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We investigated interactions within chimera states in a phase oscillator network

with two coupled subpopulations. To quantify interactions within and between these

subpopulations, we estimated the corresponding (delayed) mutual information that—in

general—quantifies the capacity or the maximum rate at which information can

be transferred to recover a sender’s information at the receiver with a vanishingly

low error probability. After verifying their equivalence with estimates based on the

continuous phase data, we determined the mutual information using the time points

at which the individual phases passed through their respective Poincaré sections. This

stroboscopic view on the dynamics may resemble, e.g., neural spike times, that are

common observables in the study of neuronal information transfer. This discretization

also increased processing speed significantly, rendering it particularly suitable for a

fine-grained analysis of the effects of experimental and model parameters. In our

model, the delayed mutual information within each subpopulation peaked at zero

delay, whereas between the subpopulations it was always maximal at non-zero delay,

irrespective of parameter choices. We observed that the delayed mutual information

of the desynchronized subpopulation preceded the synchronized subpopulation. Put

differently, the oscillators of the desynchronized subpopulation were “driving” the ones

in the synchronized subpopulation. These findings were also observed when estimating

mutual information of the full phase trajectories. We can thus conclude that the delayed

mutual information of discrete time points allows for inferring a functional directed flow

of information between subpopulations of coupled phase oscillators.

Keywords: chimera states, phase oscillators, coupled networks, mutual information, information flow

1. INTRODUCTION

Oscillatory units are found in a spectacular variety of systems in nature and technology. Examples
in biology include flashing fireflies [1], cardiac pacemaker cells [2–6], and neurons [7–11]; in
physics one may think of Josephson junctions [12–14], electric power grids [15–21], and, of
course, pendulum clocks [22]. Synchronization plays an important role in the collective behavior
of and the communication between individual units [23–25]. In the last two decades or so, many
studies addressed the problem of synchronization in networks with complex structure, such as
networks of networks, hierarchical networks and multilayer networks [26–29]. Alongside efforts
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studying synchronization on networks, a new symmetry breaking
regime coined chimera state has been observed. In a chimera
state an oscillator population “splits” into two parts, one being
synchronized and the other being desynchronized [30–32], or
more generally, different levels of synchronization [33]. This
state is a striking manifestation of symmetry breaking, as it may
occur even if oscillators are identical and coupled symmetrically;
see [34, 35] for recent reviews. Chimera states have spurred
much interest resulting in many theoretical investigations, but
they have also been demonstrated in experimental settings using,
e.g., mechanical and (electro-)chemical oscillators or lasers [36–
39], and electronic circuits implementing FitzHugh-Nagumo
neurons [40].

Chimera states can be considered patterns of localized
synchronization. As such they may contribute to the coding
of information in a network. This is particularly interesting
since systems with chimera states typically display multi-stability,
i.e., different chimera configurations may co-exist for identical
parameters [41–44]. Such a network may hence be able to encode
different stimuli through different chimera states without the
need for adjusting parameters or altering network structure.
It is even possible to dynamically switch between different
synchronization patterns, thus allowing for dynamic coding of
information [45, 46].

The mere existence of different levels of synchronization in
the same network can also facilitate the transfer of information
across a network, especially between subpopulations. Coherent
oscillations between neurons or neural populations have
been hypothesized to provide a communication mechanism
while full neural synchronization is usually considered
pathological [24, 47, 48]. A recent study reported chimera-
like states in neuronal networks in humans, more specifically in
electro-encephalographic patterns during epileptic seizures [49].
Admittedly, our understanding of these mechanism is still in
its infancy also because the (interpretations of) experimental
studies often lack mathematical rigor, both regarding the
description of synchronization processes and the resulting
implications for the network’s capacity for information
processing. What is the information transfer within and between
synchronized and desynchronized populations? We investigated
the communication channels between two subpopulations
in a system of coupled phase oscillators. Since we designed
that system to exhibit chimera states, we expected non-trivial
interactions between the subpopulations. To tackle this, we
employed the delayed version of mutual information which
measures the rate at which information can be sent and
recovered with vanishingly low probability of error [50].
Furthermore, assuming symmetry of our configuration, any
directionality found in the system should be regarded of
functional nature. With this we sought not only to answer the
aforementioned question but to contribute to a more general
understanding of how information can be transferred between
subpopulations of oscillators. In view of potential applicability
in other (experimental) studies, we also investigated whether
we could gain sufficient insight into this communication
by looking at the passage times through the oscillators’
Poincaré sections rather than evaluating the corresponding

continuous-time data. Such data may resemble, e.g., spike trains
in neurophysiological assessments.

Our paper is structured as follows. First, we introduce
our model in the study of chimera states [32, 51–53]. It
consists of two subpopulations that either can be synchronized
or desynchronized. We generalize this model by including
distributed coupling strengths among the oscillatory units as well
as additive Gaussian white noise.We briefly sketch the conditions
under which chimera states can exist. Second, we outline the
concept of delayedmutual information and detail how to estimate
this for “event-based” data where we define events via Poincaré
sections of the phase oscillators’ trajectories. With this tool at
hand, we finally investigate the flow of information within and
between the two subpopulations, and characterize its dependency
on the essential model parameters.

2. MODEL

We build on a variant of the noisy Kuramoto-Sakaguchi
model [54], generalized to M subpopulations of phase
oscillators [55]. The phase φj,µ(t) of oscillator j = 1, . . . ,N
in population µ = 1, . . . ,M evolves according to

dφj,µ(t)=



ωj,µ +

M
∑

ν=1

Nµ
∑

k=1

Cjk,µν sin
(

φk,ν(t)− φj,µ(t)− αµν
)



 dt

+ dWj,µ(t), (1)

where ωj,µ is the natural frequency of the oscillator j in
subpopulation µ. Throughout our study ωj,µ is drawn from a
zero-centered Gaussian distribution with variance σ 2

ω. Oscillator
j in population µ and oscillator k in population ν interact
sinusoidally with coupling strength Cjk,µν and a phase lag α.
The phase lag α varies the interaction function between more
cosine (α → π/2) or more sine like-behavior (α → 0) and
can be interpreted as a (small) transmission delay between
units [34]. The additive noise term dWj,µ(t) represents mean-
centered Gaussian noise with variance (strength) σ 2

W , i.e.,
〈dWj,µ(t)dWk,ν(t

′)〉t = σ 2
Wδjkδµνδ(t − t′).

For the sake of legibility, we restrict this model to the case of
M = 2 subpopulations of equal size N1 = N2 = N, as illustrated
in Figure 1A. In the absence of noise and in the case of identical
oscillators, uniform phase lag and homogeneous coupling, i.e.,
for σW = 0, σω = 0, αµν := α, and σC = 0, respectively,
the aforementioned studies establishes corresponding bifurcation
diagrams [32, 51, 52].

To generalize the model toward more realistic, experimental
setting, we included distributed coupling strengths
via a non-uniform, (statistically) symmetric coupling
between subpopulations. This can be cast in the following
coupling matrix:

C =
1

N

(

Cζ Cη
Cη Cζ

)

∈ R
2N×2N (2)

with block matrices Cζ ,Cη ∈ RN×N . The self-coupling
within the subpopulation and the neighbor coupling between
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FIGURE 1 | (A) Chimera state in a network with M = 2 oscillator

subpopulations and non-uniform coupling, simulated using Equation (1).

(B) The time evolution of the order parameter, |Zµ(t)|,µ = 1, 2, reflects the

fluctuations driven by the coupling and the external field. Despite temporary

deviations off the synchronization manifold |Z1| = 1, the system remains near

the chimera state attractor. That is, chimera states appear robust to both

coupling heterogeneity and additive noise. Considering the time-average of the

order parameters, the state may be classified as a stable chimera.

(C) Snapshot in time of the phases φj,µ(t). The probability density distributions

(PDF) of the phases reveal a phase shift between subpopulations 1 and 2,

given by ψ := arg (Z2/Z1), which remains on average constant in time,

ψ = 0.26. (D) Times t′
j,µ correspond to the Poincaré sections of the phases

i.e., t′
j,µ such that φi (t

′
j,µ) = 0. The time period of collective oscillation is defined

as T := 1/� and � := 〈〈
dφ
dt

〉t〉j where 〈·〉t and 〈·〉j denote averages over time

and oscillators, respectively. Parameters are: A = 0.275, β = 0.125,

σC = 0.01, σω = 0.01, σ2
W

= 0.001.

subpopulations are represented by Cζ and Cη, respectively. Each
block Cζ (or Cη) is composed of random numbers drawn from
a normal distribution with mean ζ (or η) and variance σ 2

C. By
this, we can tune the heterogeneity in the network.We would like
to note that, in general, the chosen coupling is only symmetric
for σC > 0 in the sense of a statistical average, and that the
expected coupling values ζ and η in each block only can be
retrieved by the mean in the limit of large numbers. Although the
symmetry between the two subpopulations 1 ↔ 2 is broken and
only preserved in a statistical sense in the limit of large numbers,
we verified that chimera states appeared in both configurations.
That is, subpopulation 1 is synchronized and subpopulation 2 is
desynchronized (SD) and subpopulation 2 is synchronized and
subpopulation 1 is desynchronized (DS), for a particular choice of
parameters using numerical simulations. Another consequence
of distributed coupling strengths is that only a very few oscillators
may have experienced negative (inhibitory) coupling, which can
be neglected.

Following Abrams et al. [51], we parametrize the relation
between strengths by A = ζ − η with ζ + η = 1 and the
phase lag αµ,ν by βµ,ν = π

2 − αµ,ν which here can be kept
homogeneous for the entire network, i.e., βµ,ν := β . By this,
we may recover the results reported in Montbrió et al. [32] and
Abrams et al. [51], in the limit σC → 0, under the proviso of
σW = σω = 0. In brief, increasing A from 0 while fixing α (or
β := π/2 − α) yields the following bifurcation scheme: a “stable
chimera” is born through a saddle-node bifurcation and becomes
unstable in a supercritical Hopf bifurcation with a stable limit
cycle corresponding to a “breathing chimera,” which eventually is

destroyed in a homoclinic bifurcation. For all parameter values,
the fully synchronized state exists and is a stable attractor; see
also Figure A1. Subsequent studies demonstrated robustness of
chimera states against non-uniformity of delays (αµν 6= α) [33],
heterogeneity of oscillator frequencies (σω > 0) [56], and
additive noise [57]. Although non-uniform phase lags lead to
less degenerate dynamics and give room for more complex
dynamics [33, 53], we restrict ourselves to the case of uniform
phase lags without compromising the essential phenomenology
of chimera states.

The macroscopic behavior, i.e., the synchronization of the
two populations, may be characterized by complex-valued
order parameters, which are either defined on the population
level, i.e., Zµ := N−1

∑N
j=1 e

iθµ,j , or globally, i.e., Z =

(2N)−1
∑M
µ=1

∑N
j=1 e

iθµ,j . As common in the studies of coupled

phase oscillators, the level of synchrony can be given by Rµ :=

|Zµ|. Thus, Rµ = 1 implies that oscillators in population µ
are perfectly phase synchronized (S), while for Rµ < 1 the
oscillators are imperfectly synchronized or de-synchronized (D).
For our two-subpopulation case, full synchrony (SS) hence occurs
when R1 / 1 and R2 / 1, and chimera states are present
if R1 < 1 and R2 / 1 or vice versa. The angular order
parameter, 8µ := argZµ keeps track of the average phase of
the (sub)population. Fluctuations inherent to the model may
affect the order parameter as illustrated in Figure 1B (please refer
to section 3.1 for the numerical specifications). We therefore
always considered averages over time, 〈Rµ〉t , when discussing
the stability of a state. In fact, in our model chimera states
remain stable for relatively large coupling heterogeneity, σC > 0
presuming σω > 0 and σW > 0, as is evidenced by numerical
simulations; see also Figure A1. The perfect synchronization
manifold with R = 1 cannot be achieved; see Figure 1B. Further
aspects of these noisy dynamics will be presented elsewhere.

Adding noise and heterogeneity to the system may alter its
dynamics. In the present work we concentrated on parameter
regions characterized by the occurrence of dynamic states that
did resemble stable chimeras, i.e., 〈R1〉t > 〈R2〉t , where 〈·〉t
denotes the average over a duration of T = 9 · 106 time steps
(after removing a transient of T = 105 time steps). Figure A1
provides an overview and explanation of how parameter points
A and β were selected.

3. IMPLEMENTATION AND ANALYSIS

3.1. Simulations
For the numerical implementation we employed a Euler-
Maruyama schemewith1t = 10−2 forN = 128 phase oscillators
per subpopulation that were evolved for T = 106 [54]. We varied
the coupling parameter A and the phase lag parameter β , while
we fixed the width (standard deviation) of the natural frequency
distribution to σω = 0.01 and of the coupling distribution to
σC = 0.01. The additive noise had variance σ 2

W = 0.001.

3.2. Mutual Information
Mutual information I(X;Y), first introduced by Shannon and
Weaver [58], is meant to assess the dependence between
two random variables X and Y . It measures the amount of
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information that X contains about Y . In terms of communication
theory, Y can be regarded as output of a communication channel
which depends probabilistically on its input, X. By construction,
I(X;Y) is non-negative; it is equal to zero if and only if X
and Y are independent. Moreover, I(X;Y) is symmetric, i.e.,
I(X;Y) = I(Y;X) implying that it is not directional. The mutual
informationmay also be considered as ameasure of the reduction
in the uncertainty of X(Y) due to the knowledge of Y(X) or, in
terms of communication, the rate at which information is being
shared between the two [50]. Themaximum rate at which one can
send information over the channel and recover it at the output
with a vanishingly low probability of error is called channel
capacity, c = maxp(x) I(X;Y). In networks with oscillatory
nodes, the random variables are the degree of synchronization of
different subpopulations, and the rate of information shared will
depend on the state of the system for each of the subpopulations.

Mutual information can be defined via the Kullback-Leibler
divergence or in terms of entropies,

I(X;Y) = H(X)−H(X|Y)

= H(X)+H(Y)−H(X,Y). (3)

whereH(X) is the entropy of the random variable X, i.e.,H(X) =
−

∫

dx pX(x) log pX(x) with pX(x) being the corresponding
probability density.

3.3. Delayed Mutual Information
For time-dependent random variables, one may generalize
this definition to that of a delayed mutual information. This
variant dates back to Fraser and Swinney [59], who used the
delayed mutual information for estimating the embedding delay
in chaotic systems—in that context the delayed auto-mutual
information is often considered a “generalization” of the auto-
correlation function [60]. Applications range from the study of
coupled map lattices [61] via spatiotemporal [62] and general
dependencies between time series [63] to the detection of
synchronization [64]. With the notation IXY := I(X;Y) and
HX := H(X), the delayed mutual information for a delay τ
may read

IXY (τ ) = I(X(t);Y(t + τ ))

= HX +HY −HXY (τ ) (4)

which has the symmetry IXY (τ ) = IYX(−τ )
1. With this

definition, one can measure the rate of information shared
between X and Y as a function of time delay τ . In fact, we are
not particularly interested in the specific value of the mutual
information but rather focus here on the time delay at which
the mutual information is maximal. Hence, we define τmax :=

argmaxτ IXY (τ ). A positive (negative) value of τmax implies that
Y shares more information with a delayed (advanced) X. This
means there is an information flow from X(Y) to Y(X).

1This follows because of: IXY (τ ) = I
(

X(t);Y(t + τ )
)

= I
(

X(t − τ );Y(t)
)

=

I
(

Y(t);X(t − τ )
)

= IYX(−τ ).

3.4. Delayed Mutual Information Between
Subpopulations
3.4.1. Estimates Using Continuous-Time Data
When the time-dependent random variables are continuous time
series uµ(t) and uν(t) associated to populations µ and ν, the
delayed mutual information can be estimated from Equation (4)
for X(t) = uµ(t) and Y(t) = uν(t),

Ĩµν(τ ) = Ĩ
(

uµ(t); uν(t + τ )
)

. (5)

We determined the probability densities using kernel density
estimators with Epanetchnikov kernels with bandwidths given
through a uniform maximum likelihood cross-validation search.
For our parameter settings (254 oscillators and 106 samples), the
resulting bandwidths ranged from about 0.10 to 0.18 rad. This
software implementation is part of the KDE-toolbox; cf. [65] and
Thomas et al. [66] for alternative schemes.

3.4.2. Estimates Using Event-Based Time Data
For the aforementioned event signals in the subpopulations 1
and 2, i.e., discrete time points are defined as passing moments
through the respective Poincaré sections. The probability
densities to incorporate when estimating the mutual information
are densities of events, or densities of times. We implemented the
probability estimates as follows. Let Sµ be a set of event times, i.e.,

Sµ = {t
(m)
µ,1 , . . . , t

(m′)
µ,Nµ

} where t(m)
µ,i stands for the time of the m-

th event of oscillator i in subpopulation µ. Then, the probability
density for an event to happen at time t in subpopulation µ is
pµ(t) = P(t ∈ Sµ) and the probability of an event to happen at
time t in subpopulation µ and time t + τ in subpopulation ν is

pµν(t, t + τ ) = P
({

t ∈ Sµ
}

∩ {t + τ ∈ Sν}
)

= P
(

t ∈ Sµ
)

+ P (t + τ ∈ Sν)

− P
({

t ∈ Sµ
}

∪ {t + τ ∈ Sν}
)

. (6)

The delayed mutual information can be given as

Iµν(τ ) =

∫

dt pµν(t, t + τ ) log
pµν(t, t + τ )

pµ(t)pν(t)

= Hµ +Hν −Hµν(τ ). (7)

We again computed the probability densities using kernel density
estimators [65] but now involving Gaussian kernels. We also
adjusted the bandwidth selection to a spherical, local maximum
likelihood cross-validation due to the sparsity of the data and
the resulting bandwidths ranged from about 25 to 35 time units.
These results appeared robust when using the aforementioned
uniform search; again we employed the KDE-toolbox.

3.5. Events Defined Via Poincaré Sections
We analyzed the times t1,µ, t2,µ, . . . tN,µ at which the individual
phases φ(t)j,µ passed through their respective Poincaré sections.

The latter were defined as tj,µ ∈ R
+
0 :φj,µ(tj,µ)/2π ∈ Z. As

mentioned above, every subpopulation µ generated an “event

sequence” Sµ = {t
(m)
µ,1 , . . . , t

(m′)
µ,Nµ

}; which, as already said, may be

considered reminiscent of spike trains; cf. Figure 1C.
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FIGURE 2 | (A) Mutual informations Iµν as a function of τ between and within

the two subpopulations µ and ν. (C) The range-zoomed curve reveals a

directionality in the mutual information I12(τ ) between the two subpopulations

1 and 2, with a maximum peak Imax := I12(τmax) located at τmax < 0.

(B,D) Comparison of the average mutual information obtained from

continuous time data (solid), Ĩ12, vs. event time data (dotted), I12. Obviously,

locations of the peaks agree very well. (B–D) display the average mutual

information (I− 〈I〉t )/maxt (I− 〈I〉t ) with 〈I〉t denoting the average over time

after discarding a transient (see text for details). Parameters across panels are

A = 0.275, β = 0.125, σω = 0.01, σC = 0.01, σ2
W

= 0.001.

4. RESULTS

To determine the directionality of the information flow in
the network we computed the time lagged mutual information
within the subpopulations, I11(τ ) and I22(τ ) and between them,
I12(τ ) = I21(−τ ).

The first results for the event data outlined in section 3.5 are
shown in Figure 2A. Since the recurrence of events mimicked the
mean frequency of the phase oscillators, the mutual information
turned out periodic. As expected, we observed (average) values
of the mutual information that differed between I11 (red), I22
(blue), I12 (black). This relates to the difference in entropy of the
subpopulations, with the less synchronized one (µ = 2) being
more disordered. The latter, hence, contained more entropy.
However, since we were not interested in the explicit values of
Iµν(τ ), we could rescale the mutual information to maximum
value which allowed for a comparative view when zooming in to
the neighborhood of τ ≈ 0; see Figure 2C. The off-zero peak
of Imax := I12(τmax) in τ = τmax clearly indicated a directed
information flow, i.e., there is a functional directionality despite
the structural symmetry of our model.

When comparing the estimates for the mutual information
obtained from the event data, I, with those from the continuous-
time, Ĩ, we found little to no difference in peak location. That is,
the positions τmax of the maximum peaks, Ĩmax and Imax, were
nearly identical using either method as shown in Figures 2B,D.
Thus, to study the effects of varying model parameters on
Iµν(τ ), our subsequent analysis may solely rely on the event
data approach.
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FIGURE 3 | Dependency of (Imax, νmax) on the synchronization level and on

the parameters β and A. (A) The maximizing time delay τmax has a nearly

linear dependency on the angular phase difference of order parameters

arg (Z1/Z2). (B) τmax appears largely independent of the ratio of the

magnitude of order parameters |Z1/Z2|, though results are weakly dependent

on β. (C,D) The normalized maximum peak of mutual information Imax/I
SS
max

shows a weak dependency on the ratio of order parameters. All other

parameters are fixed at σω = 0.01, σC = 0.01, σ2
W

= 0.001.

Varying the values of A and β revealed a strong relation
between the location of the peak of the delayed mutual
information τmax and the relative phase arg (Z1/Z2) between the
two subpopulations; see Figure 3A. This convincingly shows that
our approach to analyze the event-based data reveals important
information about the (otherwise continuous) dynamics of the
subpopulations, here given by the phases (arguments) of the
local order parameters. By contrast, the relative strength of local
synchronization |Z1/Z2| had little to no effect on τmax; see
Figure 3B. These dependencies were inverted when looking at
the value of mutual information, Imax/I

SS
max; see Figures 3C,D.

Consequently, the value of mutual information was affected
by relative strength of local synchronization |Z1/Z2| | after
all the more a subpopulation is synchronized, the lower the
corresponding entropy. However, effects were small and probably
negligible when transferring to (selected) experimental data.
More details about the normalization factor ISSmax are discussed
in Appendix B.

5. DISCUSSION

The delayed mutual information from event data, here, the
passing times through the oscillators’ Poincaré sections, agreed
with that of the continuous data. This is an important
finding as it shows that studying discrete event time series
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allows for inferring information-related properties of continuous
dynamics. This offers the possibility to bring our approach
to experimental studies, be that in neuroscience, where spike
trains are a traditional measure of continuous neuronal activity,
or economics, where stroboscopic assessments of stocks are
common practice. Here, we used this approach to explore
the information flow within and between subpopulations of
a network of coupled phase oscillators. This information flow
turned out to be directed.

Mutual information is the traditional measure of shared
information between the two systems [58]. Our findings relied
on the introduction of a time delay τ , which readily allows
for identifying a direction of flow of information. This concept
is much related to the widely used transfer entropy [67, 68].
In fact, transfer entropy is the delayed conditional mutual
information [69, 70]. It therefore differs from our approach
primarily by a normalization factor. Since here we were not
interested in the absolute amount of information (flow), we could
simplify assessments and focus on delayed mutual information
| adding the conditional part jeopardizes the approximation
of probabilities, i.e., estimating transfer entropy in a reliable
manner typically requires more data than our delayed mutual
information. A detailed discussion of these differences is beyond
the scope of the current study.

For our model we found that the delayed mutual information
between the synchronized subpopulation and the less
synchronized one peaked at a finite delay τmax 6= 0. Hence,
there was a directed flow of information between the two
subpopulations. Since we found that τmax < 0 for I12(τ ),
the direction of this flow was from the less synchronized
subpopulation to the fully synchronized one, i.e., 2 → 1 or
D → S. In fact, the delay largely resembled the relative phase
between the corresponding local order parameters, as shown
in of Figure 3A. We could not only readily identify the relative
phase by encountering event data only, but our approach
also allowed for attaching a meaningful interpretation in an
information theoretic sense. This is promising since event data
are, as stated repeatedly, conventional outcome parameters in
many experimental settings. This is particularly true for studies
in neuroscience, for which the quest on information processing
is often central. There, networks are typically complex and
modular. The complex collective dynamics switches at multiple
scales, rendering neuronal networks especially exciting when it
comes to information routing [71]. As of yet, our approach does

not allow for unraveling dynamics information routing. This
will require extending the (time-lagged) mutual information to
a time-dependent version, e.g., by windowing the data under
study. We plan to incorporate this in future studies.

6. CONCLUSION

Estimating the delayed mutual information based on time points
at which the individual phases passed through their respective
Poincaré sections allows for identifying the information flow
between subpopulations of networks. If the network displays
chimera states, the information flow turns out to be directed. In
our model of coupled phase oscillators, the flow of information
was directed from the less synchronized subpopulation to the
fully synchronized one since the first preceded the latter. Our
approach is a first step to study information transfer between
spike trains. It can be readily adopted to static well-defined
modular networks and needs to be upgraded to a time dependent
version to be applied to real, biological data.
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