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A New Nonconvex Sparse Recovery
Method for Compressive Sensing
Zhiyong Zhou* and Jun Yu

Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden

As an extension of the widely used ℓr-minimization with 0 < r ≤ 1, a new non-convex

weighted ℓr − ℓ1 minimization method is proposed for compressive sensing. The

theoretical recovery results based on restricted isometry property and q-ratio constrained

minimal singular values are established. An algorithm that integrates the iteratively

reweighted least squares algorithm and the difference of convex functions algorithm

is given to approximately solve this non-convex problem. Numerical experiments are

presented to illustrate our results.

Keywords: compressive sensing, nonconvex sparse recovery, iteratively reweighted least squares, difference of

convex functions, q-ratio constrained minimal singular values

1. INTRODUCTION

Compressive sensing (CS) has attracted a great deal of interests since its advent [1, 2], see the
monographs [3, 4] and the references therein for a comprehensive view. Basically, the goal of CS is
to recover an unknown (approximately) sparse signal x ∈ R

N from the noisy underdetermined
linear measurements

y = Ax+ e ∈ R
m, (1)

with m ≪ N, A ∈ R
m×N being the pre-given measurement matrix and e ∈ R

m being the noise
vector. If the measurement matrix A satisfies some kinds of incoherence conditions (e.g., mutual
coherence condition [5, 6], restricted isometry property (RIP) [7, 8], null space property (NSP)
[9, 10], or constrained minimal singular values (CMSV) [11, 12]), then stable (w.r.t. sparsity defect)
and robust (w.r.t. measurement error) recovery results can be guaranteed by using the constrained
ℓ1-minimization [13]:

min
z∈RN

‖z‖1 subject to ‖Az − y‖2 ≤ η. (2)

Here the ℓ1-minimization problem works as a convex relaxation of ℓ0-minimization problem,
which is NP-hard to solve [14].

Meanwhile, non-convex recovery algorithms such as the ℓr-minimization (0 < r < 1) have
been proposed to enhance sparsity [15–20]. ℓr-minimization enables one to reconstruct the sparse
signal from fewer number of measurements compared to the convex ℓ1-minimization, although
it is more challenging to solve because of its non-convexity. Fortunately, an iteratively reweighted
least squares (IRLS) algorithm can be applied to approximately solve this non-convex problem in
practice [21, 22].
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As an extension of the ℓr-minimization, we study in this paper
the following weighted ℓr − ℓ1 minimization problem for sparse
signal recovery:

min
z∈RN

‖z‖rr − α‖z‖r1 subject to ‖Az − y‖2 ≤ η, (3)

where y = Ax + e with ‖e‖2 ≤ η, 0 ≤ α ≤ 1, and 0 < r ≤ 1.
Throughout the paper, we assume that α 6= 1 when r = 1.
Obviously, it reduces to the traditional ℓr-minimization problem
when α = 0. This hybrid norm model is inspired by the non-
convex Lipschitz continuous ℓ1 − ℓ2 model (minimizing the
difference of ℓ1 norm and ℓ2 norm) proposed in Lou et al. [23]
and Yin et al. [24], which improves the ℓ1-minimization in a
robust manner, especially for the highly coherent measurement
matrices. Roughly speaking, the underlying logic of adopting
these kinds of norm differences or the ratios of norms [25] comes
from the fact that they can be viewed as sparsity measures, see
the effective sparsity measure called q-ratio sparsity (involving
the ratio of ℓ1 norm and ℓq norm) defined later in Definition 2
of section 2.2. Other recent related literatures include [26–29], to
name a few.

To illustrate these weighted ℓr − ℓ1 norms (‖·‖rr − α‖·‖r1),
we present their corresponding contour plots in Figure 11. As
is shown, different non-convex patterns arise while varying
the difference weight α or the norm order r. And the level
curves of weighted ℓr − ℓ1 norms approach the x and y axes
as the norm values get small, which reflects their ability to
promote sparsity. In the present paper, we shall focus on both
the theoretical aspects and the computational study for this
non-convex sparse recovery method.

This paper is organized as follows. In section 2, we derive
the theoretical performance bounds for the weighted ℓr − ℓ1
minimization based on both r-RIP and q-ratio CMSV. In section
3, we give an algorithm to approximately solve the unconstrained
version of the weighted ℓr−ℓ1 minimization problem. Numerical
experiments are provided in section 4. Section 5 concludes with a
brief summary and an outlook on future extensions.

2. RECOVERY ANALYSIS

In this section, we establish the theoretical performance bounds
for the reconstruction error of the weighted ℓr−ℓ1 minimization
problem, based on both r-RIP and q-ratio CMSV. Hereafter, we
say a signal x ∈ R

N is s-sparse if ‖x‖0 =
∑N

i=1 1{xi 6= 0} ≤ s,
and denote by xS the vector that coincides with x on the indices
in S ⊆ [N] : = {1, 2, · · · ,N} and takes zero outside S.

2.1. r-RIP
We start with the definition of the s-th r-restricted isometry
constant, which was introduced in Chartrand and Staneva [30].

Definition 1. ([30]) For integer s > 0 and 0 < r ≤ 1, the s-
th r-restricted isometry constant (RIC) δs = δs(A) of a matrix

1All figures can be reproduced from the code available at https://github.com/

zzy583661/Weighted-l_r-l_1-minimization

A ∈ R
m×N is defined as the smallest δ ≥ 0 such that

(1− δ)‖x‖r2 ≤ ‖Ax‖rr ≤ (1+ δ)‖x‖r2 (4)

for all s-sparse vectors x ∈ R
N .

Then, the r-RIP means that the s-th r-RIC δs is small for
reasonably large s. In Chartrand and Staneva [30], the authors
established the recovery analysis result for ℓr-minimization
problem based on this r-RIP. To extend this to the weighted
ℓr − ℓ1 minimization problem, the following lemma plays a
crucial role.

Lemma 1. Suppose x ∈ R
N , 0 ≤ α ≤ 1 and 0 < r ≤ 1, then

we have

(N − αNr)

(

min
i∈[N]

|xi|
)r

≤ ‖x‖rr − α‖x‖r1 ≤ (N1−r − α)‖x‖r1.

(5)

In particular, when S = supp(x) ⊆ [N] and |S| = s, then

(s− αsr)

(

min
i∈S

|xi|
)r

≤ ‖x‖rr − α‖x‖r1 ≤ (s1−r − α)‖x‖r1. (6)

Proof. The right hand side of (5) follows immediately from the
norm inequality ‖x‖r ≤ N1/r−1‖x‖1 for any x ∈ R

N and 0 < r ≤
1. As for the left hand side, it holds trivially if mini∈[N] |xi| = 0.
When mini∈[N] |xi| 6= 0, by dividing

(

mini∈[N] |xi|
)r

on both
sides, it is equivalent to show that

N
∑

j=1

( |xj|
mini∈[N] |xi|

)r

− α





N
∑

j=1

|xj|
mini∈[N] |xi|





r

≥ N − αNr .

(7)

By denoting aj =
|xj|

mini∈[N] |xi| , we have aj ≥ 1 for any 1 ≤ j ≤ N,

and to show (7) it suffices to show

N
∑

j=1

arj − α





N
∑

j=1

aj





r

≥ N − αNr .

Assume the function f (a1, a2, · · · , aN) =
N
∑

j=1
arj − α

(

N
∑

j=1
aj

)r

.

Then, as a result of

∂f

∂ak
= rar−1

k
− αr





N
∑

j=1

aj





r−1

> 0 for any 1 ≤ k ≤ N,

we have f (a1, a2, · · · , aN) ≥ f (1, 1, · · · , 1) = N − αNr . Thus, the
left hand side of (5) holds and the proof is completed. (6) follows
as we apply (5) to xS.

Now, we are ready to present the r-RIP based bound for the ℓ2
norm of the reconstruction error.
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FIGURE 1 | The contour plots for weighted ℓr − ℓ1 norms with different α and r. The first row corresponds to the cases that r = 0.5 with different α = 0, 0.3, 1, while

the second row shows the cases that r = 0.1, 0.4, 0.7 with fixed α = 1.

Theorem 1. Let the ℓr-error of best s-term approximation of x be
σs(x)r = inf{‖x − z‖r , z ∈ R

N is s-sparse}. We assume that a > 0
is properly chosen so that as is an integer. If

b = (as)1−
r
2 − α(as)

r
2

s1−
r
2 + αs

r
2

> 1 (8)

and suppose the measurement matrix A satisfies the condition

δas + bδ(a+1)s < b− 1, (9)

then any solution x̂ to the minimization problem (3) obeys

‖x̂− x‖2 ≤ C1m
1/r−1/2η + C2(s

1− r
2 + αs

r
2 )−1/rσs(x)r (10)

with C1 = 21/r(1+b1/r)
(b−bδ(a+1)s−1−δas)1/r

and

C2 = 22/r−1[(1+δas)
1/r+(1−δ(a+1)s)

1/r]

(b−bδ(a+1)s−1−δas)1/r
.

Proof.We assume that S is the index set that contains the largest
s absolute entries of x so that σs(x)r = ‖xSc‖r and let h = x̂ − x.
Then we have

‖xS‖rr + ‖xSc‖rr − α‖x‖r1
= ‖x‖rr − α‖x‖r1
≥ ‖x̂‖rr − α‖x̂‖r1
= ‖xS + xSc + hS + hSc‖rr − α‖x+ hS + hSc‖r1
≥ ‖xS + hS‖rr + ‖xSc + hSc‖rr − α(‖x+ hS‖1 + ‖hSc‖1)r

≥ ‖xS‖rr − ‖hS‖rr + ‖hSc‖rr − ‖xSc‖rr − α‖x+ hS‖r1 − α‖hSc‖r1
≥ ‖xS‖rr − ‖hS‖rr + ‖hSc‖rr − ‖xSc‖rr
− α‖x‖r1 − α‖hS‖r1 − α‖hSc‖r1,

which implies

‖hSc‖rr − α‖hSc‖r1 ≤ ‖hS‖rr + α‖hS‖r1 + 2‖xSc‖rr . (11)

Using the Holder’s inequality, we obtain

‖Ah‖rr ≤
(

m
∑

i=1

(|(Ah)i|r)2/r
)r/2

·
(

m
∑

i=1

1

)1−r/2

= m1−r/2‖Ah‖r2.

By ‖Ax− y‖2 = ‖e‖2 ≤ η and the triangular inequality,

‖Ah‖2 = ‖(Ax̂− y)− (Ax− y)‖2
≤ ‖Ax̂− y‖2 + ‖Ax− y‖2 ≤ 2η. (12)

Thus,

‖Ah‖rr ≤ m1−r/2‖Ah‖r2 ≤ m1−r/2(2η)r . (13)

Arrange Sc = S1 ∪ S2 ∪ · · · , where S1 is the index set ofM = as
largest absolute entries of h in Sc, S2 is the index set of M largest
absolute entries of h in (S∪ S1)

c, etc. And we denote S0 = S∪ S1.
Then, by adopting Lemma 1, for each i ∈ Sk, k ≥ 2,

|hi| ≤ min
j∈Sk−1

|hj| ⇒ |hi|r ≤
(

min
j∈Sk−1

|hj|
)r

≤
‖hSk−1

‖rr − α‖hSk−1
‖r1

M − αMr
.

(14)

Thus we have ‖hSk‖r2 =
(

∑

i∈Sk
|hi|2

)r/2

≤

Mr/2 ‖hSk−1
‖rr−α‖hSk−1

‖r1
M−αMr = ‖hSk−1

‖rr−α‖hSk−1
‖r1

M1− r
2 −αM

r
2

. Hence it follows

that

∑

k≥2

‖hSk‖r2 ≤

∑

k≥1

(‖hSk‖rr − α‖hSk‖r1)

M1− r
2 − αM

r
2

=

∑

k≥1

‖hSk‖rr − α
∑

k≥1

‖hSk‖r1

M1− r
2 − αM

r
2

.

(15)

Note that

∑

k≥1

‖hSk‖rr = ‖hSc‖rr and
∑

k≥1

‖hSk‖r1 ≥ ‖
∑

k≥1

hSk‖r1 = ‖hSc‖r1,
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therefore, with (11), it holds that

∑

k≥2

‖hSk‖r2 ≤
‖hSc‖rr − α‖hSc‖r1
M1− r

2 − αM
r
2

≤ ‖hS‖rr + α‖hS‖r1 + 2‖xSc‖rr
M1− r

2 − αM
r
2

≤ s1−
r
2 ‖hS‖r2 + αs

r
2 ‖hS‖r2 + 2‖xSc‖rr

M1− r
2 − αM

r
2

≤ (s1−
r
2 + αs

r
2 )‖hS0‖r2 + 2‖xSc‖rr

M1− r
2 − αM

r
2

. (16)

Meanwhile, according to the definition of r-RIC, we have

‖Ah‖rr = ‖AhS0 +
∑

k≥2

AhSk‖rr

≥ ‖AhS0‖rr − ‖
∑

k≥2

AhSk‖rr

≥ ‖AhS0‖rr −
∑

k≥2

‖AhSk‖rr

≥ (1− δM+s)‖hS0‖r2 − (1+ δM)
∑

k≥2

‖hSk‖r2.

Thus by using (16), it follows that

‖Ah‖rr ≥ (1− δM+s)‖hS0‖
r
2 − (1+ δM) ·

(s1−
r
2 + αs

r
2 )‖hS0‖r2 + 2‖xSc‖rr

M1− r
2 − αM

r
2

=
(

1− δM+s −
1+ δM

b

)

‖hS0‖
r
2 −

2(1+ δM)

M1− r
2 − αM

r
2

‖xSc‖rr ,

where b = M1− r
2 −αM

r
2

s1−
r
2 +αs

r
2

= (as)1−
r
2 −α(as)

r
2

s1−
r
2 +αs

r
2

. Therefore, if δM +
bδM+s < b− 1, then it yields that

‖hS0‖
r
2 ≤ b

b− bδM+s − 1− δM
‖Ah‖rr +

2(1+ δM)(s1−
r
2 + αs

r
2 )−1

b− bδM+s − 1− δM
‖xSc‖rr

≤ bm1−r/2(2η)r

b− bδM+s − 1− δM
+ 2(1+ δM)(s1−

r
2 + αs

r
2 )−1

b− bδM+s − 1− δM
‖xSc‖rr .

(17)

On the other hand,





∑

k≥2

‖hSk‖2





r

≤
∑

k≥2

‖hSk‖r2

≤ (s1−
r
2 + αs

r
2 )‖hS0‖r2 + 2‖xSc‖rr

M1− r
2 − αM

r
2

= 1

b
‖hS0‖r2 +

2(s1−
r
2 + αs

r
2 )−1

b
‖xSc‖rr

≤ 1

b

(

b

b− bδM+s − 1− δM
‖Ah‖rr

+2(1+ δM)(s1−
r
2 + αs

r
2 )−1

b− bδM+s − 1− δM
‖xSc‖rr

)

+2(s1−
r
2 + αs

r
2 )−1

b
‖xSc‖rr

≤ 1

b− bδM+s − 1− δM
‖Ah‖rr

+ 2(1− δM+s)(s
1− r

2 + αs
r
2 )−1

b− bδM+s − 1− δM
‖xSc‖rr

≤ m1−r/2(2η)r

b− bδM+s − 1− δM

+ 2(1− δM+s)(s
1− r

2 + αs
r
2 )−1

b− bδM+s − 1− δM
‖xSc‖rr . (18)

Since (vr1+vr2)
1/r ≤ 21/r−1(v1+v2) for any v1, v2 ≥ 0, combining

(17) and (18) gives

‖h‖2 ≤ ‖hS0‖2 +
∑

k≥2

‖hSk‖2

≤ 21/r−1

(

2b1/rm1/r−1/2η

(b− bδM+s − 1− δM)1/r

+21/r(1+ δM)1/r(s1−
r
2 + αs

r
2 )−1/r

(b− bδM+s − 1− δM)1/r
‖xSc‖r

)

+ 21/r−1

(

2m1/r−1/2η

(b− bδM+s − 1− δM)1/r

+21/r(1− δM+s)
1/r(s1−

r
2 + αs

r
2 )−1/r

(b− bδM+s − 1− δM)1/r
‖xSc‖r

)

= 21/rm1/r−1/2(1+ b1/r)

(b− bδ(a+1)s − 1− δas)1/r
η

+ 22/r−1[(1+ δas)
1/r + (1− δ(a+1)s)

1/r]

(b− bδ(a+1)s − 1− δas)1/r

× (s1−
r
2 + αs

r
2 )−1/r‖xSc‖r

= C1m
1/r−1/2η + C2(s

1− r
2 + αs

r
2 )−1/rσs(x)r . (19)

The proof is completed.

Based on this theorem, we can obtain the following corollary
by assuming that the original signal x is s-sparse (σs(x)r = 0) and
the measurement vector is noise free (e = 0 and η = 0), which
acts as a natural generalization of Theorem 2.4 in Chartrand and
Staneva [30] from the case α = 0 to any α ∈ [0, 1].

Corollary 1. For any s-sparse signal x, if the conditions in

Theorem 1 hold, then the unique solution of (3) with η = 0 is
exactly x.

Remarks. Observe that r-RIP based condition for exact sparse
recovery given in Chartrand and Staneva [30] reads

δas < a1−
r
2 (1− δ(a+1)s)− 1,

while ours goes to

δas < b(1− δ(a+1)s)− 1
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with b = (as)1−
r
2 −α(as)

r
2

s1−
r
2 +αs

r
2

< a1−
r
2 when α ∈ (0, 1]. Thus, the

sufficient condition established here is slightly stronger than that
for the traditional ℓr-minimization in Chartrand and Staneva
[30] if α ∈ (0, 1].

2.2. q-Ratio CMSV
Before the discussion of q-ratio CMSV, we start with presenting
the definition of q-ratio sparsity as a kind of effective sparsity
measure. We list the detailed statement here for the sake
of completeness.

Definition 2. ([12, 31, 32]) For any non-zero z ∈ R
N and non-

negative q /∈ {0, 1,∞}, the q-ratio sparsity level of z is defined as

sq(z) =
(‖z‖1
‖z‖q

)

q
q−1

. (20)

The cases of q ∈ {0, 1,∞} are evaluated as limits: s0(z) =
lim
q→0

sq(z) = ‖z‖0, s∞(z) = lim
q→∞

sq(z) = ‖z‖1
‖z‖∞ , and s1(z) =

lim
q→1

sq(z) = exp(H1(π(z))), where π(z) ∈ R
N with entries

πi(z) = |zi|/‖z‖1 and H1 is the ordinary Shannon entropy
H1(π(z)) = −

∑N
i=1 πi(z) logπi(z).

We are able to establish the performance bounds for both the
ℓq norm and ℓr norm of the reconstruction error via a recently
developed computable incoherence measure of the measurement
matrix, called q-ratio CMSV. Its definition is given as follows.

Definition 3. ([12, 32]) For any real number s ∈ [1,N], q ∈
(1,∞], and matrix A ∈ R

m×N , the q-ratio constrained minimal
singular value (CMSV) of A is defined as

ρq,s(A) = min
z 6=0,sq(z)≤s

‖Az‖2
‖z‖q

. (21)

Then, when the signal is exactly sparse, we have the following q-
ratio CMSV based sufficient condition for valid upper bounds of
the reconstruction error, which are much more concise to obtain
than the r-RIP based ones.

Theorem 2. For any 1 < q ≤ ∞, 0 ≤ α ≤ 1, and 0 < r ≤ 1,
if the signal x is s-sparse and the measurement matrix A satisfies
the condition

ρ
q,
(

2
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A) > 0, (22)

then any solution x̂ to the minimization problem (3) obeys

‖x̂− x‖q ≤
2η

ρ
q,
(

2
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)
, (23)

‖x̂− x‖r ≤
(

2r+1

1− α

)1/r

· s1/r−1/qη

ρ
q,
(

2
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)
. (24)

Proof. Suppose the support of x to be Swith |S| ≤ s and h = x̂−x,
then, based on (11), we have

‖hSc‖rr − α‖hSc‖r1 ≤ ‖hS‖rr + α‖hS‖r1. (25)

Hence, for any 1 < q ≤ ∞, it holds that

‖h‖rr − α‖h‖r1 ≤ ‖hS‖rr + ‖hSc‖rr − α‖hS‖r1 − α‖hSc‖r1
≤ ‖hS‖rr − α‖hS‖r1 + ‖hS‖rr + α‖hS‖r1
≤ 2‖hS‖rr ≤ 2s1−r/q‖hS‖rq ≤ 2s1−r/q‖h‖rq.

Then since (1 − α)‖h‖r1 ≤ ‖h‖rr − α‖h‖r1, it implies that (1 −
α)‖h‖r1 ≤ 2s1−r/q‖h‖rq. As a consequence,

sq(h) =
(‖h‖1
‖h‖q

)

q
q−1

≤
(

2s1−r/q

1− α

)

q
r(q−1)

=
(

2

1− α

)

q
r(q−1)

s
q−r

r(q−1) . (26)

Therefore, according to the definition of q-ratio CMSV the
condition (22), and the fact that ‖Ah‖2 ≤ 2η [see (12)], we can
obtain that

ρ

q,
(

2
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A) ≤ ‖Ah‖2
‖h‖q

⇒ ‖h‖q ≤ ‖Ah‖2
ρ

q,
(

2
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)

≤ 2η

ρ

q,
(

2
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)
,

(27)

which completes the proof of (23). In addition, (1 − α)‖h‖rr ≤
‖h‖rr − α‖h‖r1 ≤ 2s1−r/q‖h‖rq yields

‖h‖r ≤
(

2

1− α

)1/r

s1/r−1/q‖h‖q

≤
(

2r+1

1− α

)1/r

· s1/r−1/qη

ρ
q,
(

2
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)
. (28)

Therefore, (24) holds and the proof is completed.

Remarks. Note that the results (11) and (12) in Theorem 1 of
Zhou and Yu [12] correspond to the special case of α = 0
and r = 1 in this result. As a by-product of this theorem, we
have that the perfect recovery can be guaranteed for any s-sparse
signal x via (3) with η = 0, if there exists some q ∈ (1,∞]
such that the q-ratio CMSV of the measurement matrix A fulfils
ρ
q,
(

2
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A) > 0. As studied in Zhou and Yu [12, 32],

this kind of q-ratio CMSV based sufficient conditions holds
with high probability for subgaussian and a class of structured
random matrices as long as the number of measurements is
reasonably large.

Next, we extend the result to the case that x is compressible
(i.e., not exactly sparse but can be well-approximated by an
exactly sparse signal).
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Theorem 3. For any 1 < q ≤ ∞, 0 ≤ α ≤ 1 and 0 < r ≤ 1, if
the measurement matrix A satisfies the condition

ρ
q,
(

4
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A) > 0, (29)

then any solution x̂ to the minimization problem (3) fulfils

‖x̂− x‖q ≤
2η

ρ
q,
(

4
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)
+ s1/q−1/rσs(x)r , (30)

‖x̂− x‖r ≤
(

4

1− α

)1/r s1/r−1/qη

ρ
q,
(

4
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)

+
(

4

1− α

)1/r

σs(x)r . (31)

Proof.We assume that S is the index set that contains the largest
s absolute entries of x so that σs(x)r = ‖xSc‖r and let h = x̂ − x.
Then we still have (11), that is,

‖hSc‖rr − α‖hSc‖r1 ≤ ‖hS‖rr + α‖hS‖r1 + 2‖xSc‖rr . (32)

As a result,

(1− α)‖h‖rr ≤ ‖h‖rr − α‖h‖r1
≤ ‖hS‖rr + ‖hSc‖rr − α‖hS‖r1 − α‖hSc‖r1
≤ 2‖hS‖rr + 2‖xSc‖rr
≤ 2s1−r/q‖h‖rq + 2‖xSc‖rr (33)

holds for any 1 < q ≤ ∞, 0 ≤ α ≤ 1 and 0 < r ≤ 1.
To prove (30), we assume h 6= 0 and ‖h‖q >

2η
ρ

q,( 4
1−α )

q
r(q−1) s

q−r
r(q−1)

(A)
, otherwise it holds trivially. Then

‖h‖q >
‖Ah‖2

ρ
q,
(

4
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)
⇒ sq(h) >

(

4

1− α

)

q
r(q−1)

s
q−r

r(q−1)

⇒ ‖h‖r1 >
4

1− α
s1−r/q‖h‖rq,

which implies that (1 − α)‖h‖rr ≥ (1 − α)‖h‖r1 > 4s1−r/q‖h‖rq.
Then combining with (33), it yields that

‖h‖q ≤ (sr/q−1)1/r‖xSc‖r = s1/q−1/r‖xSc‖r = s1/q−1/rσs(x)r .
(34)

Therefore, we have

‖h‖q ≤
2η

ρ
q,
(

4
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)
+ s1/q−1/rσs(x)r , (35)

which completes the proof of (30).

Moreover, by using (33) and the inequality (vr1 + vr2)
1/r ≤

21/r−1(v1 + v2) for any v1, v2 ≥ 0, we obtain that

‖h‖r ≤
(

1

1− α

)1/r

(2s1−r/q‖h‖rq + 2‖xSc‖rr)1/r

≤
(

1

1− α

)1/r

22/r−1(s1/r−1/q‖h‖q + ‖xSc‖r)

≤
(

1

1− α

)1/r

22/r−1











s1/r−1/q 2η

ρ

q,
(

4
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)
+ 2σs(x)r











≤
(

4

1− α

)1/r s1/r−1/qη

ρ

q,
(

4
1−α

)

q
r(q−1) s

q−r
r(q−1)

(A)
+
(

4

1− α

)1/r

σs(x)r .

(36)

Hence, (31) holds and the proof is completed.

Remarks. When we select α = 0 and r = 1, our results
reduce to the corresponding results for the ℓ1-minimization or
Basis Pursuit in Theorem 2 of Zhou and Yu [12]. In general,
the sufficient condition provided here and that in Theorem 2 are
slightly stronger than those established for the ℓ1-minimization

in Zhou and Yu [12], noticing that
(

2
1−α

)

q
r(q−1)

s
q−r

r(q−1) ≥ 2
q

q−1 s

and
(

4
1−α

)

q
r(q−1)

s
q−r

r(q−1) ≥ 4
q

q−1 s for any 1 < q ≤ ∞, 0 ≤ α ≤ 1,

and 0 < r ≤ 1. This is caused by the fact that the technical
inequalities used like (25) and (32) are far from tight. And this is
also the case in the r-RIP based analysis. In fact, both r-RIP and q-
ratio CMSV based conditions are loose. The discussion on much
tighter sufficient conditions such as the NSP based conditions
investigated in Tran and Webster [33], is left for future work.

3. ALGORITHM

In this section, we discuss the computational approach for the
unconstrained version of (3), i.e.,

min
x∈RN

1

2
‖Ax− y‖22 + λ(‖x‖rr − α‖x‖r1), (37)

with λ > 0 being the regularizer parameter.
We integrate the iteratively reweighted least squares (IRLS)

algorithm [21, 22] and the difference of convex functions
algorithm (DCA) [34, 35] to solve this problem. In the outer
loop, we use the IRLS to approximate the term ‖x‖rr , and
use an iteratively reweighted ℓ1 norm to approximate ‖x‖r1.
Specifically, we begin with x0 = argmin

x∈RN

‖y − Ax‖22 and ε0 = 1,

for n = 0, 1, · · · ,

xn+1 = arg min
x∈RN

1

2
‖Ax− y‖22 + λ‖Wnx‖22 − αλvn‖x‖1, (38)

where Wn = diag{((xni )2 + εn)
r/4−1/2} and vn = ‖xn‖r−1

1 . We
let εn+1 = εn/10 if the error ‖xn+1 − xn‖2 <

√
εn/100. The

algorithm is stopped when εn+1 < 10−8 for some n.
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FIGURE 2 | Successful recovery rate for different α with r = 0.3 and r = 0.7 in the noise free case, while varying the sparsity level s.

As for the inner loop used to solve (38), we view
it as a minimization problem of a difference of two
convex functions, that is, the objective function F(x) =
(

1
2‖Ax− y‖22 + λ‖Wnx‖22

)

− αλvn‖x‖1 = :G(x) − H(x).

We start with xn+1,0 = 0. For k = 0, 1, 2, · · · , in the
k + 1 step, by linearizing H(x) with the approximation

H(xn+1,k) + 〈yn+1,k, x − xn+1,k〉 where yn+1,k ∈ ∂H(xn+1,k), i.e.

yn+1,k is a subgradient of H(x) at xn+1,k. Then we have

xn+1,k+1 = argmin
x∈RN

1

2
‖Ax− y‖22 + λ‖Wnx‖22

−
(

αλvn‖xn+1,k‖1 + 〈αλvnsign(xn+1,k), x− xn+1,k〉
)

= argmin
x∈RN

1

2
‖Ax− y‖22 + λ‖Wnx‖22 − 〈αλvnsign(xn+1,k), x〉

= (ATA+ 2λ(Wn)TWn)−1[ATy+ αλvnsign(xn+1,k)],

where sign(·) is the sign function. The termination criterion for
the inner loop is set to be

‖xn+1,k+1 − xn+1,k‖2
max{‖xn+1,k‖2, 1}

< δ

for some given parameter tolerance parameter δ > 0. Basically,
this algorithm can be regarded as a generalized version of
IRLS algorithm. Obviously, when α = 0, it exactly reduces
to the traditional IRLS algorithm used for solving the ℓr-
minimization problem.

4. NUMERICAL EXPERIMENTS

In this section, some numerical experiments on the proposed
algorithm in section 3 are conducted to illustrate the performance
of the weighted ℓr − ℓ1 minimization in simulated sparse
signal recovery.

4.1. Successful Recovery
First, we focus on the weighted ℓr − ℓ1 minimization itself. In
this set of experiments, the s-sparse signal x is of length N = 256,
which is generated by choosing s entries uniformly at random,
and then choosing the non-zero values from the standard normal
distribution for these s entries. The underdetermined linear
measurements y = Ax + e ∈ R

m, where A ∈ R
m×N is a

standard Gaussian random matrix and the entries of the noise

vector {ei, i = 1, 2, · · · ,m} i.i.d.∼ N(0, σ 2). Here we fix the
number of measurements m = 64 and select a sequence of s
as 10, 12, · · · , 36. We run the experiments for both noiseless and
noisy cases. In all the experiments, we let the tolerance parameter
δ = 10−3. And all the results are averaged over 100 repetitions.

In the noiseless case, i.e., σ = 0, we set λ = 10−6. In Figure 2,
we show the results of successful recovery rate for different α (i.e.,
α = 0, 0.2, 0.5, 0.8, 1) while fixing r but varying the sparsity level
s. We view it as a successful recovery if ‖x̂ − x‖2/‖x‖2 < 10−3.
We do the experiments for r = 0.3 and r = 0.7, respectively.
As we can see, when r is fixed, the influence of the weight α

is negligible, especially in the case that r is relatively small. But
the performance does improve in some scenarios when a proper
weight α is used. However, the problem of adaptively selecting
the optimal α seems to be challenging and is left for future
work. In addition, we present the reconstruction performances
for different r (i.e., r = 0.01, 0.2, 0.5, 0.8, 1) while the weight
α is fixed to be 0.2 and 0.8 in Figure 3. Note that small r is
favored when the weight α is fixed. And a non-convex recovery
with 0 < r < 1 performs much better than the convex
case (r = 1).

Next, we consider the noisy case, that is σ = 0.01. We set
λ = 10−4. And we evaluate the recovery performance by the
signal to noise ratio (SNR), which is given by

SNR = 20 log10

( ‖x‖2
‖x̂− x‖2

)

.
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FIGURE 3 | Successful recovery rate for different r with α = 0.2 and α = 0.8 in the noise free case, while varying the sparsity level s.

FIGURE 4 | SNR for different α with r = 0.3 and r = 0.7 in the noisy case, while varying the sparsity level s.

As shown in Figures 4, 5, the findings aforementioned can still be
seen here.

4.2. Algorithm Comparisons
Second, we compare the weighted ℓr − ℓ1 minimization with
some well-known algorithms. The following state-of-the-art
recovery algorithms are operated:

• ADMM-Lasso, see Boyd et al. [36].
• CoSaMP, see Needell and Tropp [37].
• Iterative Hard Thresholding (IHT), see Blumensath and

Davies [38].
• ℓ1 − ℓ2 minimization, see Yin et al. [24].

The tuning parameters used for these algorithms are the same
as those adopted in section 5.2 of Yin et al. [24]. Specifically,
for ADMM-Lasso, we choose λ = 10−6, β = 1, ρ = 10−5,
εabs = 10−7, εrel = 10−5, and themaximumnumber of iterations
maxiter = 5,000. For CoSaMP, maxiter=50 and the tolerance is
set to be 10−8. The tolerance for IHT is 10−12. For ℓ1 − ℓ2
minimization, we choose the parameters as εabs = 10−7, εrel =
10−5, ε = 10−2, MAXoit = 10, and MAXit = 500. For our
weighted ℓr − ℓ1 minimization, we choose λ = 10−6, r = 0.5
but with two different weights α = 0 (denoted as ℓ0.5) and α = 1
(denoted as ℓ0.5 − ℓ1).

We only consider the exactly sparse signal recovery in
the noiseless case, and conduct the experiments under the
same settings as in section 4.1. We present the successful
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FIGURE 5 | SNR for different r with α = 0.2 and α = 0.8 in the noisy case, while varying the sparsity level s.

FIGURE 6 | Sparse signal recovery performance comparison via different algorithms for Gaussian random matrix.

recovery rates for different reconstruction algorithms
while varying the sparsity level s in Figure 6. It can be
observed that both ℓ0.5 and ℓ0.5 − ℓ1 outperform over other
algorithms, although their own performances are almost
the same.

5. CONCLUSION

In this paper, we studied a new non-convex recovery method,
developed as minimizing a weighted difference of ℓr (0 < r ≤ 1)
norm and ℓ1 norm. We established the performance bounds

for this problem based on both r-RIP and q-ratio CMSV.
An algorithm was proposed to approximately solve the non-
convex problem. Numerical experiments show that the proposed
algorithm provides superior performance compared to the
existing algorithms such as ADMM-Lasso, CoSaMP, IHT and
ℓ1 − ℓ2 minimization.

Besides, there are some open problems left for future work.

One is the convergence study of the proposed algorithm in

section 3. Another one is the generalization of this 1-D non-

convex version to 2-D non-convex total variation minimization
as done in Lou et al. [39] and the exploration of its application
to medical imaging. Moreover, analogous to the non-convex
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block-sparse compressive sensing studied in Wang et al. [40],
the study of the following non-convex block-sparse recovery
minimization problem:

min
z∈RN

‖z‖r2,r − α‖z‖r2,1 subject to ‖Az − y‖2 ≤ η, (39)

where ‖z‖2,r = (
∑p

i=1‖z[i]‖r2)1/r with z[i] denoting the i-th block
of z, 0 ≤ α ≤ 1, and 0 < r ≤ 1, is also an interesting topic for
further investigation.
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