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This study uses a probabilistic cellular automata (PCA) to model the spatial and temporal

dynamics of calcium release units (CRUs) within cardiac myocytes. The CRUs are subject

to random activation, nearest-neighbor recruitment, and temporal refractoriness, and

their interactions produce a physiologically-important condition called calcium alternans,

a beat-to-beat oscillation in the amount of calcium released. In the PCA this manifests as

a transition to period-2 behavior in the fraction of activated lattice sites. We investigate

this phenomenon using PCA simulations and moment-closure approximation methods

of zero order (mean-field), first order (pair), and second order (quartet). We show that only

the quartet approximation (QA) accurately predicts the thresholds of the activation and

recruitment probabilities for the onset of periodic behavior (alternans), as the lower-order

approximations do not sufficiently account for important spatial correlations. The QA also

accurately predicts the emergence of spatio-temporal clustering in the PCA, providing

an analytical framework for investigating pattern formation dynamics in such models.

Our analysis demonstrates a systematic approach to efficiently handling the increased

combinatorial complexity of the QA, whose required computation time is non-trivially

larger compared to the mean-field approximation but remains an order of magnitude

lower than the numerical PCA simulations.

Keywords: PCA, probabilistic cellular automata, lattice model, pair approximation, quartet approximation, calcium

alternans, mean field, cardiac

1. INTRODUCTION

Probabilistic cellular automata (PCA), a class of binary lattice models, are fairly ubiquitous in
modeling complex systems (along with agent-based models), in fields ranging from physics to
ecology to economics [for a selection of examples see [1]]. While their appeal stems from their
intuitive, bottom-up approach in which the local interactions of randomly-acting particles, agents,
or other units are explicitly represented, their importance is in revealing large-scale (macroscopic)
phenomena that result in unexpected ways from the various local (microscopic) actions.

Successfully explaining and predicting these macroscopic behaviors with less
computationally-intensive and more analytic methods is the subject of much active research.
Using one such class of methods,moment closure [2], one may create a closed-form expression that
models the time-evolving probability for the future states of the PCA lattice. In the most common
version of this approach, the zero-order mean-field approximation (MFA), the probabilistic state
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of a single, randomly-selected site in the lattice is modeled using
a single difference equation. Although this method is commonly
used and often straightforward to apply, it ignores all spatial
correlation information by treating all neighbors as “average,”
and may provide incorrect results when spatial interactions
are fundamental to the long-term dynamics. In higher-order
versions, the joint state of larger structures is explicitly modeled
using coupled difference equations, while still treating yet more
distant neighbors as average. These larger structures can be
a pair of sites (first-order nearest-neighbor correlations), or a
triplet or quartet of sites (second-order neighbor-of-neighbor
correlations), or even larger. Their use may be necessary to fully
capture certain dynamics of the underlying model, but at the cost
of increased mathematical complexity and higher computational
load, due to the fact that the set of possible configurations (and
thus the number of difference equations) grows exponentially
with the size of the structure being considered. Correctly
calculating the probabilities for each configuration requires a
careful and systematic approach. Pair approximation approaches
for spatial latticemodels were originally introduced in the physics
community [3, 4] and have since been used in a wide array of
fields such as ecology [5], epidemiology [6], and political theory
[7]. Higher-order approximations have also been successfully
used in models for, e.g., ecological dispersion [8, 9] and viral
spread in epidemiology [10].

The PCA model analyzed in the present study was originally
developed [11–13] to study the dynamics of intracellular calcium
release in cardiac myocytes, the cells that make up the muscle
tissue of the heart. Within each of these cells, calcium ions
are discharged from internal storage into the main cellular
compartment via a lattice-like arrangement of calcium release
units (CRUs) [14]. Numbering in the tens of thousands in a
typical myocyte, each CRU behaves as an excitable element,
where a small triggering signal provided by the voltage-mediated
excitation at the beginning of the heartbeat can result in a local
release of that CRU’s calcium load (self-activation). However, this
activation is stochastic only, due to the thermodynamic noise of
the associated ion channels, therefore only a portion of CRUs
may respond with self-activation. Additionally, as calcium itself
serves as another triggering mechanism, the released ions from
self-activated CRUs can diffuse to neighboring CRUs and induce
them to undergo release, in a process called recruitment (also a
stochastic process). The end result is that a certain percentage
of CRUs in the cell have been activated at the completion
of each heartbeat. Of particular interest is the clinically-and
physiologically-important phenomenon of calcium alternans
[15], a dynamic feature of the cell in which there is a beat-to-beat
alternation between high and low percentage of CRU activation
[see [16] for a brief review of experimental evidence]. Because
calcium plays a central role in cardiac excitation-contraction
coupling, alternans is an important factor in various known
electrocardiac markers associated with an increased risk of
sudden cardiac death [17].

In Rovetti et al. [11] and Cui et al. [12] we used the PCA
model to suggest a mechanism for the production of alternans
wherein excitable elements were subject to both randomness
and spatial interaction (recruitment) consistent with the known

behavior of cardiac myocytes. Our PCA model was able to
qualitatively reproduce the phenomenon of periodic alternans.
We then applied anMFA analysis to show that, under appropriate
conditions, the PCAdynamics experience a bifurcation to period-
2 behavior, mimicking the high-low pattern seen in physiological
alternans. However, by its nature, the mean-field approximation
ignores spatial correlations, and in that analysis there were
quantitative differences between the MFA and the PCA for the
predicted onset of periodic alternans. Furthermore, by ignoring
spatial coupling, the mean-field approximation cannot predict
the emergence of spatial correlations, which is also observed
in the lattice model. Significant spatial patterning, in the form
of spatially-discordant calcium alternans, has been observed
experimentally [18, 19] in cardiac myocytes; thus, providing a
theoretical basis for further analysis is also of interest.

In this study we apply the method of pair and quartet
approximations to extend the original MFA analysis of the PCA
model. We show that the second-order quartet approximation
is able to more accurately predict the onset of periodic
behavior (alternans), and also predicts the emergence of
spatial clustering (absent in the original MFA analysis). The
successful implementation of the quartet approximation provides
a framework for possible further research into the dynamics
of pattern formation in the spatio-temporal dynamics of
probabilistic cellular automata.

2. LATTICE MODEL

2.1. Model Description
We begin with an N × N square lattice (Figure 1A) in which
each site can be in one of two states (0, “inactive,” or 1, “active”).
Each site has four nearest neighbors, except for edge sites (three
neighbors) and corner sites (two neighbors). Time proceeds
in discrete steps, and during each step the states of all sites
are updated synchronously according to a set of probabilistic
transition rules. Inactive sites may remain inactive, or they may
transition to active either by self-activation or by recruitment;
the latter relies on interaction with nearest neighbors, while
the former does not. Active sites are required to transition to
inactive on the next beat, thereby preventing sites from activating
twice in two consecutive beats; this refractoriness property is also
consistent with CRU physiology.

A unique feature of these update rules is that recruitment by
nearest neighbors can only occur after, and separate from, self-
activation. Thus each update step is partitioned into two distinct
substeps (see Figure 2):

Substep 1. In this first substep (time t to t + 1
2 ), each site

that is available (non-refractory) is subject to self-activation,
with probability α, a process that occurs independently of its
neighboring sites. On the other hand, any site that enters the
update step as active now becomes refractory, and therefore
inactive. Refractory sites will again be eligible for activation on
the next update step. All sites are updated synchronously during
this substep.

Substep 2. In the second substep (time t + 1
2 to t + 1), a

site that is available (non-refractory) and is still inactive may be
recruited by neighbors that self-activate during substep 1. Each
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FIGURE 1 | (A) Illustration of lattice arrangement and possible states in the PCA. Available sites can self-activate with probability α, or be recruited with probability γ .

(B) Example of PCA lattice simulation showing the activation fraction ft reaching either a steady state (top, for γ = 0.25) or maintaining periodicity (bottom, for

γ = 0.75). In both cases α was fixed at 0.80. (C) Simplified graphical representation of a typical experimental recording of calcium concentration over time in a cardiac

myocyte, under conditions that produce alternans. Each peak represents either a high or low release of calcium, and peaks are ∼ 150–300 ms apart.

active neighbor independently attempts to recruit the site with
probability γ . (The site need be recruited only once, and once it
is recruited it is considered to be active.) The total probability φ

that the site will be recruited to the active state by any available
neighbor is given by φ = 1− (1− γ )s where s ∈ {0, . . . , 4} is the
number of nearest neighbors that are active after substep 1. Sites
are updated synchronously during this substep also; recruited
sites cannot go on to recruit additional sites within the same
update step.

At the end of the update step, sites are considered to be either
active (whether by self-activation, or by recruitment) or inactive
(whether by failure to activate, or by being refractory following
an activation in the preceding update step). All sites that activate
in the current update step will be refractory (inactive) in the next
update step.

2.2. Measures of Interest
There are two primary phenomena of interest concerning the
ensemble behavior of the lattice as a whole. The first is periodicity
in the ensemble activation as measured by the fraction ft of sites
in the active state. The macroscopic quantity ft can undergo a
transition from steady-state to period-2 behavior (see Figure 1B)
under appropriate conditions such as a suitably strong spatial
coupling force as supplied by the recruitment probability γ . The
activation fraction ft is meant to represent qualitatively the peak
amount of calcium that is released during a single heartbeat in
an experimentally-observed myocyte (Figure 1C). Our measure
of the extent of the periodicity will be the amplitude of the beat-
to-beat change, At = |ft − ft−1| (Note that in all simulation and
computations, steady-state and periodic should be understood as
meaning quasi-steady-state and quasi-periodic, respectively, as
the presence of stochastic noise means that the value of At will
exhibit a small degree of variability from beat to beat even under
“steady-state” conditions).

FIGURE 2 | State transition diagram for the PCA model. In the first substep,

inactive sites can self-activate with probability α. In the second substep, sites

that are still inactive can be recruited to activate by their nearest neighbors with

probability φ which depends on the number of nearest neighbors that

activated during the first substep. Sites that begin the update step as active

are forced to become inactive.

The second phenomenon is spatial clustering, or spatial
correlation, the tendency for sites to be found next to sites
of like state, resulting in the emergence of pattern formation
over time. We employ a clustering coefficient Q to measure this
phenomenon. Let f cont be the fraction of total nearest-neighbor
pairs in the lattice which are concordant (in like states, either both
inactive or both active). Then we define

Qt =
f cont

f 2t + (1− ft)2
− 1.

The ratio term compares the observed concordance fraction
to the expected concordance fraction under the assumption of
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independent random assortment of active sites. Qt can range
from Qt = −1 (complete anti-clustering, i.e., a repulsive force)
to Qt = 0 (random assortment with no spatial clustering) to
Qt = 1 (complete clustering). However, regardless of the value
of f cont , the value of Qt will become 0 as ft approaches 0 or 1,
reflecting the fact that as the lattice approaches a state of being all
inactive or all active, the concept of clustering no longer applies
in a meaningful way.

2.3. Simulation Methods
A lattice size ofN = 200 was used for all numerical simulations of
the PCA. All computations for both the PCA and the subsequent
approximation methods were carried out for at least 500,000
update steps in order to ensure achieving a stationary state.
While the alternation in ft usually became apparent within the
first 100 update steps, this allowed sufficient time for spatial
clustering patterns to develop. The initial condition at t = 0
was to have all sites in the lattice set to inactive. All computations
were performed on a 256-core Beowulf cluster using GNU C++
v4.8.5 with the Armadillo linear algebra library v8.3 [20] and the
XOR128 pseudo-random number generator [21], which has a
period of 232 − 1.

2.4. Simulation Results
Our previous studies [11] have demonstrated that periodic
behavior occurs only for sufficiently high values of both α and
γ . For simplicity of presentation in this section, we fix the self-
activation probability α to a high value (α = 0.80) and explore
a range of values for the recruitment probability γ . Figure 1B
shows the initial time-course of ft in the cases where the lattice
reaches a steady-state (for γ = 0.25) or periodicity (for γ =

0.75). While the behaviors are fairly quickly established, a small
level of random noise persists. Full lattices are shown in Figure 3

at two consecutive update steps for a range of values of the
recruitment probability γ . At γ = 0.25, a typical value for
which little spatial clustering or alternation is present, we see
that about half of the sites are active. As γ is increased to 0.65,
some clustering becomes apparent but alternation is still absent.
By γ = 0.74 the spatial clustering is very noticeable. From
γ = 0.74 to γ = 0.76 there is a sudden and sharp increase in the
alternation of ft , and the expected decrease in spatial clustering as
ft reaches extreme values. There appears to be a transition point
in the behavior of the system at around γ ≈ 0.75 (however
this transition point is also dependent on α as is shown later
in section 6).

3. MEAN-FIELD APPROXIMATION

The goal of the mean-field approximation (MFA) is to predict
the activation fraction ft with the single-site activation probability
pt by ignoring all spatial correlation information and assuming
that all sites are decoupled. In this sense, all sites are equivalent
and behave in a unified manner as a single “average” site, with a
probability pt of being found in the active state.

The MFA has previously been derived for this PCA model
[11, 12] and we summarize it here. Let pt be the probability that

FIGURE 3 | Simulation results in the PCA after 500,000 update steps, for five

different values of γ (recruitment probability). Black is active and white is

inactive. The left and right panels in each row are two consecutive time steps.

The active fraction f begins to alternate around γ = 0.75. Spatial clustering (Q)

increases as γ increases, and is strongest immediately before the onset of

alternation (periodicity). In all cases, α was fixed at 0.80.

a single site will be found in the active state at time t. Then the
MFA yields the difference equation

pt+1 =
(

1− pt
)

[α + (1− α) ξt] (1)
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FIGURE 4 | Template for the neighborhood χ consisting of the pair ab and its

six nearest neighbors c through h. Each letter can take on the value 0 or 1.

where (1 − pt) is the probability the site will be available (non-
refractory) for activation, (1−α) is the probability that it does not

self-activate, and ξt = 1 −
[

1− αγ
(

1− pt
)]4

is the probability
that the site will be recruited by any of four nearest neighbors.

Implicit in ξt is the fundamental assumption of the mean-field
approximation, which is that the nearest neighbors are treated as
being randomly sampled from the lattice; as such, neighbors are
available to recruit at the average rate 1 − pt , will activate at the
average rate α, and finally will successfully recruit at the average
rate γ . The amplitude of the beat-to-beat change in the activation
probability is given by At = |pt − pt−1| for the MFA model.

4. PAIR APPROXIMATION

Pair approximation replaces the single-site probability pt with a
family of two-site probabilities Pt[ab], where a and b represent
a spatially-adjacent pair of sites, each of which can be either
active or inactive (i.e., a, b ∈ {0, 1}). This leads to four difference
equations corresponding to the terms Pt[00], Pt[01], Pt[10], and
Pt[11] satisfying

∑

a,b Pt[ab] = 1.While the number of equations
has increased, the payoff is that some information about the state
of a site’s nearest neighbor is now explicitly incorporated.

Refer to Figure 4 for a visual representation of a pair of sites
ab and the associated nearest neighbors. A pair in a spatially
horizontal orientation is represented as

[

ab
]

, while a pair in

a vertical orientation is represented as

[

a
b

]

. We will use χ to

represent the joint states of the entire local neighborhood of both
the pair and their nearest neighbors. With two sites in a pair and
six nearest neighbors, there are 28 = 256 possible configurations
for χ .

In the calculations to follow we will make use of the marginal
sums P[a] =

∑

b P[ab].Wewill also assume that the probabilities
are symmetric with respect to spatial orientation, so that P[ab] =
P

[ a
b

]

= P[ba] = P
[

b
a

]

.

4.1. Difference Equation
Let Pt[ab] and Pt[χ] be the probability of finding, respectively,
the pair and the local neighborhood in the given state at time t
(If the time dependence does not need to be explicitly shown, we
write Pt as P for simplicity).

For any pair of sites, the probability that a particular
configuration ab is achieved on the next update step t + 1

depends not only on the state of the pair at time t but the
state χ of the entire local neighborhood. Let P[ab | χ] be the
production function, the probability that the local neighborhood
χ can produce the pair ab during the next update step. Then, by
conditioning on the neighborhood configuration χ , we can write
the family of difference equations

Pt+1[ab] =
∑

χ

P[ab | χ]Pt[χ]. (2)

Equation (2) defines a set of four coupled difference equations,
one for each pair configuration ab. Note that the production
function P[ab | χ] is time-independent, and the value of the term
is determined solely by the update rules of the original lattice
model; determining this function is a non-trivial process which
we describe in section 4.3. The function Pt[χ], the neighborhood
function, is the joint probability of the larger neighborhood, and
we will be required to approximate it via closure methods, which
we explore next.

4.2. Computing the Neighborhood Function
The local neighborhood χ for a pair contains sites that are
third-order neighbors (i.e., three sites away). As discussed in the
introduction, a closure approximation is required to estimate the
joint probability of the eight sites in χ in terms of the first-order
pair probabilities only.

To illustrate the general approach for closure as used by Filipe
and Gibson [22] andHiebeler [8], first consider as an example the
second-order linear triplet of sites abc. If we ignore correlations
between a and c and make the approximation that site c depends
on site b but not on site a, then we can write

P[abc] = P[ab]P[c | ab] ≈ P[ab]P[c | b] =
P[ab]P[bc]

P[b]
.

This establishes an approach whereby the joint probability of the
larger structure abc can be approximated by covering (or “tiling”)
the neighborhood with pairs ab and bc, and then dividing by
the common site, or “overlap”, in this case b. The approach can
be extended to arbitrarily large neighborhoods; for example, one
third-order closure would be

P[abcd] ≈
P[ab]P[bc]P[cd]

P[b]P[c]

The key observation is that higher-order correlations between
more distant sites can be approximated in terms of the first-order
(pairwise) terms.

Now considering a general neighborhood configuration χ , the
probability P[χ] must be approximated using a closure method
based upon first-order pair probabilities. There are many ways
to tile the larger two-dimensional neighborhood structure via
overlapping pairs; although each choice may produce slightly
different approximations, no appreciable differences were noted
when different choices were tested in this study. Hiebeler [8] lists
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all possible tilings which can be constructed using pairs; here we
choose to use

P[χ] = P

[

d e
c a b f
h g

]

≈
P[ca]P[da]P[de]P[eb]P[bf ]P[bg]P[ah]

P[a]P[d]P[e]P[b]P[b]P[a]
.

(3)
We refer to Equation (3) as the neighborhood function. The
pair probabilities in the numerator of Equation (3) are known
directly, and the single-site probabilities in the denominator can
be computed as marginal sums.

4.3. Computing the Production Function
As mentioned in section 4.1, the production function P[ab | χ]
must be carefully computed to adhere to the specific update rules
of the lattice model. To achieve this in a systematic manner, we
first summarize (Figure 5) the ways in which each possible ab
configuration can be generated by an appropriate combination
of self-activation and recruitment mechanisms. Because we
are assuming rotational symmetry, it suffices to consider the
equivalence classes of ab configurations under rotation, of
which there are three; the representative configurations are [00],
[10], and [11]. Then, for each class, we enumerate the ways
in which that class could be generated via the mechanisms
of activation as defined in the transition rules for the PCA.
Each possible production pathway forms a subtype of that
class. Finally, we indicate with symmetry multipliers the number
of rotations that can appear within each class or within
each subtype.

For each subtype, we calculate the probability of its
production, given the known nearest-neighbor states in its
neighborhood χ , by multiplying the separate probabilities
for each site in the pair. Recall that during any update
step, a single inactive (non-refractory) site has one of three
fates: self-activation, activation via recruitment, and failure
to activate.

Self-activation. The probability that a site will activate on
its own, which occurs independently of any neighboring sites,
is given by α. Since this occurs during the first substep, no
consideration of the second substep is necessary.

Recruitment.Within the context of a pair, the probability that
a single site will be activated via the recruitment mechanism can
be written

R(n, j) = (1− α)
[

1− (1− αγ )n (1− γ )j
]

.

The initial term (1 − α) indicates failure to self-activate during
the first substep. In order to compute whether the site will be
recruited in the second substep, we need to have information
about its four neighbors. One of its four neighbors is also the
other member of the pair (i.e., a pair-neighbor), and we know its
state explicitly. Let that state be j ∈ {0, 1}. Then the term (1− γ )j

is the probability that this pair-neighbor will recruit the site. The
states of the other three non-pair-neighbors obey the following:
(1) with a specific neighborhood χ , we explicitly know howmany
of them will be available to activate, but (2) we can know whether
they will successfully activate and recruit only probabilistically.
Let n ∈ {0, 1, 2, 3} be the number of non-pair-neighbors which

FIGURE 5 | Table of complete configuration space for pair approximation.

Each equivalence class is divided into one or more subtypes which are a

combination of self-activation (black), recruitment (hatched), or inactive (white).

na and nb are the number of available non-pair neighbors to sites a and b,

respectively. The symmetry multipliers (×2) account for rotation symmetry and

indicate the number of cases to be considered.

are available (i.e., non-refractory). Then the probability that any
one of them will recruit the site is given by (1− αγ )n.

Failure to activate. Using a similar line of reasoning, the
probability that a site will remain inactive by failing to self-
activate in the first substep, and then failing to be recruited by
either its pair-neighbor or any of its three non-pair-neighbors in
the second substep, is

F(n, j) = (1− α) (1− αγ )n (1− γ )j .

4.4. Production Function Example
A close examination of the example transition shown in Figure 6

will illustrate the process of constructing the production function.
On the left of the figure is a specific neighborhood configuration
χ∗ at the start of an update step, and on the right is the pair
configuration at the end of the step.

The neighborhood configuration χ∗ on the left shows the
states at the beginning of an update step. Sites a, b, d, f , and
g are inactive, and sites c, e, and h are active. The ab pair
within χ∗ has the state configuration [00]. The configuration
on the right is a possible outcome at the end of the update
step; in this case the pair has the state configuration [11]. Site
a has self-activated, which can occur with probability α. Site b
has activated via recruitment, which can occur with probability
R(2, 1); the recruitment could have been induced either by its
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FIGURE 6 | An example transition for pair ab. Sites c through h are their

nearest neighbors. (Left) At the beginning of the update step, the pair ab has

the configuration [00], i.e., both are inactive, while three neighbors are active.

(Right) At the end of the update step, the pair ab has the new configuration

[11], via self-activation for site a and via recruitment for site b.

pair-neighbor a, or by one of the two non-pair neighbors f or
g which had previously been inactive. (Note that the non-pair
neighbor e could not have contributed to the recruitment, since
it began the update step as active and subsequently would have
been refractory).

Combining these observations, we have that the probability
that this particular local neighborhood χ∗ will produce this
particular subtype pair (a self-activated and b recruited) is given
by αR(2, 1).

Continuing this reasoning, we can now write down the
production probabilities for the other three possible subtypes of
[11] pairs:

a and b both self-activate α2

a is recruited, b self-activates R(1, 1)α
a and b are both recruited R(1, 0)R(2, 0)

After adding together the probabilities for all
subtypes, the total probability P[11 | χ∗] of this
particular local neighborhood χ∗ producing a pair of
double activations [11] through whatever pathway is
P[11 | χ∗] = α2 + αR(2, 1)+ R(1, 1)α + R(1, 0)R(2, 0).

Note that this calculation needs to be repeated for each χ in
order to complete the sum in the difference equation for Pt+1[11]
(Equation 2), although we can reduce the computational load by
taking symmetries into account (as indicated by the symmetry
multipliers in Figure 5).

Having computed Pt+1[11], we must compute another term,
say Pt+1[10], in a similar manner. (The remaining two terms
Pt+1[01] and Pt+1[00] can be inferred via the symmetry
assumption and the Law of Total Probability).

4.5. Computational Notes
Before moving on, we stop to consider some computational
aspects. To advance one update step, the difference equations
(Equation 2) requires a summation over 256 configurations of
χ . Each iteration of the neighborhood function Pt[χ] requires
a series of 11 multiplications and one division, plus sufficient
additions to compute the marginal sums for the single-site
probabilities. Importantly, the production function P[ab | χ] is
time-independent, and therefore can be pre-computed once and
stored as the 4×256matrixM. We also note that by the symmetry
assumption and the Law of Total Probability, we can infer the
updated value for two of the four Pt+1[ab].

Let p =
[

P[00] P[01] P[10] P[11]
]T

be the column vector
of pair probabilities.We can then efficiently rewrite the difference

FIGURE 7 | Template for the 2× 2 quartet abcd and its eight nearest

neighbors e through m. Each letter can take on the value 0 or 1.

equations in matrix-vector product form:

pt+1 = Mπ

(

pt
)

where π

(

pt
)

is the neighborhood function which accepts the
length-4 column vector pt as input, and returns a length-256
column vector as output. Implementing these calculations on a
system optimized for matrix operations is an efficient choice.

5. QUARTET APPROXIMATION

With the machinery developed for the pair approximation in
hand, we are now ready to extend the analysis to use of 2 × 2
blocks known as quartets (Figure 7). A quartet is a second-order
structure, since it contains “neighbors of neighbors” (e.g., sites a
and d). The main challenge in using quartets is combinatorial in
nature; there are 24 = 16 possible configurations for a quartet
[

a b
c d

]

, and 212 = 4096 unique configurations for the associated
neighborhood χ .

Similar to the pair approximations, the quartet probabilities
satisfy

∑

a,b,c,d P
[

a b
c d

]

= 1, and we will make use of the marginal

sum P
[

ab
]

=
∑

c,d P
[

a b
c d

]

. We will again assume that the
probabilities are symmetric with respect to spatial orientation, so
that, for instance, P

[

a b
c d

]

= P
[

b a
d c

]

(reflection) and P
[

a b
c d

]

=

P
[ c a
d b

]

(rotation). In all, there are up to eight unique orientations
for a given 2× 2 structure.

The corresponding 16 difference equations are specified by

Pt+1

[

a b
c d

]

=
∑

χ

P
[

a b
c d

| χ
]

Pt[χ]. (4)

However, by invoking rotation and reflection symmetry, we need
explicitly compute the updates only for the six equivalence classes
for the quartet

[

a b
c d

]

(see Figure 8 for the six classes).

5.1. Computing the Neighborhood and
Production Functions
The neighborhood structure in Figure 7 is fourth-order, and
its joint probability must be approximated with second-order
quartet probabilities. Using a similar method as with the pair
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FIGURE 8 | Production probability calculations for the quartet configurations. Site states are inactive (white), self-activated (black), or recruited (hatched). Functions

R(n, j) and F (n, j) are as defined in the text. The available neighbor counts na through nd are determined for each specific configuration of χ . The symmetry multipliers

apply either to an entire class or a single subtype.

approximation, we cover the neighborhood with 2 × 2 quartets
to produce the neighborhood function

P[χ] = P

[

e f
m a b g
k c d h

j i

]

≈
P

[m a
k c

]

P
[

a b
c d

]

P
[

b g
d h

]

P
[

e f
a b

]

P
[

c d
j i

]

P[ac]P[bd]P[ab]P[cd]
.

(5)

Because the quartet probabilities are now the basic unit of
computation, the pair probabilities in the denominator of
Equation (5) must be computed as marginal sums.

Computation of the production function P
[

a b
c d

| χ
]

proceeds
in the same manner as for the pair model, by enumerating
the six classes for the quartet, and the number of subtypes
representing the unique ways each quartet can be produced.
The number of classes and subtypes, and the corresponding

probability calculations, are summarized in Figure 8. Note that
symmetry multipliers are specified to account for the number of
ways in which a class (or a subtype) can be rotated or reflected.
Once we have both the production and neighborhood functions,
the difference equations in Equation (4) can be stepped forward.

6. RESULTS FOR APPROXIMATION
METHODS

Plots of the observed and predicted amplitude A and clustering
coefficient Q are given in Figure 9 (as a function of γ ) and
Figure 10 (as a comprehensive “heatmap” over the entire two-
parameter α-γ space), allowing us to compare the performance
of the three approximations (mean-field, pair, and quartet)
against the PCA simulation results.
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FIGURE 9 | Amplitude coefficient A (A) and clustering coefficient Q (B) as a function of recruitment probability γ , for self-activation probability α held at 0.80. Values

measured at the end of 500,000 steps, for numerical simulations and for mean-field, pair, and quartet approximations. The clustering coefficient cannot be calculated

with the mean-field approximation.

FIGURE 10 | Heatmap visualization of amplitude coefficient A (top row, A–D), and clustering coefficient Q (bottom row, E–G), in α-γ parameter space. Values

measured at the end of 500,000 steps, for numerical simulations and for mean-field, pair, and quartet approximations. The narrow vertical band of maximum

amplitude (A ≈ 1) is the trivial case at α = 1 wherein the entire lattice oscillates in unison. The clustering coefficient cannot be calculated for the mean-field

approximation. The color scale applies to both A and Q; rare negative values of Q were very near zero and are represented as such in the plot.

Amplitude. The lattice simulations reveal a well-defined
window (where α and γ are both large) in which periodicity
is present; outside the boundary of this window, the ensemble
activation fraction settles into a non-oscillatory state. The
threshold for onset of periodicity is fairly sharp. We also note
that the location of the threshold is dependent on both α

and γ , so that no single value of either parameter serves as
a constant threshold. The shape and location of the threshold
are replicated very well by the quartet approximation. On the
other hand, the mean-field and pair approximations both show
a much more gradual transition to periodic behavior beginning
at a much smaller value of γ ≈ 0.46 (Figure 9A), as compared
to the simulation results, and the periodic window is much
larger (Figures 10B,C).

Spatial clustering. The spatial clustering coefficient show an
excellent match between the simulation results and the values
predicted by the quartet approximation. Clustering increases
smoothly and gradually as α and γ are increased until the
threshold of the periodicity region is reached. (Recall that, by
design, Q will be near zero when A is near one; hence we
observe the sudden loss of clustering as periodicity emerges.) The
relationship of Q to the two probability parameters appears to
be slightly asymmetrical, such that clustering is more prevalent
for the region where γ > α. The pair approximation incorrectly
predicts that only weak clustering (Q < 0.25) will occur, while the
quartet approximation correctly captures the presence of more
pronounced clustering (Q > 0.50) for a selected region near the
threshold in α-γ space.
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FIGURE 11 | Probability distributions for the six quartet classes. Each panel is

for a different value of the recruitment probability γ , and vertical axes are the

class probabilities. Each pair of black-gray bars is the probability for two

consecutive timesteps at t = 500,000 for that class. Also given are the

single-site probabilities f and clustering coefficients Q for the second timestep.

In all cases α is held at 0.80.

Quartet distributions. In Figure 11 we more closely examine
the probability distribution across the six quartet classes, for α

fixed at 0.80, and selected values of the recruitment probability
γ (equal to those chosen previously in Figure 3). The activation
fractions f (determined by computing the single-site probability
P[1]) as well as the spatial clustering coefficients Q are a close
match to those obtained from the simulations (compare results
to Figure 3). From γ = 0.25 to γ = 0.74 we can clearly see
that as Q increases, the class distribution shifts toward the two
classes that are completely “empty” (all sites inactive) or “full”
(all sites active), consistent with the fact that in a lattice with high
spatial correlation, randomly-sampled quartets are more likely
to be found in those two configurations, while the mixed-state
configurations (in particular, the “checkerboard” quartet) are less
likely as Q increases.

FIGURE 12 | Computation times, measured in CPU core-hours, required to

generated the “heatmaps” in Figure 10 for each method. Each bar represents

the total computational work required to run the respective model for 500,000

update steps, repeatedly for 10,000 parameter combinations. Note that times

are “real CPU” times for a single-core process, and do not include any

additional overhead time which may have been incurred by the operating

system or job scheduling manager.

We can also observe the onset of periodicity around the
threshold value of γ = 0.75, and the corresponding divergence
between class probabilities on consecutive beats (the black and
gray bars in the figure), so that the empty class and full class
exchange roles as the dominant class. The first quartet class (the
“empty” class) is prevalent on the first beat and rare on the second
beat; the pattern is reversed for the last quartet class (the “full”
class). The alternation pattern is apparent to a lesser degree in the
second and fifth classes (containing, respectively, one and three
active sites).

6.1. Computing Time
Computing times were compared for the simulation and
approximation methods (Figure 12), using as the basis of
comparison a standardized task of generating the data for the
“heatmaps” in Figure 10. The lattice simulations required the
most amount of time, 11,165 core-hours, which is equivalent to
43.6 clock hours on a 256-core cluster. As anticipated, the time
required for the mean-field approximation, which involves the
update of only a single difference equation (Equation 1), is almost
negligible in comparison to the lattice simulation. Although
the pair approximation method nominally requires the update
of only one more difference equation, those updates involve
the additional work of evaluating the neighborhood function
(Equation 3) 16 times (once for each neighborhood configuration
χ) on each update step. The quartet method requires the
update of five difference equations and 4096 neighborhood
configurations (Equation 5), and while the resulting computation
time is almost 24 times as long as for the pair method, it is still
only about one-twentieth (1/20) of the time required by the full
simulation, a substantial savings.

7. DISCUSSION

In this study we found that the moment-closure technique using
quartet approximation provides a very good prediction of several
macroscopic quantities (alternation in activation fraction, and

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 July 2019 | Volume 5 | Article 32

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Rovetti Quartet Approximation for Calcium PCA

spatial clustering) of a probabilistic cellular automata model with
two-stage update rules. As with all closure methods, the second-
order quartet approximation vastly reduces the complexity of
the original PCA simulation, so that such macroscopic variables
can be approached in a more abstract manner; however it does
not reduce the complexity so much that it completely discards
all information about the spatial interactions and subsequent
pattern formation, as happens with the lowest-order mean-field
approximation. The increased computational cost associated
with a higher-order closure is still an order of magnitude smaller
than the original simulations.

A particular challenge with the PCA model in the present
study is the two-stage, or split-step, update rules, wherein each
stage is applied sequentially within a single overall update step.
The resulting large number of possible configurations that can
result after each update step provides a richness to both the
dynamics of the model behavior and the analysis required in
applying the approximation methods. Even the relatively simple
set of update rules used in the present model results in a
combinatorially complex set of possible configurations that must
be accounted for if a quantitatively accurate approximation is
to be achieved. In this study we demonstrate a method by
which we can systematically enumerate the complete set of
possible configurations.

The unique nature of the split-step update rules also
means that this particular PCA model may not fit the usual
classifications reserved for probabilistic cellular automata, and
is more reminiscent of the classic lattice gas automata [23]. It
may be possible, however cumbersome, to recast the update
rules so that they may be expressed as a single unified set
not requiring the split-step paradigm. Alternatively, the model
might be reformulated as a coupled set of two lattices; each
lattice would correspond to one of the two half-steps of the
update cycle.

By implementing a second-order approximation for this
model, a framework has been established by which pattern
formation dynamics might be formally studied. For instance,
the third quartet class in Figure 11, in which a pair of active
sites is next to a pair of inactive sites, could serve as a
rudimentary “edge detector”, whose probability of occurrence is
high when active sites are highly clustered and almost completely
segregated from inactive sites (as might occur with striping or
spotting patterns). The approaches for constructing both the
neighborhood and production functions can be systematically
generalized to larger neighborhood structures (for example,
a 3-by-3 “nonet” involving fourth-order interactions) which

could provide even more useful information regarding pattern
dynamics, although at a considerable computational cost.

The combination of the three primary factors driving the
dynamics of the PCA model (randomness, recruitment, and
refractoriness) has been called the “3R model” [24] and has
been used successfully to provide a detailed explanation for
various physiological features of intracellular calcium release
in cardiac myocytes, including calcium alternans. These three
factors, although treated abstractly in this analysis, can be
readily identified with real components in the cellular physiology,
offering the chance to develop new experimental targets
in medical research. This PCA approach could be adapted
to any system with these three factors in order to model
phenomena in other areas of physiology (for instance, muscle
or neural tissue), ecology, or physics that arise from large
systems of coupled, randomly excitable elements with similar
spatial interactions.

In contrast with the present analysis, the original development
of this PCA model [11, 12] treated refractoriness as an additional
probabilistic variable, which is more consistent with the known
physiology of calcium release, wherein the potential recovery
of the CRUs has a complex dependence on pacing rate and
other factors (see, e.g., [25]). In this analysis we have essentially
assumed that CRUs will be refractory with probability 1, but this
could be modified in future work. We have also yet to explore
the effects of differing lattice topology (e.g., non-square lattice
dimensions or more complex connectivity to neighboring units)
which would also be more physiologically realistic.

In the heatmap plots of the amplitude (Figure 10), the
threshold for the onset of periodicity appears to be a relatively
smooth curve in α-γ parameter space. The location of this
threshold (or bifurcation) can be derived exactly [11] via a linear
stability analysis in the mean-field approximation, however the
functional form that is obtained is rather complicated and does
not suggest a straightforward interpretation in terms of the
underlying probabilistic parameters. We should not reasonably
anticipate that applying the same linear stability analysis to the
coupled difference equations for the pair and quartet methods
would yield an expression any less complicated, although using
the stability analysis to estimate the threshold curve numerically
may very well be possible.
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