly be triggered by small
imperfections or fluctuations. So the real problem becomes to
determine a practical range of loads over which the system can
be assumed to be relatively safe from instability. Another point to
note in this case is that although the buckled path represents pure
plastic behavior with zero stiffness, there remains an effective
stiffness on this path beyond its minimum load point, once
the arms have passed through vertical. This stiffness is due to
geometric effects (deflection perpendicular to the load remaining
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FIGURE 3 | Responses of the knee models of Figure 2 for the parameter values L = 1, k = 3, K = 1, and Mp = 1. (Left) Load vs. θ . (Right) Load vs. end-shortening.

(A) Elastic joint of Figure 2B. (B) Rigid-plastic joint of Figure 2C. (C) Elasto-plastic joint of Figure 2D. Unstable paths under controlled load are shown as

broken lines.

constrained). A number of circumstances are known where
such geometrically non-linear, infinite-buckling-load problems
arise in practice, for instance the buckling of railway tracks in
heatwave conditions [26], and kink-banding of layered materials
[27]. A major theme here is to review techniques for obtaining

ball-park estimates for effective buckling loads and post-buckling
information for such problems.

The bifurcation point is restored for the elasto-plastic system
as shown in the bottom row of panels in Figure 3, where the
behavior follows the purely elastic response of the top panels
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FIGURE 4 | (A) An axially compressed cylinder features an unstable post-buckling equilibrium in the shape of a single inwards dimple, corresponding to the

mountain-pass point between the stable pre-buckling and restabilized post-buckling regimes. (B) Through the process described in section 3 the single dimple can

multiply circumferentially to form a single row of axially-localized buckles.

until the rotational moment reaches its plastic limit, whereupon
it switches to the rigid-plastic response of the middle row. The
absence of a first bifurcation point is avoided, but an effective
secondary bifurcation point S also needs to be negotiated. As with
many interactive buckling problems there is the danger that the
continuation of the elastic path remains as a possible equilibrium
solution. This simple example emphasizes that modern path-
following computational methods need to be constantly vigilant
in checking for further instability points and bifurcations as they
track along an equilibrium path.

2.2. The Axially-Compressed Cylindrical
Shell
Much has been written on the classical problem of the buckling of
an axially loaded cylindrical shell (see e.g., [2, 28]) and references
therein. It carries all the hallmarks of a classical subcritical
buckling problem, in particular its notorious sensitivity to
imperfections. Its apparent simplicity, yet underlying complexity,
has ignited significant academic dueling over the course of the
last century (cf. different “resolutions” of the “paradox” by Zhu
et al. [29] and Elishakoff [30]), and caused design engineers
many a headache.

It might seem strange in a forward-looking review paper
to focus on such a problem, but with the modern impetus
toward ever stronger and lighter structures and new materials,
understanding the cylinder response remains a fundamental
issue of continuing research. We will therefore use axially-
compressed cylindrical shell buckling as the exemplar
problem on which to illustrate the methodology reviewed in
this paper.

When the fundamental deformation mode of a long,
slender structure loses stability, it can either transition into
a periodic buckling mode, spread equally over the domain,

or a localized mode that is concentrated only over a portion
of the domain. Such different kinds of buckle patterns were
illustrated in the beautiful experimental and computational work
of Yamaki [31]. It is well-known that localized post-buckling
modes have a proclivity to develop in systems governed by
subcritical bifurcations [32]. Moreover, Hunt and Lucena [33]
showed that axially localized post-buckling modes exist for the
axially compressed cylinder. This circumferential ring of an
axially localized, diamond-shaped waveform can then undergo
homoclinic snaking in the compressive loading parameter,
leading to sequential ring formation along the length of the
cylinder [34].

The work by Horák et al. [35] showed that an unstable
equilibrium—localized axially and circumferentially—in the
form of a single dimple is also possible (see Figure 4A). This state
corresponds to the mountain-pass solution separating the stable
pre-buckling and restabilized post-buckled states. The initial
dimple, which can be found using the mountain pass algorithm
of section 4, can undergo circumferential snaking, culminating
in one ring of diamond-shaped buckles (see Figure 4B). This
type of circumferentially-driven snaking is different from the
axially-driven snaking described by Hunt et al. [34], where
circumferentially-complete rings of buckles grow axially in a
sequential manner.

We shall continually return to the squashed cylinder problem
throughout this study.

2.3. Post-buckling Analysis—A Post-Koiter
Reflection
Another canonical shell buckling problem that has received a
resurgence of interest due to the recent work of Hutchinson [36]
is that of the spherical shell under uniform external pressure.
That problem too exhibits violently subcritical bifurcation and
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shock-sensitivity. In an extended paper published in 1969
[24] writes

“An important result of Beaty’s analysis [37] was that the

numerical factor of the quartic term is much larger than the

coefficient of the cubic term, indicating that the quartic term

becomes already important for very small deflections in terms of

the shell thickness, and that it is dominant over the cubic term for

larger deflections. A similar evaluation of the quartic term in the

energy expression at the critical load factor and for rotationally

symmetric deformations wasmade independently byWalker [38],

who also evaluated the next higher-order term, namely the quintic

term, with an even larger numerical coefficient.”

He thus puts the poor performance of the perturbation method
down to ever increasing influence of higher and higher-order
terms—quartics larger than cubics, quintics more than quartics,
and so on. This significant observation seems odd from the
viewpoint of perturbation theory; using von Kármán–Donnell
equations for the cylindrical shell [39] for example, a discrete
formulation comprising doubly-periodic shapes generates energy
terms only up to quartic level [7].

The need for higher-order terms can be explained through
the process of elimination of passive coordinates, as espoused in
the book by Thompson and Hunt [7]. Consider a conservative
elastic structural system whose stable equilibrium configurations
are described by minima of the energy functionW(qi,3), where
{qi} describes a set of n incremental generalized coordinates
measured from a monotonically-increasing (fundamental)
equilibrium path in loading parameter 3. Suppose that n−m of
the qi are deemed passive (not actively involved in the buckling
process). These passive terms are represented parametrically
in terms of the remaining m active coordinates and loading
parameter thus, qα = qα(qj,3), where now 1 ≤ j ≤ m and
m + 1 ≤ α ≤ n. A new energy function W(qj,3), equal in
value to the W-function, but written in terms of just the active
coordinates and loading parameter, is introduced:

W(qi,3) ≡ W[qj, qα(qj,3),3]. (2)

Differentiation using the chain rule then gives derivatives of W in
terms of W. Specifically, if W is diagonalized such that Wij = 0
for i 6= j, subscripts denoting partial differentiation with respect
to the appropriate generalized coordinate, then derivatives up
to cubic level pass over unchanged, but at quartic level we see
contamination from lower-order derivatives. In particular,

W1111 = W1111 − 3

n
∑

α=m+1

W2
α11

Wαα

(3)

for a significant quartic term (see [7] for more details). Similar
contamination from lower derivatives likewise appears at quintic
level and above, leading to a lack of convergence as described in
the Koiter quote above.

The derivative Wαα appearing in the denominator of (3) is
the so-called stability coefficient for the passive coordinate qα ,
and would have equated to zero had the coordinate been active
and directly involved in the buckling process, If critical loads

tend to bunch together on the fundamental path, as occurs
for both the axially-compressed cylinder and pressurized sphere
discussed above, then contamination from higher-modes close to
the critical point of interest can clearly be extreme.

Modal analysis in the form of spectral or pseudo-spectral
numerical methods made a resurgence in the 1990s and 2000s,
allowing numerical continuation (path-following) methods to
scale to models with hundreds of degrees-of-freedom (see
e.g., [21, 40]). Nowadays, with modern computers being able
to cope easily with millions of degrees-of-freedom, because
of its geometric versatility the finite element method is the
preferred technique for solving complex problems in engineering
mechanics. Results provided in the next section are therefore
presented in a finite-element setting.

3. NUMERICAL PATH-FOLLOWING FOR
SUBCRITICAL INSTABILITIES

In applied mathematics, methods for multi-parameter analysis,
branch-switching and bifurcation tracking are well-established
theoretically using the language of catastrophe (singularity)
theory [41] and differentiable dynamical systems (see [42]),
including in infinite dimensions [43]. Using the concept of
pseudo-arclength continuation due to Keller [44] these methods
have been implemented numerically and incorporated into
a variety of numerical continuation software packages, such
as AUTO [45]. Typically such formulations apply to systems
governed by ordinary or partial differential equations. In
structural mechanics, specialized arc-length techniques were
developed for non-linear formulations by Riks [14] and Crisfield
[15]. Classically, those studies tended to be restricted to a single
parameter—the applied load. However, the formulation can
easily be extended to the general setting, as described here.

Our formulation considers a discretized model of a quasi-
statically evolving, conservative and elastic structure, where the
internal forces, f (u), and tangential stiffness, KT(u), are uniquely
defined from the current displacements, u, by means of the
first and second variations of the total potential energy. Here
u may represent all the degrees-of-freedom of a simple system,
or a large-scale reduction of an infinite-dimensional problem.
We first present a general framework, then illustrate the results
for a simple toggle frame, before discussing implications for the
cylindrical shell problem.

3.1. The General Setting
Equilibrium is defined as a balance between internal and
external forces acting on the structure. In a displacement-based
finite element setting, this balance is written in terms of n
discrete displacement degrees-of-freedom u, and a scalar loading
parameter λ:

F(u, λ) = f (u)− p(λ) = 0. (4)

The vectors p(λ) and f (u) are the external (non-follower)
load and internal force, respectively. In the case of linear and
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proportional loading we have p(λ) ≡ λp,λ
1 = λp̂, where p̂ is a

constant reference loading vector (dead loading).
The system (4) of n equations in (n + 1) unknowns—n

displacement degrees-of-freedom and one loading parameter—is
solved for a solution point,

x = (u, λ) .

To turn this into a well-posed system of equations, one needs to
add an additional scalar constraint, the most natural of which is
the arclength constraint

N(x) = n⊤u u+ nλλ − σ = 0.

Hence

FN(x) ≡
(

F(x)
N(x)

)

= 0, (5)

where nu and nλ take different forms depending on the nature
of the arclength constraint. By linearizing about the current
equilibrium state, x, and applying Newton’s method for the
iterative correction, δx,

FN(x+ δx) = FN(x)+ FN,x(x)δx+O(δx2) ≡ 0

⇒ δx = −
(

FN,x(x)
)−1

FN(x), (6)

we can find a set of solution points describing a continuous
equilibrium curve. Note that the partial derivative of the residual
with respect to the displacement vector, F,u = f ,u(u), is equal to
the tangential stiffness matrix KT(u).

More generally, Equation (4) can adapted to incorporate any
number of additional parameters:

F(u,3) = f (u,31)− p(32) = 0, (7)

where

3 = [3⊤
1 ,3

⊤
2 ]

⊤ = [λ1, . . . , λp]
⊤

is a vector containing p control variables. Typically, 31

corresponds to parameters that influence the internal forces (e.g.,
material properties, geometric dimensions, temperature and
moisture fields) and 32 relates to externally applied mechanical
loads (e.g., forces, moments, tractions).

The number n of equilibrium equations in Equation (7),
correspond directly to the n displacement degrees-of-freedom.
Because the structural response is parameterized by p additional
parameters, a p-dimensional solution manifold in R

(n+p) will
be computed—the so-called equilibrium hypersurface [46]. By
defining additional auxiliary equations, g, specific solution
subsets on this p-dimensional manifold are recovered.
In the general setting we therefore find solutions to the
augmented system

G(u,3) ≡
(

F(u,3)
g(u,3)

)

= 0. (8)

1The comma notation is used throughout to denote differentials with respect to

subscripted variables.

When r auxiliary equations are defined, the solution to
Equation (8) is (p − r)-dimensional. Hence, r = p − 1 auxiliary
equations are required to define a one-dimensional equilibrium
curve in R

(n+p).
Posing the problem in this general manner allows the

structural response to be viewed not only as a function of a
varying load but also as a function of other parameters that define
the structure. By treating these additional parameters as “forcing”
variables in an arc-length solver, their effect on the structural
response is readily obtained.

This general treatment naturally lends itself to the tracing
of loci of singular points in parameter space. To constrain
the system of n equilibrium equations to such a locus, we
simultaneously enforce a criticality condition, for example,

KTφ = 0,

i.e., at least one eigenvector φ of the tangential stiffness matrix
KT spans the nullspace. In the most general form, a vector of q
auxiliary variables v may be added to the auxiliary equations g.
Hence,

G(u,3, v) ≡
(

F(u,3)
g(u,3, v)

)

= 0. (9)

Equation (9) describes n equilibrium equations and r auxiliary
equations in (n + p + q) unknowns leading to a (p + q − r)-
dimensional solution. To determine a one-dimensional curve of
singular points, we thus require r = p+q− 1 auxiliary equations
to constrain the system. Following the above example, when the
n-dimensional null vector at the critical state is introduced as
the auxiliary variable v, a singular curve in p = 2 parameters
is appropriately constrained by the associated r = n + 1
auxiliary equations

KTv = 0, and ||v||2 = 1,

where the scalar equation restricts the magnitude of
the eigenvector.

When evaluating one-dimensional curves (r = p+q−1), one
additional constraining equation is needed to uniquely solve the
system of for a solution point

y = (u,3, v)

on the curve described by G(y). Hence,

GN(y) ≡





F(u,3)
g(u,3, v)
N(u,3)



 = 0, (10)

where N is a scalar equation that plays the role of a multi-
dimensional arc-length constraint along a specific direction of
the subset curve. Note that the system of equations for classical
load-displacement equilibrium paths can be recovered by setting
p = 1 and q = r = 0.

A solution to Equation (10) can be obtained through a
consistent linearization coupled with Newton’s method,

y
j+1

k
= y

j

k
−

(

GN
,y (y

j

k
)
)−1

GN(y
j

k
) ≡ y

j

k
+ δy

j

k
, (11)
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FIGURE 5 | Schematic diagram of a toggle frame under transverse load P

causing the frame to snap through with displacement w. The height H of the

toggle frame is a free parameter that can be varied in a numerical continuation

solver to investigate the system’s snapping behavior.

where the superscript denotes the jth equilibrium iteration and
the subscript the kth load increment. The iterative correction
cycle is typically started by a predictive forward Euler step.

The above framework is quite general and can be adapted to
find many different kinds of curves on an equilibrium surface;
see [17] or [18] for further details. The key is to define pertinent
auxiliary equations that constrain the equilibrium equation to the
locus of points required. Examples include:

1. Classic equilibrium paths in load-displacement space
(a loading parameter is varied).

2. Parametric paths in parameter-displacement space
(a geometric, constitutive or secondary loading parameter
is varied).

3. Pinpointing singular points (bifurcation and limit points) on
either of the two paths mentioned above.

4. Bifurcated branches emanating from a bifurcation point.
5. Singular paths that describe a locus of bifurcation and/or limit

points in load-parameter-displacement space.
6. Branch-connecting paths that connect points on distinct

equilibrium curves, e.g., a fundamental and a bifurcated path.

3.2. Illustrative Example—Snap-Through of
a Toggle Frame
As an example, consider the snap-through behavior of the
centrally loaded toggle frame with clamped ends, shown in
Figure 5. We start this idealized model with pre-defined
geometry, material properties and loading to illustrate how the
general algorithms can be used for a comprehensive investigation
of structural stability and design parameter sensitivity. We shall
evaluate the frame’s fundamental load-displacement behavior,
including pinpointing all relevant singular points. Additional
non-singular and singular curves are then traced by starting
from a chosen solution on the fundamental path to explore the
surrounding design space.

The toggle frame initially deforms symmetrically on the
fundamental equilibrium path. This deformation mode becomes
unstable at a symmetry-breaking bifurcation just before the
maximum limit point on the curve. Because the connected non-
symmetric path branching from the bifurcation point is unstable,
the toggle frame snaps dynamically into the inverted stable shape.
In Figure 6, blue segments denote stable equilibria, red segments
denote unstable equilibria and black dots denote critical points.

Figure 6A restricts path-following to the classical
displacement-load space. To illustrate generalized path-
following capabilities, Figure 6B extends the analysis to changes
in the height H of the frame. Figure 6B shows an isometric
view in displacement-load-height space of the fundamental and
bifurcation paths, plus two additional parametric paths. For these
parametric paths, the applied load is held constant at P = 37.4
and P = 64.8, respectively, and the relationship is traced between
the height H and central displacement w.

By imposing a singularity condition in the generalized path-
following algorithm, the locus of limit and bifurcation points can
be traced, illustrating how changes in the height of the frame
affect the load-displacement solution of these singular points.
There are multiple benefits of tracing such fold lines. First, they
can be used to identify interesting points, such as the coincidence
of limit and bifurcation points—the hilltop-branching points at
H = 0.567 andH = 0.581—or points where bifurcation and limit
points cease to exist—the cusp catastrophes at H = 0.506 and
H = 0.346. These points are clearly marked in the orthographic
projections of Figure 6C (w vs. H) and Figure 6D (P vs. H).
Second, fold lines can be used in design studies to determine the
sensitivity of singular points with respect to design parameters,
without having to perform computationally expensive Monte
Carlo studies. Finally, fold lines can be used for optimization
purposes. For example, the displacement at the first instability
can be maximized by reducing the height of the toggle frame
to coincide with the hilltop-branching point at H = 0.567
(see Figure 6C).

3.3. Application to the Cylindrical Shell
Consider a thin-walled isotropic cylindrical shell of thickness t =
0.247mm, radius R = 100mm and length L = 160.9mm loaded
in uniform axial compression via displacement control. The
cylinder is linear elastic and isotropic with Young’s modulus E =
5.56GPa and Poisson’s ratio ν = 0.3, chosen to model Yamaki’s
longest cylinder (Batdorf parameter Z = L2

√
1− ν2/Rt =

1, 000) [31]. To represent a typical experimental setup as closely
as possible, the cylinder is rigidly clamped at both ends with axial
compression/displacement u imposed at one end of the cylinder
and the other end completely constrained.

The cylinder is modeled using isoparametric, geometrically
non-linear finite elements based on a total Lagrangian
formulation. The finite elements used are so-called “degenerated
shell elements” [47] based on first-order shear deformation
theory assumptions [48]. The cylinder is discretized into 97 axial
and 241 circumferential nodes, that are assembled into 25-noded
spectral finite elements using the element formulation of Payette
and Reddy [49] and the large rotation parametrization described
by Bathe [50]. To reduce computational effort and complexity,
only a quarter of the cylinder is modeled. The circumferential
domain is described by s/R ∈ [−π ,π] and the axial domain
by x/L ∈ [−0.5, 0.5] such that we model the quarter-segment
s/R ∈ [0,π] and x/L ∈ [0, 0.5] with reflective symmetry
conditions applied along the lines of symmetry. In all figures
that follow, blue segments denote stable equilibria, red segments
unstable equilibria, and black dots critical points.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 July 2019 | Volume 5 | Article 34

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Champneys et al. Happy Catastrophe

FIGURE 6 | (A) Fundamental and bifurcation equilibrium paths of load (P) vs. central displacement (w) for a toggle frame of height H = 0.65; (B) Isometric view of

fundamental and bifurcation paths in displacement-load-height space, two additional parametric paths showing the relationship between height (H) and central

displacement (w) at applied loads of P = 37.4 and P = 64.8, and locus of limit and bifurcation points with changing height; (C,D) Orthographic projections of (B) in

displacement-height and load-height space, respectively, indicating cusp catastrophes and hilltop-branching points.

Figure 7A shows the equilibrium path starting from a single
dimple, superimposed on the pre-buckling curve (fundamental
path) in terms of normalized axial compression (uR/Lt) vs.
normalized load (P/Pcl). The classical buckling load is given

by Pcl = 2πEt2/
√

3(1− ν2). The stable pre-buckling curve
runs diagonally in blue with the unstable single dimple
solution running almost coincidentally alongside it. The unstable
equilibrium branch of the latter starts at a limit point close to the
first critical point on the pre-buckling path. This limit point is
denoted by 0 in Figure 7A with the corresponding normalized
radial (out-of-plane) displacement (w/t) shown in Figure 7B.
The deformation mode clearly shows a localized dimple in the
center of the domain.

Path-following in the direction of decreasing displacement
leads to a snaking sequence. The reason behind snaking has been
established in a number of related contexts as the behavior of

homoclinic orbits in the unfolding of a heteroclinic connection
between flat and periodic states (see [21]) and references therein
for an application to structural mechanics. The phenomenon is
closely related to the notion of front pinning around a Maxwell
point, first described by Pomeau [51] in the context of fluid
dynamics. For a recent review of snaking see [52].

Starting from limit point 0 in Figure 7A, the single dimple

becomes more pronounced with decreasing end-shortening and
stabilizes at a limit point (uR/Lt = 0.293, P/Pcl = 0.479). This
critical point corresponds to the smallest possible compression
to allow a single dimple as an equilibrium solution. Tracing
the equilibrium path further, a series of destabilizations and
restabilizations add further buckles to the left and right of the
original single dimple. Proceeding along the snaking path, the
single dimple thus grows in a sequence of 1, 3, 5, 7, and 9
waves until an entire ring around the cylinder exists. The mode
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FIGURE 7 | (A) Equilibrium path of a single-dimple post-buckling solution growing sequentially around the cylinder circumference through a series of destabilizations

and restabilizations known as cellular buckling (or snaking). (B) Deformation mode shapes of the displacement component normal to the cylinder wall (w) over the

cylinder domain (x is the axial coordinate and s the circumferential coordinate) for different points 0–V in (A). (C) Equilibrium path of a four-dimple post-buckling

solution growing sequentially through cellular buckling. The single-dimple snaking solution in (A) connects to this path at a pitchfork bifurcation (see point D in inset B).

(D) Radial deformation mode shapes over the cylinder domain for different points O–E in (C).

shapes corresponding to limit points I–V in Figure 7A are shown
in Figure 7B and depict the series of increasing odd-numbered
buckles (1, 3, 5, 7, and 9) spreading around the cylinder
circumference. This snaking sequence of odd buckles connects to
another equilibrium path that preserves an additional symmetry
group at pitchfork bifurcation point PB. This additional path is
described next.

The equilibrium path in Figure 7C is an additional snaking
sequence starting from two sets of two dimples located to the left
and right of the original dimple (see Figure 7D). In Figure 7C

the snaking path of the single dimple (from Figure 7A) is
shown in gray for reference and the new equilibrium path
starting with two sets of two dimples is shown in red/blue.
The four-dimple snaking path also originates at a limit point
(O) close to the first critical point of the pre-buckling path

(see inset A of Figure 7C). With decreasing end-shortening,
the snaking sequence grows from 4 to 8, and finally to 10
buckles. The mode shapes corresponding to various points
on the red/blue path of Figure 7C are shown in Figure 7D.
The two equilibrium paths (gray and red/blue) are seen to
connect at a pitchfork bifurcation (point D in inset B of
Figure 7C). In the immediate vicinity of this connection, the
four-dimple snaking path regains stability at a limit point.
The ten-buckle waveform is stable from uR/Lt = 0.268
until it destabilizes at a pitchfork bifurcation (point E) at
uR/Lt = 0.626. Beyond this bifurcation, an additional snaking
sequence occurs, leading to the full Yoshimura post-buckling
pattern. Additional rings of buckles all initiate from a single
localization and then spread circumferentially (see [53] for
more details).
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FIGURE 8 | (A) Equilibrium path of a double-dimple post-buckling solution growing sequentially around the cylinder circumference through a series of destabilizations

and restabilizations known as cellular buckling (or snaking). (B) Radial deformation mode shapes over the cylinder domain for different points ∅–v in (A). (C)

Equilibrium path of a four-dimple post-buckling solution growing sequentially through cellular buckling. The single dimple snaking solution in (A) connects to this path

at a pitchfork bifurcation (see point d in inset B). (D) Radial deformation mode shapes over the cylinder domain, for different points o–e in (C).

An additional snaking sequence starting from two dimples
and representing growth of an even number of waves (2, 4, 6,
8, and 10) also exists. The even snaking sequence mirrors the
behavior of the odd snaking sequence in its pattern formation
and in the connection to another equilibrium path at a pitchfork
bifurcation. In systems featuring spatial localization, snaking
of both even and odd number of localizations is typical [52]
and these solutions are often intertwined. This behavior is also
confirmed for the axially compressed cylinder and is shown
in Figure 8.

Figure 8A shows the equilibrium path of the even snaking
sequence in red/blue superimposed on the snaking solution
of odd buckles in gray (from Figure 7A). The even snaking
sequence is also broken away from the pre-buckling equilibrium
path and starts with the formation of two adjacent inward
buckles (see point ∅ Figure 8B). These two buckles then
multiply throughout the snaking sequence, with the equilibrium

paths of the even and odd snaking sequences intertwined. The
different mode shapes corresponding to limit points i–v in
Figure 8A are plotted in Figure 8B and show the series of
increasing even buckles (2, 4, 6, 8, and 10) growing around the
cylinder circumference.

The snaking solution of even buckles also ends at a
pitchfork bifurcation (point PB in Figure 8A) where it
connects to another segment of the equilibrium path.
This connecting equilibrium path is shown in Figure 8C

with the even-buckle path from Figure 8A superimposed
in gray. The two segments (red/blue and gray) of the
equilibrium path connect at a pitchfork bifurcation (point
d in inset B of Figure 8C). The mode shape of point d in
Figure 8D confirms the expected ten-buckle waveform. In
conclusion, both the odd- and even-buckle curves lead to
an axially localized post-buckling state of a single ring of
ten diamonds.
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In closing this section we remark that the snaking results for
the present paper were obtained with a mesh 4× denser than
those in reference [53]. While the overall behavior of the snaking
sequence and the nature of pattern formation is unchanged, the
refined results presented here update and eliminate the second-
order snaking features originally observed in reference [53].

4. ENERGY BASED METHODS—MAXWELL
AND MOUNTAIN-PASS CRITERIA

While continuation methods are an integral part of unraveling
the often complex behavior associated with subcritical
instabilities, they do not tell us which state (energetically)
the system would prefer, nor quantify the sensitivity of a locally
metastable equilibrium state, so-called shock sensitivity. We
can therefore supplement our continuation approach with
energy-based methods to explore these questions more directly.

4.1. Maxwell Load vs. Maxwell
Displacement
To address the problem of an infinite pre-buckling critical
load (as in Figure 3B), one option is the Maxwell equal-energy
criterion. This criterion originates from the concept of the Gibbs
free energy in thermodynamics, to address state transitions
triggered by statistical fluctuations or disturbances [54, p. 53].
Here, stability is governed only by the global minimum of total
potential energy. Under some form of parametric variation, such
as load or applied displacement, the Maxwell criterion provides
the first circumstance for which the energy of a post-buckled
state first falls below the energy minimum of the pre-buckled
state. The reasoning is that, upon increase of the parameter, this
would be the first time the system could be shaken out of its
trivial state and transition to the post-buckled global minimum.
Although the Maxwell criterion cannot be considered a hard and
formal point of instability, it may, nevertheless, serve as a useful
and robust lower-bound estimate for instability in systems where
small disturbances and imperfections have pronounced effects.

A long structural system loaded axially typically prefers a
localized to a distributed post-buckled response [32]. If the
localized buckle subsequently restabilizes, additional cells of
buckling will often develop in adjacent positions to the first via
a sequence of localized instabilities, according to the snaking
mechanism described for the cylinder above. Typically, the load
tends to fluctuate or snake between upper and lower limits as the
sequence progresses. The Maxwell load, defined (as above) as the
lowest load for which the post-buckled energy matches its pre-
buckled counterpart, lies between the two limits, and effectively
acts as an organizing center about which the post-buckled load
oscillates as the snaking progresses.

This snaking sequence with localizations developing over the
length of a structure has now been recognized in a number
of different circumstances (see for example [55–59]). However,
in section 3.3 we describe an alternative snaking scenario, in
which localized buckles trigger not axially but orthogonal to
the direction of the applied load, around the circumference
of a buckling cylindrical shell. In this sequence, a Maxwell

displacement rather than a Maxwell load acts as the organizing
center, with the system fluctuating between two limits of end-
shortening as the load continues to fall. Two examples of such
snaking behavior are seen in Figures 7A,C.

4.2. Mountain Pass Algorithms
First introduced by Ambrosetti and Rabinowitz [60], the
Mountain Pass Lemma is a fundamental mathematical tool
for proving the existence of stationary points of non-linear
functionals. Excluding some technical details, the key ingredients
of the theorem are:

1. a suitable (energy) functionalW(x)
2. a stationary point e1, which is a local minimum
3. a second point e2, for whichW(e1) > W(e2)

We note that a suitable function is normally available in the form
of total potential energy, with local minima appearing on a stable
fundamental equilibrium path [7].

The theorem states that, over the set of all continuous paths
connecting e1 and e2, i.e.,

Ŵ : = {γ ∈ C[0, 1] : γ (0) = e1 and γ (1) = e2},

one can find the infimum of the maxima of the energy functional
W(u) along any path γ ∈ Ŵ. This infimum is the mountain pass
solution and is a saddle point

xc : = inf
γ∈Ŵ

[

max
x∈γ

W(x)

]

.

The physical significance of the mountain pass is that it
represents the connecting point in solution space with the
smallest energy hump,

1Wc = W(xc)−W(e1),

required to escape the local minimum at e1 and transition
to a lower energy state at e2. Therefore, the Maxwell
load/displacement (depending on the loading regime), at which
W(e1) = W(e2), marks the onset of the ability to jump to such a
lower energy state, and therefore the onset of “shock sensitivity”
in the system.

The application of the Theorem provides a computable energy
hump to assess shock sensitivity; the mountain pass state xc itself
is significant, since at this point the system has just one negative
eigenvalue for which the system is unstable. This eigenvector
marks a direction in solution space m tangent to the mountain
path γ , and suggests a mode shape that if applied to the system
wouldmost easily induce transition from e1 to e2. This eigenvalue
at the mountain pass point therefore indicates the imperfection
or probing modes that a subcritical system could be most
sensitive to.

The literature gives a variety of algorithms for finding
mountain pass solutions e.g., the nudged elastic band method
[61], the dimer method [62], and conjugate peak refinement [63].
Here we briefly describe the latter, as it is used later to illustrate
shock sensitivity of the axially-compressed cylinder.
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FIGURE 9 | Symbols denote: (×) Local minima, (−−−) potential “mountain path,” (−→) search direction © line maximum, 1 line minimum.

Conjugate peak refinement is an iterative scheme performing
alternating line search maximization and minimization steps to
find the mountain pass solution xc. The approach generates
a sequence of piecewise-linear approximations to a path γ ⋆

which passes through xc. For the kth iteration, we denote this
approximation γ (k) characterized by a set of points Ŵ(k)

: =
{

x
(k)
i

}k+1

i=1
. We start the process by defining γ (0) as the straight

line connecting e1 and e2, so that Ŵ(0) = {e1, e2}. Then starting
with k = 1, each iteration comprises three steps:

1. Line Search Maximization: We maximize the functional
W(x) along the piecewise linear path γ (k−1), to obtain

line maximization point x̂(k) lying between points x
(k−1)
j

and x
(k−1)
j+1 .

2. Line Search Minimization: We then find the scalar α such
that W(x̂(k) + αs) attains a minimum, where the search
direction s is chosen to be:

s = −g+ gTh

dTh
dT where d = ∇

(

γ (k)
)

and g = ∇W(x̂(k))

(12)
3. Update Mountain Path γ (k): We then add the new point

x̂(k) + αs to the path to form γ (k), so that points defining the
line are

Ŵ(k)
: =

{

x
(k−1)
0 , . . . , x

(k−1)
j , x̂(k) + αs, x

(k−1)
j+1 , . . . , x

(k−1)
k

}k+1

i=1
.

At any iteration of the state x̂(k) + αs is the best approximation
of the mountain pass solution. Convergence can be tested by
ensuring (1) the gradient of the energy at this point zero (2)
determining the lowest two eigenvalues of the energy’s Hessian,
since only the smallest must be negative.

We now demonstrate the mountain pass procedure
geometrically with a generic, two degree-of-freedom energy
landscape given by a modified Müller-Brown potential [64]. This
particular potential (Figure 9) has application in computational
chemistry [63]. It is chosen since it has no symmetry, and is
characterized by two local minima at e1 and e2, with a non-trivial

mountain pass connecting them. The approach provides a good
approximation to the saddle point in just two iterations. In the
first iteration, we see the algorithm starts by approximating the
mountain path with a straight line between the e1 and e2. A
maximum is located along this line; see the ◦ in the far left panel
of Figure 9. A minimum in the conjugate direction (12) is then
found, as indicated by the symbol 1 in the next left-most panel.
Thus, the first iteration provides a reasonable approximation
to the saddle. The path γ (0) is updated to γ (1), characterized
by three points connected by the pair of straight lines. For
iteration 2 the procedure continues in the same way, first a
maximization step over the path to produce the second ◦ in the
third panel of Figure 9, followed by a minimization problem
in the conjugate direction to the path through the maximum
point. For this example, the newly found minimum on this path
(the second 1 in the right-most panel of the figure) satisfies the
tolerance condition

‖∇W(xc)‖e < ǫ = 1× 10−5,

and the algorithm terminates.

4.3. Application to the Cylindrical Shell
Classically, stability of equilibrium is governed entirely by the
local Hessian of the total potential energy; wells with respect to all
degrees-of-freedom denote stability, whereas saddles or maxima
denotes instability. This framework fails in the case of infinite
critical loads presented in Figure 3, where two equilibrium paths
are separated by a small energy barrier but never strictly intersect.
Thus, although the idealized structure never transitions out of
the trivial equilibrium state, that state becomes metastable, where
small disturbances could trigger instability.

As is seen in the insert of Figure 7A, the cylinder too features
an equilibrium path that asymptotically converges to, but never
actually intersects, the pre-buckled path. Here, we compare the
energy levels of the pre-buckling path and the circumferentially
periodic equilibrium path of a single ring of diamonds (path
ending in point E in Figure 7D). As load is applied in a
rigid manner (controlled end-shortening), the stability threshold
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A B

FIGURE 10 | The stability landscape of an axially compressed cylinder with a probing side force. (A) Normalized probe force (FR/Et3) vs. normalized probe

displacement (1w/t) for different values of normalized axial compression (uR/Lt). (B) The stability landscape in terms of axial compression vs. probe force vs.

probe displacement.

corresponds to a Maxwell displacement and this computes to be
Mu = uM/ucl = 0.486 (uMR/Lt = 0.294). It is interesting to
note that this value correlates well with the limit point (uR/Lt =
0.294) in Figure 7A.

The Maxwell displacement could serve as a lower-bound
estimate for the cylinder’s first instability load, by marking
the onset of “shock sensitivity” [65]—i.e., that of metastability
of the pre-buckling path. This snaking sequence marking the
development of a single dimple into a buckle pattern that is
periodic circumferentially but localized axially, is in marked
contrast to the snaking at the lower Maxwell load of such
rings developing to a fully periodic pattern identified in earlier
work [40, 66].

Rather than apply a computationally expensive infinite
degree-of-freedom mountain-pass algorithm as in Horák
et al. [35], another way of looking for the mountain-pass
solution is to test the cylinder’s resilience to the single-
dimple localization; how much displacement is necessary
to trigger a dynamic escape from stable pre-buckling to
a post-buckled state via the mountain-pass saddle? We
could envisage perturbing the cylinder from the side using a
hypothetical infinitesimally-thin, infinitely-stiff, probe or poker;
experimental implementation of this idea is explored in section
5 below.

To implement such an analysis numerically, consider
applying such a poker at right angles to the cylinder mid-
surface, half-way along its length. Such a process involves
two fundamental parameters, applied end-compression u and
lateral probing force F. We consider applying such a probe
repeatedly as the axial compression is quasi-statically increased.
The results are presented in Figure 10. At low levels of
axial compression, we find a non-linear softening/stiffening
relationship of strictly positive stiffness between the probe
force F and the ensuing dimple displacement 1w; see path 1
in Figure 10A. Here 1w denotes radial displacement relative
to the radial (Poisson) dilation that naturally occurs in the
pre-buckling state.

For increased levels of end-shortening, the equilibrium
manifold traces S-shaped curves; as the dimple develops, lateral
resistance reduces, until limit points are traversed leading
to regions of negative stiffness (paths 2–3 in Figure 10A).
For even greater end-shortening, the probe force reduces
significantly, dipping below the zero load axis (e.g., F =
0 on path 4). At this point an unstable saddle state is
encountered, corresponding to the single-dimple mountain-
pass solution. Also shown in Figure 10A is a black fold line
connecting maximum and minimum limit points, and thereby
describing a boundary that separates the domain into stable and
unstable regions.

Figure 10B expands this landscape into three dimensions,
providing an interesting stability landscape that qualitatively
matches the experimental results of Virot et al. [67] on a different
cylinder. The area between the stable pre-buckled and unstable
single-dimple solutions under the F vs. 1w curve represents the
energy barrier, and thereby the “shock sensitivity” of the pre-
buckling state. The size of this energy barrier can be understood
qualitatively by plotting the fold line connecting maximum and
minimum points; see Figure 10B. This curve slopes down toward
the buckling point on the pre-buckling path (point CL). Indeed,
the fold line intersects the buckling point on the pre-buckling
path, confirming that resilience of the pre-buckling state to
small perturbations (i.e., the linear stability) indeed vanishes at
that point.

5. EXPERIMENTAL METHODS FOR
EXPLORING INSTABILITIES

While numerical methods for the analysis of non-linear
structures are well-developed, experimental methods tailored
to such structures, in particular shell buckling, have received
comparatively little attention (see e.g., [20, 31, 67–72]). The
trend in modern engineering is to test experimentally for single
parameter values, and then use computational models, virtual
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testing, and “digital twins” wherever possible to extend the
envelope. However, for fundamentally imperfection-sensitive
buckling problems, such an approach will not explore the stability
landscape reliably. Hence there is a fundamental barrier to
researchers hoping to exploit non-linear structures concepts
for industrial applications. This barrier has arguably led to
over-conservative designs in safety-critical industries like the
aerospace sector, which requires stringent testing before new
components are allowed to fly. Organizations, such as NASA have
therefore put renewed emphasis on experimental testing, and in
particular, feeding high-fidelity imperfection measurements of
specimens into models [72].

5.1. Experimental Path-Following
Conventional test methods fail to capture all but the simplest
non-linear behavior, and consequently researchers lack reliable
methods to validate their ideas experimentally. The main reason
traditional test methods fail is the difficulty inmeasuring unstable
parts of the response. Any structure whose equilibrium curve
features limit points can snap under force- or displacement-
controlled test methods, as illustrated in Figure 11A. Such snap-
through thus gives rise to regions of the equilibrium curve that
might seem inaccessible experimentally.

Numerical analysis succeeds where experiments fail because
in a numerical setting the force and displacement at a control

FIGURE 11 | (A) Schematic of a non-linear force-displacement curve featuring both displacement and force limit points. At a force limit point (A) force-controlled test

methods snap across. At a displacement limit point (B) displacement-controlled methods snap down. (B) Schematic of an arc length-based numerical solution

traversing a displacement limit point. The green line represents the iterative solutions of a Newton-Raphson based method.

FIGURE 12 | (A) Geometry of the shallow arch. The depth of the arch is not labeled; this dimension is measured into the page. Displacement ua is applied at the

mid-span actuation point, generating reaction force Fa. (B) Modified geometry including two “probes.” Symmetry is maintained by enforcing vertical displacement up
across both probes, while they are allowed to move horizontally. (C) FEA prediction of the full equilibrium curve from one fundamental state to the other. (D) A subset

of the equilibrium curve, starting from each of the fundamental equilibria and showing only the first two limit points on each side; equilibria available at ua = 5 mm are

numbered 1–5. (E) Deformation shapes associated with equilibria 1–5. This figure has been redrawn from the figures in Neville et al. [74].
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point can be controlled independently and simultaneously. This
freedom allows the solver to set combined limits on force and
displacement, and prevents jumping to other solutions when an
equilibrium becomes unstable (see Figure 11B for an illustration
of the arc-length method). Consequently, displacement limit
points can be traversed, unstable paths followed, and the full
non-linear response of a structure described. In an experimental
setting, the force and displacement of a control point are linked
by the elasticity of the structure; meaning that one can control
the displacement of a control point and generate a reaction force,
or vice versa, but not both. This coupling makes it impossible
to apply numerical techniques to experiments without some
additional control.

There are several interesting published approaches to work
around this problem. Wiebe and Virgin [73] use a hammer to
trigger snap-through of a shallow arch. By analyzing the transient
dynamic trajectories of the structure during the snap, locations of
unstable static equilibria are deduced. By intentionally allowing
snap-through, this method can locate unstable equilibria without
needing to actively control them. Virot et al. [67] use a poker
to laterally probe a cylinder under increasing axial load. By
tracking changes in the probe force-displacement curves, they
can estimate the load at which the cylinder becomes globally
unstable, before the instability load is reached. The concept of

probing is especially relevant to the work presented here: an
experimental path-following method which utilizes probes to
stabilize and control unstable equilibria.

5.2. Application to a Shallow Arch
Consider the centrally-loaded shallow arch studied by Neville
et al. [74] shown in Figure 12A, with dimensions L = 205 mm,
h = 20 mm, t = 1.5 mm, and depth = 5 mm. For symmetric
deformations, the structure exhibits the complex non-linear
behavior shown in Figure 12C. Looking at the first few “petals”
(starting at one of the two fundamental equilibria and following
the equilibrium path toward the other), it is clear that the
response comprises many successive displacement limit points.
A displacement-controlled experiment would only obtain the
first two segments of the equilibrium curve (the solid lines in
Figure 12D), snapping from one to the other at limit points L1
and L2.

At ua = 5 there are several equilibria available; each with
distinct values of Fa. Each equilibrium is also associated with
a unique deformation shape (Figure 12E), where the unstable
equilibria correspond to more complex shapes. Controlling
the structural shape allows us to stabilize unstable equilibria,
and indirectly influence the reaction force on a displacement-
controlled control point. Having decoupled the force and

FIGURE 13 | Results of the experimental path-following method. (A) FEA prediction of a subset of the equilibrium curve. Solid and dashed lines indicate stable and

unstable segments, respectively. (B) Equilibrium curves obtained in a path-following experiment from Neville et al. [76]. The dashed gray line was obtained using

displacement control on the midpoint only. The path-following algorithm was started at the two points marked “S.” Non-equilibria (e.g., |Fp| > 0.1 N when searching

for equilibria) are shown in green, and equilibria (Fp < 0.1 N) are indicated by the black dots. (C) Deformation shapes of the arch during the experiment. Shapes 1–4

correspond to the markers 1–4 in (B).
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displacement experimentally, numerical approaches become
viable. Two extra probes provide control over the deformation
shape as shown in Figure 12B. Such probes produce reaction
forces that change the structure. However, when the probe
reaction force equals zero, then it is an equilibrium of the
unperturbed structure. Crucially, reaction force is also zero
at unstable equilibria—in this case the probes provide the
infinitesimal restoring force required to prevent the instability
from growing. By applying a large probe perturbation at a stable
equilibrium, the probes can be used to search for other equilibria.

By moving the probes and actuation point in concert, a simple
form of path-following can be performed [75]. The actuation
point steps forward, then the probes search for equilibrium
(Fp = 0). Small perturbations can be used to avoid large
deviations from the equilibrium curve. If the actuation point
steps past a limit point, the probes will not be able to find

FIGURE 14 | Test for assessing the resilience of the cylinder to perturbations,

proposed by Thompson [65] and Thompson and Sieber [11].

equilibrium and the actuation point direction is then reversed.
This approach allows the equilibrium path of the shallow arch
to be followed around a displacement limit point, as shown in
Figure 13B. The FEA prediction is also shown in Figure 13A, for
comparison. Deformation shapes of the arch at several points in
the experiment are also shown in Figure 13C. Shapes 1 and 2
are the two fundamental equilibria (also shown in Figure 12C).
Shape 3 corresponds to a stable equilibrium, and resembles shape
1 in Figure 12E. Shape 4 corresponds to an unstable equilibrium,
and consequently is more complex. It resembles shape 2 in
Figure 12E, which corresponds to the same segment of the
equilibrium curve.

Experimental results are naturally affected by phenomena
and imperfections not included in theoretical models. The
shallow arch example, for instance, is sensitive to changes in
geometry and probe location, as well as displaying complex
behavior in response to the two input parameters (ua and up).
Virtual testing is a technique that can address these issues,
and aid in experimental design and interpretation of results.
A successful example of such a virtual testing environment
coupled to the commercial FE solver ABAQUS is presented in
Groh et al. [75]. A finite-element model is used to simulate
a “perfect” experiment—i.e., one in which the equipment and
test specimen behave exactly as intended. The model includes
limitations of the experimental setup—e.g., sensor noise, limited
number of control points, etc.—and provides the same inputs
and outputs that are available in the real experiment. This
virtual testing environment provides a useful middle ground
between numerical solutions and experiments, and serves as a
“sandbox” or digital twin to explore the effects of different test
configurations and imperfections.

5.3. Experimental Mountain-Pass
Methods—“A Game of Poker”
Inspired by the theoretical work of Horák et al. [35], Thompson
et al. [11, 65] observed that the mountain-pass state for an

FIGURE 15 | Prestressed stayed columns in practice. (Left to right) An example as a slender support for a façade in Chiswick Park, West London; a set of roof

supports in the former Eurostar terminal in Waterloo Station in Central London; an example in a shopping mall in Dalian, China. Photographs courtesy of Dr. Daisuke

Saito and Dr. Jialiang Yu.
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axially-compressed cylinder looks remarkably similar to the
small dimple induced by probing the cylinder laterally with a
finger. The authors discuss a thought experiment where the
cylinder’s resilience to perturbations (i.e., linear stability) is
tested by probing the cylinder radially inwards using a poker
(see Figure 14).

In fact, the idea of poking axially-compressed cylinders from
the side to assess resilience to buckling has a long history
predating any mountain-pass considerations. By tapping axially-
loaded cylinders with a finger, Eßlinger and Geier [77] found
stabilized single-dimple states. Hühne et al. [71] realized that
the single dimple can act as an imperfection, that excites

FIGURE 16 | Prestressed stayed column. (Row 1: left to right) Geometric definitions; effect of prestressing and buckled shape showing deformations of main column,

cross-arms and stays used in the Rayleigh–Ritz model. (Row 2: left to right) Equilibrium paths showing: distinct mode 1 buckling (Q1); distinct mode 2 buckling (Q2);

interactive buckling with a secondary mode jumping path. (Rows 3–4) Illustration of mode jumping through different points on the secondary mode jumping path from

the third case in row 2 now plotted as Q1 vs. Q2 in row 3 and the deformed structure presented in row 4.
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the characteristic observed buckling behavior. They set out to
out to determine a robust lower bound to buckling load that
could replace the empirically determined knockdown factors
proposed in NASA’s SP-8007 [78] guideline. Over the last decade,
this methodology has led to a battery of tests on composite
cylinders [79], and extensions to probabilistic perturbation [80]
and multiple perturbation loads [81].

The poker force vs. displacement response of the cylinder
for different levels of axial compression was shown previously
using FE simulations in Figure 10A. Once these S-shaped curves
pass through the zero-poker-force axis, the single dimple exists
as an unstable saddle solution and a dynamic escape via the
mountain pass is possible. The likelihood of such an escape can be
quantified by the mountain-pass energy barrier, represented by
the area enclosed by the associated force/displacement curve and
force axis. In Figure 10A it is readily observed that the greater
the applied axial compression, the smaller the energy barrier
provided by the single-dimple mountain pass. Thus, by repeating

the poking procedure for multiple levels of axial compression and
computing the energy barrier up to the mountain-pass point, a
non-destructive testing method can be established that provides
a safety cushion before buckling is likely to occur.

Such a probing experiment was successfully implemented
by Virot et al. [67]. By controlling the displacement of the
lateral poker, the unstable mountain-pass point was determined
when the reaction force on the poker vanished; this state
replicating that of an unprobed cylinder. Furthermore, by
aggregating the poker force vs. poker displacement curves for
multiple levels of compression, a stability landscape emerged that
qualitatively matched (Figure 10B). An experimental buckling
load of the cylinder could also be determined by recording
the level of compression for which it lost its ability to resist
the poking displacement, i.e., the reaction force fell beneath a
specific tolerance.

Even though the idea is simple to implement, in practice the
system can bifurcate by pivoting around the point load. To offset

FIGURE 17 | Sandwich panel with prestressed lattice core, the unit cells of which can be represented as prestressed stayed columns, as highlighted in the lower

diagram [90, 91].

FIGURE 18 | Buckling of a simply-supported strut and corresponding equilibrium diagrams. (A) The strut deflects sideways when subjected to a compressive force

greater than the buckling load. (B) An idealized symmetric strut with no geometric or loading imperfections features a symmetric pitchfork bifurcation diagram in load

vs. displacement space. (C) Initial imperfections break the pitchfork.
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this symmetry-breaking effect, as highlighted by Thompson
and Sieber [11], a second control probe is often required.
Second, the choice of probing location needs to be carefully
chosen, as different locations can lead to differing buckling
load predictions [82]. Finally, there are practical shortcomings
to obtaining the mountain-pass state for arbitrary systems. For

the cylinder, the mountain-pass state happens to be a relatively
simple single-dimple localization, but in general, it could bemore
intricate, and may be difficult to impose by one or even multiple
pokers. Combining poking experiments with experimental path-
following algorithms may well prove a fruitful avenue for
future research.

FIGURE 19 | (A) Equilibrium path of force (F ) vs. central deflection (δ). (B) Compression-central deflection-force space showing a broken pitchfork and the locus of

limit points of the snap-through curve. (C,D) Show the locus of limits point in central deflection-compression and compression-force space, respectively.

FIGURE 20 | Adaptive air inlet demonstrator. (A) Open state. (B) Closed configuration.
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6. EXPLOITING BUCKLING INSTABILITIES

As stated in the Introduction and indeed reflected in the title of
this paper, instability need not solely be considered as something
to be avoided or designed against; it is also possible to utilize
instability in a positive manner [3]. We highlight three areas
where such benefits can be found in different engineering
domains and length-scales.

6.1. Prestressed Stayed Columns
Prestressed stayed columns are important elements of many
modern large-scale structures; see Figure 15.

Such columns tend to be slender and have intermediately
placed cross-arms and associated pretensioned cables, thereby
reducing the buckling effective length Le. The length Le provides
a measure of the critical buckling eigenmode wavelength and the
Euler strut buckling load is proportional to 1/L2e . The system
of cable stays and cross-arms in the prestressed stayed columns
provide intermediate restraints that reduce Le significantly and
hence provide a commensurate increase in critical buckling load
and ultimate capacity. Depending on the overall geometry, this
change in critical buckling load can also be associated with
quantitative and qualitative changes in the triggered buckling
mode within the non-linear range. The behavior has been
discussed at length in previous work, with the focus falling on
qualitative critical [83] and post-buckling behavior determined
by the pretensioning force [84], physical experiments [85],

triggering of modal interactions and associated symmetry-
breaking [59, 86] and tuning behavior for different cases [87, 88].

Some of these works use conventional finite element
modeling, where post-buckling shapes are initiated by
introducing imperfections that are affine to linear buckling
modes. A drawback is that the full picture of modal interaction
only becomes available under a combination of symmetric and
anti-symmetric imperfections. Other modes may also be drawn
in, for example, should it be thin enough, localized buckling
in the main tubular column, and the numerical methodology
discussed in section 3.3, can be useful. Nevertheless, there has
been a sequence of increasingly-sophisticated low-dimensional
models, to capture mode interaction [59, 89]. These models
are based on the Rayleigh–Ritz method, with a finite number
of linear eigenmodes of the unstayed column being used to
discretize the deformation response, with cross-arms acting as
beams, and cable stays as tension-only members.

The particular complication in stayed columns is produced
by the cable stay, where there is the possibility of a sudden loss
in elastic stiffness caused by cables slackening. The outcome is
similar to that described in Figures 2D, 3C. Using numerical
continuation it has been possible to track post-buckling paths of
perfect systems within the package AUTO-07P [45]. Figure 16
shows a realistically-proportioned symmetric stayed column
system of length L with three cross-arms of lengths ae and am,
the exact details of which are presented in Yu and Wadee [59]. It
shows that the mechanical response is likely to destabilize when
distinct modes are triggered or mode interaction dominates; the

FIGURE 21 | (Left) Shows 2D simulations of hexagonal lattices under different configurations (square and diamond) using ABAQUS. The geometry is discretized with

40,000 triangular elements, and model as linear elastic material under large deformation, strain and contact. (Right) Shows manufactured specimens in each of

the configurations.
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kinks in the post-buckling paths are signatures of the portions
of the cable stays going slack, instantly losing axial stiffness, and
causing a sudden unstable jump in the response.

The column subsequently restabilizes once it finds a
configuration that restores equilibrium. Both the numerical
continuation procedure for the analytical model, and the Riks
algorithm used in ABAQUS, can capture this behavior. One
advantage of the former is that it tends to crystallize the detailed
mechanical response into a few distinctive characteristics;
the main column buckling modes are discretized into a
Rayleigh–Ritz type model, and the non-linear results provide
straightforward output of the contributions of the linear buckling
modes to the post-buckling profile, Q1 and Q2 being amplitudes
of the first two main column buckling modes. This analysis
allows the interpretation of the effects of symmetry-breaking, and
the potential to trigger higher pure or interactive modes in the
post-buckling range.

All the consequences for the post-critical strength, stiffness
and potential to jump between different equilibrium states owing
to the cable stay behavior, can be determined directly. This
information can then be used to determine parametric spaces
where practical geometric quantities, such as stay diameter,
layout of the stayed column system and initial prestressing forces,
can generate qualitatively different, yet predictable, responses
[59, 87], as shown in Figure 16.

The simplest configuration with a single-cross arm can also
be considered as a single cell within a larger lattice material.
The performance of metal lattices, for example with a criss-cross
structure as in Queheillalt and Wadley [90], may be enhanced
by including internally woven tension ties, to make them similar
to woven composites [91]. The behavior of the sandwich panel
of Figure 17, depends on non-linear interactions between the
individual cells, and is observed to have a similar structure to
the stayed column. By adjusting the pretension in the ties at the
production stage, alongside the geometry of the cells and the
overall configuration, it is possible to engineer the post-buckling
stiffness to a desired level. If, for instance, the post-buckling
stiffness of an overall panel can be tuned to be practically zero
[92], but with each buckling cell having a significant critical
load, then the structure would be highly effective in absorbing
energy. Moreover, since stress propagation depends on structural
stiffness, if the post-buckling stiffness on the panel were zero,
it would potentially minimize stress transfer to any attached
structure. This type of application, using internal buckling of a
lattice material for dynamic isolation purposes, has potential for
applications where lightweight reusable elements are required for
impact and blast protection or seismic isolation [93].

6.2. Adaptive Structures
So-called adaptive structures are able to change shape and/or
material properties in response to varying external stimuli [94].
The application of adaptivity in engineering has the potential for
significant improvements in performance, by making structures
more efficient over a broad range of operating conditions [95].
A fascinating natural example of shape-adaptivity is the Venus
flytrap, whose rapid transition from open to closed to capture its
prey occurs as a consequence of snap-buckling instability [96].

Hence, when operating conditions require large displacements
and/or multiple stable configurations, structural instabilities can
be viewed as potentially advantageous rather than a source
of failure.

Consider for simplicity the buckling response of a simply-
supported Euler strut, illustrated in Figure 18. In particular,
consider the stable post-buckled configuration in the inset
of Figure 19A. For given combinations of compression and
symmetry-breaking defects, such a post-buckled structure can
behave like an arch, exhibiting dynamic “snap-through” behavior
between the two stable states when subjected to an external
transverse load, F. For a beam compressed just beyond the
first buckling load, these configurations connect via an S-shaped
equilibrium path in the space of a centrally-applied force, F
plotted against the midpoint respective deflection δ, as shown
graphically in Figure 19A. The structure initially deflects in a
stable manner before reaching a maximum limit point, where
it snaps dynamically through a region of instability (2) onto the
equilibrium branch for its second stable configuration (3).

Compression levels required to produce any meaningful
shape-change from δ to −δ are typically sufficient to cause snap-
through at a symmetry-breaking bifurcation (see asymmetric red
shape in Figure 19A). Figure 19B shows how the equilibrium
path in the F vs. δ plane connects the two stable branches of the
broken pitchfork. Figure 19B also shows how the limit points
of the F vs. δ equilibrium path change as a function of the
compressive displacement, u, via the black fold line.

Specifically, the fold line tracks the two limit points with
respect to changes in the compressive displacement, u, thereby

FIGURE 22 | A new model for an auxetic cell, depicted in the unloaded state

where P = 0 and Q1 = Q2 = h. The illustrated auxetic configuration becomes

non-auxetic once the arms have passed through horizontal. Typically, the

arches snap through in turn rather than simultaneously.
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illustrating the border between stable and unstable equilibria.
By reducing u, the two limit points of the equilibrium path in
Figure 19A collide in a cusp singularity (see Figures 19C,D).
This cusp singularity therefore determines the critical value
of compression, u, at the onset of dynamic snap-through
behavior [97]. Indeed, depending on the value of compression,
u, three distinct types of post-buckling behavior can be observed
when the transverse load, F, is applied:

1. For values of compression, u, greater than the limit point on
the broken-away pitchfork branch, the structure snaps from
its first stable shape to its second configuration, traversing
the region of instability delimited by the fold line. A self-
equilibrated second configuration exists (stable even when F
is removed). The structure is said to be bistable.

2. Reducing the compression, u, into the region between the
limit point on the broken-away pitchfork branch and the
cusp singularity, allows the beam to traverse a region of
instability when F is applied, thereby still exhibiting snap-
through behavior. However, at these values of compression,
it does not have a second stable configuration for F = 0.
When the external force is removed, the strut then snaps

back to its primary state. In other words it shows “super-
elastic” monostability.

3. By decreasing the level of compression, u, even further the
structure deforms non-linearly, displaying stiffness adaptation
but without snap-through. It is then elastically monostable or
simply stable.

The control of geometrical parameters, material properties
and/or boundary conditions can be used to tailor the equilibrium
manifolds and adapt the multistability of the system to specific
working and environmental conditions. We now consider a
practical example.

A passive adaptive air inlet can regulate the opening aperture
of a connected duct by interacting with the fluid flow around
it. As shown in Figure 20, the inlet comprises a deformable,
glass-fiber panel poised in an open state. The panel has been
buckled into the region between the limit point of the broken-
away branch and the cusp (refer to the taxonomy above), making
it monostable.

As the airflow streaming over the panel accelerates into the
connected duct, the decreasing pressure field creates an upwards
force on the panel causing it to snap shut at a critical airspeed.

FIGURE 23 | Response of the cell of Figure 22 for L = 1, h = 0.2, k = 1, and c = 0.02. Solid line depict stable equilibrium states under controlled stretch 1, and the

dotted line unstable states. (A) Three-dimensional plot of load P against its corresponding deflection 1 = 2h−Q1 − Q2, and the symmetry-breaking variable

(Q1 −Q2). (B) Projection onto the P−1 plane. (C) Projection onto the P− (Q1 −Q2) plane. (D) Projection onto plane perpendicular to the direction of the arrow in (B).
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FIGURE 24 | Combined cells of the form of Figure 22. With the centerline held

stationary, displaced states are shown dashed. We refer to this configuration

as a three-tier system, with four effective degrees-of-freedom Qi , i = 1 . . .4.

If the airspeed is lowered beneath another threshold, the inlet
automatically opens again. Unlike traditional shape-changing
systems, the inlet does not rely on auxiliary devices for actuation.
By increasing the amount of compression beyond the limit point
on the broken-away path, the inlet can be transformed into a
bistable structure that remains closed once the airflow is reduced.
The greater the applied compression, the higher the airspeed
required to actuate snap-through; the system’s parameters can be
tailored to meet specific operating requirements (see [98, 99] for
further details).

This device has potential for engineering applications where
cooling and drag reduction create competing design drivers.
Examples include air inlets on cars or cooling ducts on jet
engines, which use fresh-air cooling for reliable engine operation
although this cooling induces a drag penalty. For additional
engineering examples that use the non-linear taxonomy
described above (see e.g., [100–107]) and references therein.

6.3. Buckling-Induced Auxetic Materials
The fact that materials exist with negative Poisson’s ratio is not
only intriguing but also of practical significance. So-called auxetic
materials typically exhibit high energy absorption and fracture
resistance, and have a broad range of practical applications from
blast curtains and shock absorbers to running trainers and the
ability to control waves (see for example [108–113] and references
therein). Auxetic materials are known to occur naturally (various
honeycomb structures for instance or even crumpled paper [113]
but with recent technological advances in 3D printing they can
also be readily manufactured. This ease of manufacture opens
exciting new opportunities to tailor such materials, and work has
exploded in this area. To show something of the flavor of this

exciting new field, we now briefly outline two examples of auxetic
behavior studied recently by the present authors, induced by local
instabilities within the material’s structure.

Experimental and numerical work led by Bertoldi et al.
[111] has demonstrated how mechanical instabilities in periodic
porous structures can lead to the dramatic reorganization of the
material from the original configuration, giving rise to the auxetic
possibilities. One widely studied structure involves the uni-axial
loading of a square array of circular holes made of an elastomeric
matrix, which can be readily manufactured using a 3D printer.
The hexagonally-shaped sample shown in Figure 21 at the right
is manufactured with an OBJET Connex 3D printer (Stratasys
Ltd., USA), a machine that employs PolyJetMatrix Technology to
dispense material—in this case Tango, a rubber-like elastomer—
from designated micro-scale inkjet printing nozzles [114, 115].
When a compressive load is aligned with the square array,
geometric reorganization is seen, as the elastic instability induces
periodic deformation patterns of tessellating ∞-shaped voids.
At the macroscale, this generates a non-linear auxetic response
by the simulations shown in blue in Figure 21. Interestingly
if our hexagonal specimen is rotated through 45◦, so that the
compressive load acts on a diamond arrangement of circular
holes, the material response is close to that of classical linear
elastic (non-auxetic) material (red line).

Most examples of auxetic behavior in the literature are based
on re-entrant structures [108, 109, 113, 116], and we next
briefly review a recent contribution [117] detailing a variant
that allows phase transitions from auxetic to non-auxetic phases
and vice versa, based on the unit cell shown in Figure 22. The
cell comprises two back-to-back single degree-of-freedom arches
with displacements measured by Q1 and Q2, linked by the linear
spring of stiffness k [118]. Four different aspects of the full
nonlinear response, including the important plot of load against
its corresponding displacement of panel B, are given in Figure 23.

The continuous smooth curve replicates the response of a
single arch [118], apart from the fact that under displacement
control it goes unstable at bifurcation point A. Here the
stable post-buckling solution becomes non-homogeneous, with
displacement in one of the arches outpacing the other. This
asymmetry continues until the first component passes through
the horizontal and begins to stiffen, whereupon displacement
in the other starts to take over. Symmetry is again restored at
bifurcation B.

The absence of homogeneity in the natural loading path
gives the potential for considerable complexity of response once
cells are combined, as in Figure 24. The responses are shown
in Figure 25. With a relatively modest extension of the single
cell model, a complex tangle of stable and unstable equilibrium
paths is generated. Further details can be found in Hunt and
Dodwell [117].

7. CONCLUSION

This theme issue focuses on the notion of stability in a variety of
different contexts, both mathematical and practical. It could be
argued that there is no more classical context in which one thinks
of stability than structural engineering. It is fundamentally the job
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FIGURE 25 | Response of the three-tier system of Figure 24, for L = 1, h = 0.2, k = 0.5, and c = 0.02. (A) Load P plotted against its corresponding deflection 1

and the symmetry-breaking variable (Q1 −Q4). (B) Symmetric solutions for which Q1 = Q4 and Q2 = Q3. (C) Projection of (A) on to the P− 1 plane. (D) Projection

on to plane perpendicular to the direction of the arrow in (C).

of the structural engineer to avoid buckling, failure or collapse.
This paper takes a slightly different point of view on the topic.We
focus on emerging ideas of elastic stability and post-instability
behavior of structures that fail subcritically, via irreversible jumps
in energy. Such problems are of current interest for at least
three reasons.

First and foremost, because of their sensitivity to shocks and
imperfections, there is difficulty in certifying such structures
for safety. We have argued that despite over 70 years since
Koiter’s pioneering work, a robust methodology for analyzing
the stability of such structures has yet to emerge. We have
promoted here a promising line of attack, based on the
Maxwell equal energy criterion and the concept of the mountain
pass, as well as emerging ideas on how such ideas might be
applied experimentally. However, there remains much to be
done before such ideas can provide a practical assessment and
design tool. It is also interesting to note how the method
relies on understanding the structure of unstable, localized
post-buckling paths, which form the energy barriers or basin
boundaries of the problem. In that sense, there is a strong
connection to other active areas of stability-related research;

tipping points in natural systems (see e.g., [119]), and transition
to turbulence in pipe flow and related fluid-dynamic problems
(see e.g., [120]).

Second, the structural engineering domain is changing. Across
numerous lengthscales, there is a quest for ever more lightweight
structures. It could be said that the revolution in composites
and other nano-structured materials has been threatening to
revolutionize just about the whole of the built environment
for almost 50 years. Yet, despite the huge investment within
academia and industry, why are we not yet seeing carbon fiber
motor cars come off the production line, wholly composite
airplanes in our airports, or fiber-reinforced polymer buildings
being constructed en masse? There are doubtless a range of
reasons for this slow penetration of composite technologies, and
as most disruptive technologies, the revolution may actually
be just around the corner. Nevertheless, we would argue that
one of the bottlenecks still to be overcome, is that we do
not understand how such structures fail. Most lightweight
structures are optimized for strength, but such optimization
typically leads to subcritical failure modes (see e.g., [28]). But, for
structuresmade from compositematerials, to the uncertainty and
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sensitivity of classical steel and concrete structures that buckle
subcritically, we have additional complexities of anisotropy,
internal micro-structural lengthscales and buried failures, cracks
or delaminations that are hard to characterize and inspect. We
have also seen, through the example of an auxetic material, that
the distinction betweenmaterials and structures is fundamentally
being blurred. It would seem then, the seeds of the robust
methodology we have been trying to sow in this article are more
important now than ever, if the true potential of nano-structured
materials is to be realized in the built environment. We hope that
future researchers may be inspired to water these seeds.

Finally, there is the point of view that we have been also
trying to promote in this article that instability is not necessarily
a bad thing. We have highlighted three areas of possible
engineering exploitation of non-reversible structural instability.
More generally though, we are quite used to the notion of things
that snap and pop into instability. These include the pressure
required to depress the keys on a computer keyboard being
controlled by dome buckling, to old-fashioned bi-metallic strips
being used to control switches, as in a motor car indicator
light. Crash barriers and crumple zones also exploit the idea
that elastic deformation of a subcritical structure can lead to
transfer of significant amounts of energy into permanent plastic
deformation. Origami also provides an inspiration to engineers
in how small energy barriers need to be overcome in order to
fold (or unfold) a structure into a new shape (see e.g., [121–123]).
Most interestingly, there is great potential to draw inspiration
from biology. Irreversible transitions are the norm in biology,
for example in cell division, cell polarity formation and most
morphogenesis problems. Although such processes are often
controlled by genes and other signaling proteins, there is an
increasing body of work that looks at the biomechanics of such
transitions. Indeed, at many different lengthscales, processes that
are crucial to development, or to the maintenance of an organism
or ecosystem require sudden, irreversible response to continuous
variation of external conditions. It is easy to think of examples
like the springing of a Venus fly trap, or the opening of seed

pods that can easily be regarded as buckling events of the nature
described in this paper.

Clearly, there remain many lessons that engineers and
designers need to learn by taking inspiration from the natural
world. Not least among such lessons, as we seek to build a more
resilient world in the face of global change, must surely be that
there need not necessarily be anything to fear from an instability.
Not only are sudden irreversible instabilities not necessarily to be
feared, they can in fact be designed to be exploited for the greater
good. Happy catastrophes indeed!
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