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Localisation is one of the main reasons for the success of the ensemble Kalman filter

(EnKF) in high-dimensional geophysical data assimilation problems. It is based on the

assumption that correlations between variables of a dynamical system decrease at a

fast rate with the physical distance. In the EnKF, two types of localisation methods

have emerged: domain localisation and covariance localisation. In this article, we explore

possible implementations for covariance localisation in the deterministic EnKF using

augmented ensembles in the analysis. We first discuss and compare two different

methods to construct the augmented ensemble. The first method, known as modulation,

relies on a factorisation property of the background covariance matrix. The second

method is based on randomised singular value decomposition (svd) techniques, and has

not been previously applied to covariance localisation. The qualitative properties of both

methods are illustrated using a simple one-dimensional covariance model. We then show

how localisation can be introduced in the perturbation update step using this augmented

ensemble framework and we derive a generic ensemble square root Kalman filter with

covariance localisation (LEnSRF). Using twin simulations of the Lorenz-1996 model we

show that the LEnSRF is numerically more efficient when combined with the randomised

svd method than with the modulation method. Finally we introduce a realistic extension

of the LEnSRF that uses domain localisation in the horizontal direction and covariance

localisation in the vertical direction. Using twin simulations of a multilayer extension of

the Lorenz-1996 model, we show that this approach is adequate to assimilate satellite

radiances, for which domain localisation alone is insufficient.

Keywords: ensemble Kalman filter, covariance localisation, modulation, random svd, satellite radiances, non-local

observations

1. INTRODUCTION

The ensemble Kalman filter (EnKF, [1]) is an ensemble data assimilation (DA) method that has
been applied with success to a wide range of dynamical systems in geophysics (see for example,
[2, 3]).When the ensemble size is small, ensemble estimates are unreliable, which is why localisation
techniques have been introduced in the EnKF.With a chaotic model, Bocquet and Carrassi [4] have
shown that localisation is necessary when the ensemble size is smaller than the number of unstable
and neutral modes of the dynamics.

Localisation is based on the assumption that correlations between variables in a dynamical
system decrease at a fast rate with the physical distance. This assumption is used either to make
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the assimilation of observations local (domain localisation; [5, 6])
or to artificially taper distant spurious correlations (covariance
localisation, [7]). Although both approaches are based on the
same rationale, each one has its own implementation and leads to
different algorithms. EnKF algorithms using domain localisation
are by construction embarrassingly parallel but cannot assimilate
non-local observations without ad hoc approximations. By
contrast, EnKF algorithms using covariance localisation rely on
a single global analysis with a tapered (localised) background
covariance, which is more complex to implement especially in a
deterministic context. In practice, the two approaches coincide in
the limit where the analysis is driven by the background statistics
[8] and could differ otherwise.

The ability to assimilate non-local observations becomes
increasingly important with the prominence of satellite
observations [9]. EnKF algorithms using domain localisation
have been adapted to the case of satellite radiances [see
e.g., 10, 11]. In these algorithms, the shape of the weighting
function associated to a specific satellite channel is used to give an
approximate location to this channel (usually the functionmode).
However, using a realistic one-dimensional model with satellite
radiances, Campbell et al. [9] have shown that this approach
systematically yields higher errors than covariance localisation.

In this article, we focus on the implementation of covariance
localisation in the deterministic EnKF and we put forward two
difficulties: how to construct an accurate representation of the
localised background covariance and how to efficiently update
the perturbations using this representation.

Regarding the first issue, the EnKF literature shows a growing
interest in using augmented ensembles during the analysis step,
that is when the ensemble size during the analysis step is
larger than during the forecast step. Buehner [12] has proposed
a method to construct a modulated ensemble that follows
the localised background covariance based on a factorisation
property shown by Lorenc [13]. This method has then been
leveraged upon by Bishop and Hodyss [14] and used in the
literature to perform covariance localisation [15–19]. With
an alternative point of view, Kretschmer et al. [20] have
included localisation in the ensemble transform Kalman filter
(ETKF, [21]) by the means of a climatologically augmented
ensemble. Finally, Lorenc [22] has shown that the background
error covariance matrix can be improved in hybrid ensemble
variational data assimilation systems by using time-lagged and
time-shifted perturbations.

Another possibility would be to construct the augmented
ensemble using randomised singular value decomposition (svd)
techniques [23]. Such a method will be detailed in this article.

With an augmented ensemble, standard formulae cannot
be used for the perturbation update because the number of
perturbations to propagate must be inferior to the augmented
ensemble size. This issue is discussed by Bocquet [18], with
proposed update formulae. The same update was later derived
again by Bishop et al. [19] in a different but formally equivalent
form. In this article, we will consider several alternatives
for the perturbation update and we will eventually select
the update of Bocquet [18], which we found to be the
most adequate.

A brief introduction of the EnKF is given in section 2.
In section 3, we explain how covariance localisation can
be implemented in the deterministic EnKF using augmented
ensembles. In section 4, we compare the accuracy of the methods
designed to approximate the localised background covariance.
Section 5 is dedicated to the numerical illustration of the resulting
algorithms using the one-dimensional Lorenz 1996 [L96, 24]
model. We explain in section 6 how these methods can be used
to assimilate satellite radiances and give an illustration using
a multilayer extension of the L96 model that mimics satellite
radiances. Conclusions follow in section 7.

2. BACKGROUND AND MOTIVATION

Before getting to the matter of covariance localisation, we recall
the basics of the EnKF and we introduce the notation.

2.1. The Kalman Filter Analysis
Consider the DA problem that consists in estimating a state
vector xk ∈ R

Nx at discrete times tk, k ∈ N, through independent
realisations of the observation vectors yk ∈ R

Ny given by

xk =Mk

(
xk−1

)
+ wk, wk ∼ N (0,Qk) , (1)

yk = Hk (xk)+ vk, vk ∼ N (0,Rk) . (2)

When the dynamical model M and the observation operator
H are linear and when the initial probability density function
(pdf) is Gaussian, the analysis pdf at all time is Gaussian with
mean vector and error covariance matrix given by the dynamical
Riccati equation.

In the following, we focus on one linear Gaussian analysis step.
For simplicity we drop the time index k and the conditioning
on the previous observations. The linear observation operator is
writtenH. The background and analysis pdfs are

p (x) = N (x|xf, B) , (3)

p
(
x|y
)
= N (x|xa, P) , (4)

where xa and P are given by

K = BHT
(
R+HBHT

)−1
, (5)

xa = xf + K
(
y−Hxf

)
, (6)

P = (I− KH)B. (7)

2.2. The EnKF Analysis
In the EnKF [25], the statistics are carried through by the
ensemble

{
xi, i = 1 . . .Ne

}
. Let E be the ensemble matrix,

that is the Nx × Ne matrix whose columns are the ensemble
members. Let x be the ensemble mean and X be the normalised
anomaly matrix:

x =
E1

Ne
, (8)

X =
E− x1T
√
Ne − 1

, (9)
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where 1 ∈ R
Ne is the vector whose components are 1.

The main EnKF assumptions are

xf = x, (10)

B = XXT. (11)

This means that the background pdf N (xf, B) is
represented by the empirical pdf N

(
x, XXT

)
. The

ensemble update depends on the specific implementation
of the EnKF. For example, in the ETKF it is
given by

Y = HX, (12)

y =
Y1

Ne
, (13)

xa = x+ X
(
I+ YTR−1Y

)−1
YTR−1

(
y− y

)
, (14)

Xa = X
(
I+ YTR−1Y

)− 1
2
U, (15)

E← xa1
T +

√
Ne − 1Xa, (16)

where U is an arbitrary orthogonal matrix that verifies
U1 = 1 and the 1

2 exponent denotes the square root
for diagonalisable matrices with non-negative eigenvalues,
defined as follows. Let M be the matrix GDG−1 with G an
invertible square matrix and D a diagonal matrix with non-
negative elements. We define its square root to be the matrix

M
1
2 = GD

1
2G−1.

2.3. Rank Deficiency of the EnKF
The empirical error covariance matrix XXT has rank limited by
Ne − 1, which is probably too small to accurately represent the
full error covariance matrix of a high-dimensional system where
Nx ≫ Ne. Indeed, when the ensemble is too small, the empirical
error covariance matrix is characterised by large sampling
errors, which often take the form of spurious correlations at
long distance.

To fix this, covariance localisation uses anNx×Nx localisation
matrix ρ and regularises the background error empirical
covariance matrix by a Schur (element-wise) product

B = ρ ◦
(
XXT

)
. (17)

The localisation matrix ρ is a short-range matrix that describes
the correlation in the physical domain. If ρ is positive definite,
then B is positive semi-definite and therefore can be used as a
covariance matrix [26]. This new background covariance matrix
also has the following desirable properties: (i) if ρ is short-range
then spurious correlations at long distance are removed in B and
(ii) the rank of B is no longer limited by Ne − 1. In practice, B is
always full-rank (and hence positive definite).

3. IMPLEMENTING COVARIANCE
LOCALISATION IN THE DETERMINISTIC
ENKF

3.1. Principle
Covariance localisation as presented in Equation (17) is
formulated in state space, while the ETKF ensemble update
(Equations 12–16) is formulated in ensemble space. As is,
these two approaches are irreconcilable. However, there are
other variants of the deterministic EnKF in which covariance
localisation can be easily integrated. In the “determinisitic
ensemble Kalman filter” [27], the ensemble update is based on
the Kalman gain Equation (5) only, where covariance localisation
can be included in B. In the serial ensemble square root filter [28],
the ensemble update is based on a modified scalar Kalman gain,
for which the localisation matrix ρ can be applied entry-wise.

Another possibility to include covariance localisation in the
EnKF is to use augmented ensembles. In this case, the EnKF
analysis step would be split into three sub-steps:

1. compute a set of N̂e perturbations X̂ such that B = ρ ◦XXT ≈
X̂X̂T;

2. apply an EnKF analysis step (e.g. the ETKF) using the
background state x and the N̂e perturbations X̂ to compute
the analysis state xa and the N̂e perturbations X̂a;

3. form Ne updated members using the analysis state xa and the
N̂e analysis perturbations X̂a.

Augmented ensembles are currently used in operational
centres to implement localisation in four-dimensional ensemble
variational methods [29–31].

In section 3.2, we present differentmethods that can be used to
construct the augmented ensemble (sub-step 1) and in section 3.3
we discuss potential implementations of the perturbation update
within this augmented ensemble context (sub-step 3).

3.2. Approximate Factorisation of the Prior
Covariance Matrix
3.2.1. Mathematical Goal
Given the prior covariance matrix B = ρ ◦

(
XXT

)
, we want an

Nx × N̂e matrix X̂ such that

X̂X̂T ≈ B, (18)

X̂1 = 0. (19)

Note that, although X̂ represents a set of N̂e perturbations, we call
it “augmented ensemble” for simplicity.

3.2.2. Approximation via Modulation
Suppose that we have anNx×Nm matrixW such that ρ ≈WWT.
We define the Nx × NmNe matrixW1X by

[W1X]
jNe+i
n = [W]

j
n [X]

i
n , (20)

which is a mix between a Schur product (for the state variable
index n) and a tensor product (for the ensemble indices i and j).
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W1X is the modulation product of X and W. As shown by
Lorenc [13]:

(W1X) (W1X)T =
(
WWT

)
◦
(
XXT

)
. (21)

Moreover, it is easy to verify that, as long as X1 = 0, we
have (W1X) 1 = 0. Therefore, X̂ = W1X is a solution to
Equations (18) and (19) with N̂e = NmNe perturbations.

The name “modulation” was given by Bishop et al. [19]. It
stems from the fact that the columns of W should be the main
modes of ρ.

Using Equation (20), we conclude that X̂ is constructed
with complexity:

Tmod = O
(
NxN̂e

)
. (22)

In this equation, we excluded the cost of computing thematrixW.
Indeed, if the localisation matrix ρ is constant in time, then the
same matrixW can be used for all analysis steps and it only needs
to be computed once. A fair comparison with the other methods
must take into account this fact.

One remaining question is: how large must be Nm? This
question is largely discussed in the litterature related to principal
component analysis (see e.g., [32]). However, its answer highly
depends on the spatial structure of ρ itself. In the numerical
experiments of sections 4, 5, and 6, we illustrate how our
performance criterion depends on the number of modes Nm. Yet
at this point, it is not clear which degree of accuracy we need
for the factorisation of B. Finally note that, in high dimensional
spaces, W can be obtained using the random svd (Algorithm B)
derived by Halko et al. [23] and described in Appendix B.

3.2.3. Including Balance in the Modulation
In this section, we describe a refinement of the modulation
method, based on a new idea. When there is variability between
the state variables, it could be interesting to remove part of
this variability by transferring it to W as follows. Let 3 be the
Nx × Nx diagonal matrix containing the standard deviations of
the ensemble:

3 =
[
diag

(
XXT

)] 1
2
. (23)

The background error covariance matrix can then be written

B = (3ρ3) ◦
{(

3−1X
) (

3−1X
)T}

. (24)

Suppose now that the Nx × Nm matrix W verifies 3ρ3 ≈
WWT. If we have an Nx × (Nm + δNm) matrix W+ such that
W+WT

+ ≈ ρ, then W can be constructed as the Nm main
modes of 3W+. For the same reason as in section 3.2.2, X̂ =
W1

(
3−1X

)
is a solution to Equations (18) and (19) with N̂e =

NmNe perturbations.
In the transformed anomalies 3−1X, all state variables have

the same variability (namely 1). The variability transfer fromX to
Wmeans that the matrixW can be deformed and adapted to the
current situation in order to yield a more accurate representation
of the prior covariance matrix B.

Using this method, the longest algorithmic operation consists
in obtaining W from the svd of 3W+. Therefore, 3X is
constructed with approximate complexity:

Tmod, bal = O
(
Nx (Nm + δNm)2

)
. (25)

Again, we excluded the cost of computing thematrixW+ because
it only needs to be computed once.

3.2.4. Approximation via Truncated svd
Suppose that we have a truncated svd of B given by

B = ρ ◦
(
XXT

)
≈ U6UT, (26)

where U is an Nx × Nm orthogonal matrix and 6 is an Nm ×
Nm diagonal matrix. Since B is symmetric positive definite,
Equation (26) is a truncated eigendecomposition. Let X̂ be an
Nx × (Nm + 1) matrix such that

X̂X̂T =
(
U6

1
2

) (
U6

1
2

)T
, (27)

X̂1 = 0. (28)

Appendix A describes a method to construct X̂ fromU6
1
2 . Then

X̂ is a solution to Equations (18) and (19) with N̂e = Nm + 1
perturbations.

How can we efficiently obtain the truncated svd of B

Equation (26)? Since B is an Nx × Nx matrix, its svd can be
computed with complexity O

(
N3
x

)
. A more adequate solution is

to use the random svd (Algorithm 2) derived by Halko et al. [23].
A brief description of this algorithm can be found inAppendix B.
For a detailed description, we refer to the original article by Halko
et al. [23].

Using this method, the longest algorithmic operations
are empirically

1. applying the background error covariance matrix B (steps 2, 5,
7, and 10 of Algorithm 2);

2. computing the QR factorisations (steps 3, 6, and 8 of
Algorithm 2).

This means that X̂ is constructed with approximate complexity:

Ttrunc svd = 2
(
q+ 1

)
N̂eTB +

(
2q+ 1

)
O
(
NxN̂

2
e

)
, (29)

where TB is the complexity of applying the matrix B to a vector
and the parameter q is the number of iterations performed in
Algorithm 2. With a dense representation of the matrix B, TB =
O
(
N2
x

)
. However, for any vector v of sizeNx, we have the identity:

Bv =
Ne∑

i=1
Xi ◦

(
ρ
(
Xi ◦ v

))
, (30)

where Xi is the i-th column of matrix X. If ρ is banded with
non-zero coefficients on Nb diagonals, the matrix product Bv
has complexity TB = O (NeNxNb). Furthermore, if ρ is a
circulant matrix (this corresponds to an invariance by translation
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in physical space) it is diagonal in spectral space and TB =
O
(
NeNxlnNx

)
.

Finally, as explained in details by Halko et al. [23] and
recalled in Appendix B.2, the matrix multiplications implying B
in the truncated svd method can be parallelised, which reduces
Ttrunc svd to:

Ttrunc svd = 2
(
q+ 1

) N̂e

Nthr
TB +

(
2q+ 1

)
O
(
NxN̂

2
e

)
, (31)

where Nthr is the number of available threads.
Again, the same question remains: how large must beNm? For

the same reasons as in section 3.2.2, we cannot provide a clear
answer at this point. However, in the numerical experiments of
sections 4, 5, and 6, we illustrate how our performance criterion
depends on the number of modes Nm.

3.3. Updating the Perturbations
Once the augmented ensemble X̂ is constructed, we need to
specify how we are going to update the perturbations. This is
a non-trivial problem because the number of perturbations that
compose X̂, N̂e, is potentially different from (andmost of the time
greater than) the number of pertubations to update, Ne.

3.3.1. Updating the Perturbations Without

Localisation
The perturbation update of the ETKF is given by

Te =
(
I+ YTR−1Y

)− 1
2
, (32)

Xa = XTe. (33)

This is a simplified version of Equation (15) that
rigorously satisfies

XaX
T
a = P = (I− KH)XXT. (34)

Sakov and Bertino [8] have shown that Equation (33) is
equivalent to

Tx =
(
I+ BHTR−1H

)− 1
2
, (35)

Xa = TxX. (36)

Note that I + BHTR−1H is not necessarily symmetric. However,
if we suppose that B is positive definite (the generalisation
to positive semi-definite matrices is not fundamental) then
BHTR−1H is similar (in the matrix sense) to

B−
1
2BHTR−1HB

1
2 = B

1
2HTR−1HB

1
2 , (37)

which is symmetric positive semi-definite. Therefore, BHTR−1H
is diagonalisable with non-negative eigenvalues and I +
BHTR−1H is diagonalisable with positive eigenvalues. This
means that Tx is well-defined.

3.3.2. Updating the Perturbations With Localisation

Using the Augmented Ensemble
The right-transform Te is formulated in ensemble space. As
a result, there is no way to enforce covariance localisation
(formulated in state space) using this approach. By contrast, the
left-transform Tx is formulated in state space and is therefore
more adequate to covariance localisation.

Using the augmented ensemble constructed in section 3.2, the
prior covariance matrix is approximated by Equation (18). This
means that the left-transform can be approximated by

Tx ≈ T̂e =
(
I+ X̂ŶTR−1H

)− 1
2
, (38)

where Ŷ = HX̂. Using this expression for the update still implies
linear algebra in state space, which is problematic with high-
dimensional systems. I + X̂ŶTR−1H is an Nx × Nx matrix, it
is therefore intractable with high-dimensional systems. However,
Equation (25) of Bocquet [18] shows that

T̂e = I− X̂

(
I+ ŶTR−1Ŷ+

(
I+ ŶTR−1Ŷ

) 1
2

)−1
ŶTR−1Ĥ,

(39)
where the linear algebra is now performed in the augmented
ensemble space (that is, using N̂e × N̂e matrices). This
perturbation update has been rediscovered by Bishop et al. [19]
and included in their gain ETKF (GETKF) algorithm. However,
the update formula used in the GETKF is prone to numerical
cancellation errors as opposed to Equation (39).

In the rest of this article, we use the following
perturbation update:

Xa = T̂eX, (40)

and we compute the left-transform T̂e using Equation (39).
Algorithm 1 summarises the analysis step of the resulting
generic ensemble square root Kalman filter with covariance
localisation (LEnSRF). Finally note that the consistency of the
perturbation update in deterministic EnKF algorithms using
covariance localisation is the subject of another study by Bocquet
and Farchi (under review).

4. ACCURACY OF THE APPROXIMATE
FACTORISATION

4.1. A Simple One-Dimensional Model for
the Background Error Covariance Matrix
In this section, we investigate the accuracy of the factorisation
Equation (18) obtained with the methods described in section 3.2.
The background error covariance matrix is obtained as follows.

Let G be the piecewise rational function of Gaspari and Cohn
[33]. Let d be the Euclidean distance over the set {1 . . .Nx} with
periodic boundary conditions. For any radius r ∈ R

+, we define
C (r) as the Nx × Nx matrix whose coefficients satisfy

[C (r)]m, n = G

(
d (m, n)

r

)
. (41)
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Algorithm 1 Analysis step for a generic LEnSRF used in this
article. The augmented ensemble at step 3 can be constructed
using the modulation method with or without the balanced
refinement or using the truncated svd method.

Require: Nx × Ne background ensemble matrix E, observation
vector y ∈ R

Ny (inputs); multiplicative inflation factor λ

(parameter).
1: x = E1

Ne
.

2: X = E−x1T√
Ne

.

3: Compute the augmented ensemble X̂.
4: Ŷ = HX̂.
5: y = Ŷ1

N̂e
.

6: δ = R−
1
2
(
y− y

)
.

7: Ŝ = R−
1
2 Ŷ.

8: xa = x+ X̂
(
I+ ŜTŜ

)−1
ŜTδ.

9: Xa = X− X̂

(
I+ ŜTŜ+

(
I+ ŜTŜ

) 1
2

)−1
ŜTR−

1
2HX.

10: E← xa1
T + λ

√
Ne − 1Xa.

11: return Nx × Ne analysis ensemble matrix E.

For any vector v ∈ R
Nx , we define D (v) as the Nx × Nx diagonal

matrix whose diagonal is precisely v.
We draw a vector c from the distribution N (1, αcC (rc)),

where αc and rc are two parameters. We define:

Cref = D (c)C (rref)D (c) . (42)

Cref plays the role of a reference covariance matrix in our model.
We now draw a sample of Ne independent members from the
distribution N (0, Cref). Without loss of generality, we assume
that the associated ensemble matrix X is normalised by

√
Ne − 1.

We define the background error covariance matrix as

B = ρ ◦
(
XXT

)
, (43)

with the localisation matrix ρ = C (rref).

4.2. Experimental Setup
In the following test series, we use two matrices B1 and B2.
They are constructed using different realisations of the model
described in section 4.1 with the parameters specified in Table 1.
Note that we used short-range correlations (rref = 20) to
constructB1 andmid-range correlations (rref = 100) to construct
B2. Figure 1 displays the matrices B1 and B2.

The modulation method described in sections 3.2.2 and 3.2.3
requires an approximate factorisation for ρ = C (rref), that we
precompute by keeping the first Nm or Nm + δNm (when using
the balance refinement) modes in the svd of ρ. Since ρ is sparse,
we use the random svd (Algorithm 2) to obtain this factorisation.

4.3. Results and Discussion
We apply the methods described in section 3.2 to obtain an
approximate factorisation for B1 and B2 and we compute the

TABLE 1 | Parameters used to construct B1 and B2 with the model described in

section.

Parameter Value for B1 Value for B2

Nx 400 400

Ne 10 10

αc 0.2 0.2

rc 30 30

rref 20 100

normalised Frobenius error:

eF, i =
∥∥Bi − X̂X̂T

∥∥
F

‖Bi‖F
. (44)

Using the Eckart–Young theorem [34], we conclude that the
lowest normalised Frobenius error for a factorisation with rank
N̂e − 1 is

emin
F, i =

√
Nx∑

k=N̂e

σ 2
k (Bi)

‖Bi‖F
, (45)

where σk (M) is the k-th singular value of the matrixM.
Figure 2 shows the evolution of the normalised Frobenius

error eF, i as a function of the augmented ensemble size
N̂e when the factorisation is computed using the truncated
svd method (section 3.2.4) or the modulation method with
(section 3.2.3) or without (section 3.2.2) the balance refinement.
The value reported for eF, i is the average value over 100
independent realisations of the random svd. For q ≥ 1, the
Frobenius error of the truncated svd method (not shown here)
cannot be distinguised from the minimum possible value. For
the modulation method, using the balance refinement with
δNm > 10 (not shown here) does not yield a clear improvement
over the case δNm = 10. The singular values of B2 (mid-range
case) decay much faster than the singular values of B1 (short-
range case). This explains why the normalised Frobenius errors
eF, 2 are systematically lower than the normalised Frobenius
errors eF, 1.

The modulation method is very fast but yields a poor
approximation of the background error covariance matrix B.
With the balance refinement, the approximation is a bit better
and the method is still very fast. By contrast, the truncated svd
method is much slower but yields an approximation of B close
to optimal. At this point, it is not clear what level of precision
is needed for B. Yet, we can already conclude that, in a cycled
DA context, we will have to find a balance between speed and
accuracy in the construction of the augmented ensemble and in
the perturbation update.

Finally, different matrix norms could have been used in
this test series. Indeed, even if equivalent, two matrix norms
give different informations. This is why we have computed the
normalised spectral error (not shown here) and found quite
similar results to those depicted in Figure 2. This shows that our
results are not specific to the Frobenius norm.
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FIGURE 1 | Background error covariance matrices B1 (left) and B2 (right).

5. CYCLED DA EXPERIMENTS WITH A
ONE-DIMENSIONAL MODEL

5.1. The Lorenz 1996 Model
The L96 model [24] is a low-order one-dimensional discrete
model whose evolution is given by the following ordinary
differential equations (ODEs):

dxn
dt
= (xn+1 − xn−2) xn−1 − xn + F, n = 1 . . .Nx, (46)

where the indices are to be understood with periodic boundary
conditions: x−1 = xNx−1, x0 = xNx , x1 = xNx+1 and where
the system size Nx can take arbitrary values. These ODEs are
integrated using a fourth-order Runge–Kutta method with a time
step of 0.05 time unit.

The standard configuration Nx = 40 and F = 8 is widely
used in DA to assess the performance of the DA algorithms. It
yields chaotic dynamics with a doubling time around 0.42 time
unit. In this section, we use an extended standard configuration
whereNx = 400 and F = 8, which is essentially a repetition of ten
times the standard configuration. The observations are given by

y = x+ v, v ∼ N (0, I) , (47)

and the time interval between consecutive observations is 1t =
0.05 time unit, which represents 6 h of real time and corresponds
to a model autocorrelation around 0.967. The standard deviation
of the observation noise is approximately one tenth of the
climatological variability of each observation.

For the localisation, we use the Euclidean distance over the
set {1 . . .Nx} with periodic boundary conditions (the same as the
one that was used in section 4).

Note that we use Nx = 400 state variables instead of 40
such that typical local domains (with a localisation radius around
r = 20 grid points) do not cover the whole domain.

5.2. Experimental Setup
In this section, we illustrate the performance of the LEnSRF
Algorithm 1 using twin simulations of the L96 model in the
extended configuration. The augmented ensemble (step 3 of
Algorithm 1) is computed using the truncated svd method
(section 3.2.4) or the modulation method with (section 3.2.3)
or without (section 3.2.2) the balance refinement. Both methods
use an ensemble of Ne = 10 members and a localisation
matrix ρ = C (r), where the localisation radius r is a
free parameter.

For the modulation method, the approximate factorisation of
ρ is precomputed once for each twin experiment by keeping the
firstNm orNm+δNm (when using the balance refinement)modes
in the svd of ρ.

For the truncated svd method, the matrix multiplications
implying B are computed using Equation (30) and ρ is applied
in spectral space.

The runs are 2×1041t long (with an additional 2×1031t spin-
up period) and our performance criterion is the time-average
analysis root mean square error, hereafter called the RMSE.

5.3. Augmented Ensemble Size—RMSE
Evolution
Figure 3 shows the evolution of the RMSE as a function
of the augmented ensemble size N̂e. Both the truncated svd
and the modulation methods are able to produce an estime
of the true state with an accuracy equivalent to that of the
local ensemble transform Kalman filter (LETKF, [35]). As
expected after the experiments in section 4, for a given level
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FIGURE 2 | Evolution of the normalised Frobenius errors eF, 1 (top) and eF, 2
(bottom) as a function of the augmented ensemble size N̂e. The approximate

factorisation of B1 (top) and B2 (bottom) is computed either using the

truncated svd method with several values for the parameter q for the random

svd Algorithm 2 (blue lines) or using the modulation method with (solid red line)

or without (dashed red line) the balance refinement. The lowest normalised

achievable Frobenius errors emin
F, i are plotted in yellow for both cases.

of RMSE score we need a much smaller augmented ensemble
size N̂e when using the truncated svd method than when
using the modulation method. However, before we conclude
that the truncated svd method is more efficient, we need
to take into account the fact that computing the augmented
ensemble is much slower with this method than with the
modulation method.

With the truncated svd method, the augmented ensemble
size N̂e needs to be at least of the same order as the number
of unstable and neutral modes of the model dynamics (around
133 here) in order to yield accurate results [4]. We have also
tested q > 1 in the truncated svd method or δNm >

20 in the modulation method (not shown here) and found
that none of these parameters yields clear improvements in
RMSE scores.

5.4. RMSE—Wall-Clock Time Evolution
The longest algorithmic operations in Algorithm 1 are:

1. constructing the augmented ensemble (step 3);
2. computing the svd of Ŝ (required for steps 8 and 9);

When using the truncated svd method, some level of
parallelisation can be included in the construction of the
augmented ensemble as remarked in Appendix B.2. When using
the modulation method (even with the balance refinement),
constructing the augmented ensemble is almost instantaneous
compared to computing the svd of Ŝ. Therefore, we only enable
parallelisation when using the truncated svd method.

To compute the analysis state xa and analysis perturbationsXa,
we have tested several approaches and concluded that the most
efficient is to compute the svd of Ŝ with a direct svd algorithm,
which cannot be parallelised.

Figure 3 shows the evolution of the wall-clock time of one
analysis step as a function of the RMSE. All simulations
are performed on the same double Intel Xeon E5-2680
platform, which has a total of 24 cores. Parallelisation is
enabled when possible using a fixed number of OpenMP
threads. For a given level of RMSE score, the truncated svd
method is clearly faster than the modulation method. This
shows the advantage of using the truncated svd method
over the modulation method, especially when parallelisation
is possible. However, this result is specific to the problem
considered in this section and may not generalise to
all situations.

6. CYCLED DA EXPERIMENTS WITH
SATELLITE RADIANCES

6.1. Is Covariance Localisation Viable With
High-Dimensional Models?
In section 5, we have implemented covariance localisation in
the EnKF and successfully applied the resulting algorithm to a
one-dimensional DA problem with Nx = 400 state variables.
With a high-dimensional system, covariance localisation in the
EnKF will probably require a very large augmented ensemble size
N̂e, too large to be affordable. In this case, the use of domain
localisation will be mandatory.

When observations are local, domain localisation is simple
to implement and yield efficient algorithms such as the LETKF.
However, when observations are non-local, one must resort to
ad hoc approximations to implement domain localisation in
the EnKF, for example assigning an approximate location to
each observation. In this section, we discuss the case of satellite
radiances, which are non-local observations and we show how
existing variants of the LETKF deal with such observations.
We then give an extension of our LEnSRF Algorithm 1
designed to assimilate satellite radiances in a spatially extended
model. Finally we introduce a multilayer extension of the
L96 model that mimics satellite radiances and we illustrate
the performance of our method using twin simulations of
this model.
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FIGURE 3 | Evolution of the RMSE as a function of the augmented ensemble size N̂e (left) and of the wall-clock analysis time for the 22× 103 cycles as a function of

the RMSE for the LEnSRF Algorithm 1. For each data point, the localisation radius r and the inflation factor λ are optimally tuned to yield the lowest RMSE. The

augmented ensemble is computed either using the truncated svd method with several values for the parameter q in the random svd Algorithm 2 (green and blue lines)

or using the modulation method with (solid red line) or without (dashed red line) the balance refinement. In the left panel, the horizontal solid cyan baseline is the RMSE

of the LETKF with an ensemble of Ne = 10 members and optimally tuned localisation radius r and inflation factor λ.

6.2. The Case of Satellite Radiances
Suppose that the physical space consists of amultilayer space with
Pz vertical levels of Ph state variables. For any h ∈ {1 . . . Ph} and
z ∈ {1 . . . Pz}, the state variable located at the h-th horizontal
position and at the z-th vertical level is written x(z, h). For any
state vector x, the sub-vector of the components located at the h-
th horizontal position at any level is written xh and called the h-th
column of x.

Suppose that each state vector column is observed
independently via

yh = �xh, (48)

where � is a Pc × Pz weighting matrix and yh is the vector
containing the Pc observations at the h-th horizontal position.
Pc is the number of channels. The full observation vector y is
the concatenation of all yh, h = 1 . . . Ph. It has Ny = Pc × Ph
components and for any h ∈ {1 . . . Ph} and c ∈ {1 . . . Pc},
the observation located at the h-th horizontal position and
corresponding to the c-th channel is written y(c, h).

This simple model describes a typical situation for satellite
radiances. From these definitions, it is clear that each observation
is attached to an horizontal position, but has no well-defined
vertical position (unless the weighting matrix � is diagonal).
Several variants of the LETKF have been designed to assimilate
such observations. When the weighting function of a channel
has a single and well-located maximum, the vertical location of
this maximum can play the role of an approximate height for
this channel. This is the approach followed for example by Fertig
et al. [11]. Based on these vertical positions, they use the channels
to update “adjacent” vertical levels as long as the corresponding
weighting function is above a threshold value. Campbell et al. [9]

has followed the same approach to define the approximate height
of the channels. However their update formula includes a vertical
tapering of the anomalies that depends on the vertical distance.
When the weighting functions are flat, another possibility is to
define the approximate height of a channel as the middle of the
support of its weighting function [36]. Miyoshi and Sato [10]
have proposed an alternative that does not require the definition
of an approximate height of the channels: their update formula
includes a vertical tapering of the anomalies that depends on the
shape of the weight functions only. Finally, in the algorithm of
Penny et al. [37], vertical localisation has been removed.

Using a realistic one-dimensional model with satellite
radiances, Campbell et al. [9] have shown that ad hoc
approaches based on domain localisation only systematically
yield higher errors than covariance localisation. In a spatially
extended model with satellite radiances, it seems natural
to apply domain localisation in the horizontal direction,
in which observations are local, while using covariance
localisation in the vertical direction, in which observations are
non-local.

6.3. Including Domain Localisation in the
LEnSRF
Following the approach of Bishop et al. [19], we apply four
modifications to the generic LEnSRF Algorithm 1 in order to
include domain localisation in way similar to the LETKF.

1. We perform Ph local analyses instead of one global analysis.
The aim of the h-th local analysis is to give an update for the
Pz state variables that form the h-th column. The linear algebra
must be adapted in consequence.
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2. We taper the anomalies related to each observation with
respect to the horizontal distance to the h-th column. This is

usually implemented in R−
1
2 .

3. Observations whose horizontal position is far from the h-th
column (i.e., observations that are not in the local domain)
do not contribute to the update. These observations are
therefore omitted in the local analysis in order to save some
computational time.

4. Since observations that are outside of the local domain are
omitted, we only need to compute an augmented ensemble for
the state variables inside the local domain. Since covariance
localisation is only applied in the vertical direction, the
augmented ensemble X̂ℓ must have empirical covariance
matrix given by

X̂ℓ
(
X̂ℓ
)T
≈ ρv ◦

(
Xℓ
(
Xℓ
)T)

, (49)

where Xℓ is the set of perturbations that are located within the
local domain and ρv is the vertical localisation matrix, whose
coefficients only depend on the vertical layer indices.

This modified LEnSRF, hereafter called local analysis LEnSRF
(L2EnSRF), implements domain localisation in the horizontal
direction and covariance localisation in the vertical direction
and therefore can be used to assimilate vertically non-local
observations such as satellite radiances.

6.4. The Multilayer L96 Model
We now introduce a multilayer extension of the L96 model,
hereafter called mL96 model. This multilayer extension is used
to test and illustrate the performance of the L2EnSRF algorithm.

The mL96 model consists of Pz coupled layers of the one-
dimensional L96 model with Ph variables. Keeping the notations
defined in section 6.2, the evolution of the model is given by the
following PzPh ODEs:

dx(z, h)
dt

=
(
x(z, h+1) − x(z, h−2)

)
x(z, h−1) − x(z, h) + Fz

+ δ{z>0}Ŵ
(
x(z−1, h) − x(z, h)

)

+ δ{z≤Pz}Ŵ
(
x(z+1, h) − x(z, h)

)
. (50)

The first line of Equation (50) corresponds to the original L96
ODE Equation (46), with a forcing term that may depend on the
vertical layer index z. The second and third lines correspond to
the coupling between adjacent layers, with a constant intensity
Ŵ. As for the L96, the horizontal indices are to be understood
with periodic boundary conditions: x(z, −1) = x(z, Ph−1), x(z, 0) =
x(z, Ph), and x(z, 1) = x(z, Ph+1). These ODEs are integrated using
a fourth-order Runge–Kutta method with a time step of 0.05
time unit.

For this experiment, we use Pz = 32 layers and Ph = 40 to
mimic the standard configuration of the L96 model. The forcing
term linearly decreases from F1 = 8 at the lowest level to FPz = 4
at the highest level. Without the coupling, these values would
render the lower levels dynamics chaotic and the higher levels

FIGURE 4 | Observation operator H. Each line represents the weighting

function of a different channel, corresponding to a row of the weighting matrix

�. Every channel has a single maximum and is relatively broad (half-width

around 10 vertical layers). The sum of the weights has been adjusted

individually such that every channel yields an observation with approximately

the same climatological variability.

dynamics laminar, which is a typical behaviour in the atmosphere.
Finally, we take Ŵ = 1 such that adjacent layers are highly
correlated (correlation around 0.87). To be more specific, the
correlation between the z-th level and the (z + δz)-th level first
rapidly decreases with δz. It reaches approximately−0.1 for δz =
6 and then it starts increasing. Finally, its absolute value is below
10−2 when δz > 10. This model is chaotic and the dimension of
the unstable or neutral subspace is around 50.

The observation operator H follows the model described in
section 6.2. We use Pc = 8 channels and a weighting matrix �

designed to mimic satellite radiances as shown in Figure 4. The
observations are given by

y = Hx+ v, v ∼ N (0, I) , (51)

and the time interval between consecutive observations is the
same as the one used with the L96 model, 1t = 0.05 time unit.
Once again, the standard deviation of the observation noise is
approximately one tenth of the climatological variability of each
observation.

For the horizontal localisation, we use the Euclidean distance
dh over the set {1 . . . Ph} with periodic boundary conditions. For
the vertical localisation, we use the Euclidean distance dv over the
set {1 . . . Pz}.

6.5. Experimental Setup
In this section, we give some details on how localisation is
implemented in the L2EnSRF algorithm for the mL96 model. We
then described which approximations are made to implement an
LETKF algorithm. For each algorithm, the runs are 1041t long
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(with an additional 1031t spin-up period) and our performance
criterion is the time-average analysis RMSE.

6.5.1. Horizontal Localisation
Let rh be the horizontal localisation radius. During the h1-th local
analysis, the anomalies related to observation y(c, h2) are tapered
by a factor

√√√√G

(
dh
(
h1, h2

)

rh

)
, (52)

where G is the piecewise rational function of Gaspari and Cohn
[33]. This means that the h-th local domain consists of the
columns

{
h− ⌊rh⌋ . . . h+ ⌊rh⌋

}
where the indices are to be

understood with Ph periodic boundary conditions and ⌊rh⌋ is the
integer part of rh.

6.5.2. Vertical Localisation
Let rv be the vertical localisation radius. The vertical localisation
matrix ρv has coefficients given by

[
ρv

]
(z1 , h1), (z2 , h2)

= G

(
dv (z1, z2)

rv

)
. (53)

The local domain gathers Pℓ
h = 2 ⌊rh⌋ + 1 columns, hence ρv

is a PzP
ℓ
h × PzP

ℓ
h block-diagonal matrix. Since its coefficients

only depend on the vertical layer indices, it can also be seen
as a Pz × Pz matrix.

The PzP
ℓ
h × N̂e matrix X̂ℓ of the augmented ensemble is

computed using the truncated svd method (section 3.2.4) or the
modulationmethod with (section 3.2.3) or without (section 3.2.2)
the balance refinement. Both methods use an ensemble ofNe = 8
members and the localisation matrix ρv.

For the modulation method, the approximate factorisation of
ρv is precomputed once for each twin experiment by keeping the
firstNm orNm+δNm (when using the balance refinement)modes
in the svd of the Pz × Pz matrix ρv.

For the truncated svd method, the matrix multiplications
implying B are computed using Equation (30). Because the
coefficients of the localisation matrix ρv only depends on the
vertical layer indices, applying the PzP

ℓ
h × PzP

ℓ
h matrix ρv to

a vector with PzP
ℓ
h components reduces to applying the Pz ×

Pz matrix ρv to a vector with Pz components. It should be
relatively quick and therefore we do not perform this product
in spectral space. This means that the implementation can be
straightforwardly adapted to the general case where the vertical
layers are not equally distributed in height.

6.5.3. Ad hoc Approximations for the LETKF
We define an approximate height zc for the c-th channel:

zc =

Pz∑
z=1

z [�]c, z

Pz∑
z=1

[�]c, z

∈ [1, Pz] . (54)

We did not define zc as the vertical position of the maximum of
the c-th weight function because we wanted to account for the
fact that our weight functions are skewed in the vertical direction.

In the LETKF algorithm, we perform PzPh local analyses (one
for each state variable). In the local analysis for the state variable
x(z, h1), the anomalies related to observation y(c, h2) are tapered
by a factor

√√√√√G



√(

δh

rh

)2

+
(

δz

rv

)2

, (55)

where

δh = min
{∣∣h2 − h1

∣∣ , Ph −
∣∣h2 − h1

∣∣} , (56)

δz = |z − zc| , (57)

and rh and rv are the horizontal and vertical localisation
radii, respectively.

6.6. Results
Figure 5 shows the evolution of the RMSE and of the wall-
clock time of one analysis step as a function of the horizontal
localisation radius rh for the L2EnSRF and the LETKF. All
simulations are performed on the same double Intel Xeon E5-
2680 platform, which has a total of 24 cores. Parallelisation is
enabled for the Ph independent local analyses using a fixed
number of OpenMP threads Nthr = 20. In the L2EnSRF
algorithm, the augmented ensemble is computed either using
the truncated svd method with q = 0 in the random svd
(Algorithm 2) or using the modulation method without the
balance refinement (δNm = 0). Preliminary experiments with
q > 0 or δNm > 0 (not shown here) did not display clear
improvements in RMSE score over the cases q = 0 and δNm = 0.

The LETKF produces rather high RMSE scores (compare to
the standard deviation of the observation noise, which is 1), while
not completely failing to reconstruct the true state. Although
domain localisation in the horizontal direction is a powerful tool,
vertical localisation is necessary in this DA problem. Because the
weight functions of the channels are quite broad, observations
cannot be considered local and domain localisation in the vertical
direction is inefficient. By contrast, with a reasonable augmented
ensemble size N̂e, the L2EnSRF yields significantly lower RMSEs.
This shows that combining domain localisation in the horizontal
direction and covariance localisation in the vertical direction is
an adequate approach to assimilate satellite radiances.

The comparison between the truncated svd and the
modulation methods is not as simple as it was in the L96
test series. As expected, for a given augmented ensemble size N̂e,
the truncated svd method yields lower RMSE scores. However,
for a given level of RMSE score, using the truncated svd method
is not always the fastest approach. For example, the RMSE of
the truncated svd method with N̂e = 64 is approximately the
same as the RMSE of the modulation method with N̂e = 128,
but in this case the modulation method is faster by a factor 1.5
on average. This can be explained by two factors. First, in the
truncated svd method the vertical localisation matrix is not

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 February 2019 | Volume 5 | Article 3

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Farchi and Bocquet Localisation of the EnSRKF

FIGURE 5 | Evolution of the RMSE (top) and of the wall-clock analysis time

for the 103 cycles (bottom) as a function of the horizontal localisation radius

rh for the L2EnSRF algorithm. For each data point, the vertical localisation

radius rv and the inflation factor λ are optimally tuned to yield the lowest

RMSE. The augmented ensemble is computed either using the truncated svd

method (blue lines) with q = 0 in the random svd Algorithm 2 or using the

modulation method (red lines) without the balance refinement (1Nm = 0). As a

reference, we draw the same data for the LETKF with the ad hoc
approximations described in section 6.5.3 (cyan line).

applied in spectral space. Second, both the truncated svd and
the modulation method benefit from parallelisation, but the
parallelisation potential of the truncated svd method is not fully
exploited here because our computational platform has a limited
number of cores. This would change if we could use several
threads for each local analysis. Finally, these results confirm
that, for high dimensionals DA problems where the memory
requirement is an issue, the truncated svd method is the best
approach to obtain accurate results while using only a limited
augmented ensemble size N̂e.

7. CONCLUSIONS

Localisation is widely used in DA to make the EnKF viable
in high-dimensional systems. In the EnKF, two different
approaches can be used to include localisation: domain
localisation or covariance localisation. In this article, we
have explored possible implementations for covariance
localisation in the deterministic EnKF using augmented
ensembles in the analysis step. We have discussed the two
main difficulties related to augmented ensembles: how
to construct the augmented ensemble and how to update
the perturbations.

We have used two different methods to construct the
augmented ensemble. The first one is based on a factorisation
property of the background error covariance matrix. It is
already widespread in the geophysical DA literature under
the name modulation. For this method, we also introduced
a balance refinement in order to smooth some variability
between the state variables. As an alternative, we proposed
a second method based on randomised svd techniques,
which are very efficient when the localisation matrix is easy
to apply. The random svd algorithm is commonly used
in the statistical literature but it had never been applied
in this context. We have called this approach truncated
svdmethod.

We have shown how covariance localisation can be included
in the perturbation update using the augmented ensemble
framework. The resulting update formula [18] uses linear algebra
in the augmented ensemble space. It is included in the generic
LEnSRF detailed in this article.

Using numerical simulations of a very simple one-
dimensional covariance model with 400 state variables,
we have shown that the truncated svd method yields a
much more accurate approximation of the background
covariance than the modulation method. This result has
been confirmed by twin simulations of the one-dimension
L96 model with 400 variables. In a standard DA setup, we
have found that the balance between fast computation of
the augmented ensemble and fast perturbation update is
in favor of the truncated svd method. In other words, for
a given level of RMSE score, it is worth spending more
time to construct a smaller but more reliable augmented
ensemble with the truncated svd method and then use a fast
perturbation update.

We have defined the L2EnSRF algorithm as an extension
of the LEnSRF suited to assimilate satellite radiances in
spatially extended models. It implements domain localisation
in the horizontal direction in a similar way as the LETKF
and covariance localisation in the vertical direction. Such an
extension had been discussed by Bishop et al. [19] but without
numerical illustration.

Finally, we have constructed a simple multilayer extension
of the L96 model, called mL96 model. We have performed
twin simulations of this model using a satellite-like observation
operator. As expected, the LETKF hardly reconstructs the true
state. By contrast, the L2EnSRF yields an estimate of the true
state with an acceptable accuracy. We have concluded that using
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domain localisation in the horizontal direction and covariance
localisation in the vertical direction is an adequate approach
to assimilate satellite radiances in a spatially extended model.
For a given level of RMSE score, the modulation method
is the fastest approach in this DA problem. This result is
however mitigated by the fact that our computational setup
does not use the full parallelisation potential of the truncated
svd method. However, when the augmented ensemble size N̂e is
limited, the truncated svd method is the best approach to obtain
accurate results.
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APPENDIX

A. RECENTRE THE PERTURBATIONS

Let X be an Nx × (Ne − 1) matrix. We want to construct a
matrix that has the same empirical covariance matrix and which
is centred. Since X has rank at most Ne − 1, we need to find an
Nx × Ne matrix Z such that

ZZT = XXT, (A1)

Z1 = 0. (A2)

For ǫ ∈ {−1, 1}, we define λ =
√
Ne
(√

Ne − ǫ
)−1

and Qǫ as
the Ne × Ne matrix whose coefficients are

[Qǫ]i, j =





ǫ√
Ne

if i = 1 or j = 1

1− λ
Ne

if i = j ≥ 2

− λ
Ne

else

. (A3)

It can be easily checked that QǫQ
T
ǫ = I (i.e., Qǫ is an orthogonal

matrix) andQǫ1 = e1, the first basis vector.
Let W be the Nx × Ne matrix whose first column is zero and

whose other columns are those of X, that is

W = [ 0, X ] . (A4)

By construction Z = WQǫ is a solution of Equations (A1) and
(A2).

B. A RANDOM SVD ALGORITHM

B.1. The Algorithm
Algorithm 2 describes the random svd algorithm proposed by
Halko et al. [23]. The objective of this algorithm is to efficiently
compute an approximate truncated svd with P columns of the
M × N matrix A as a parallelisable alternative to Lanczos
techniques.

The random svd algorithm is based on two ideas. First,
suppose that there is a matrix Q with P orthonormal columns
which approximates the range of the matrix A. In other words
A ≈ QQTA. Then, an approximate truncated svd can be obtained
for A using the svd of the smaller matrix QTA. Second, the
matrix Q can be constructed using random draws. Indeed, if
X = {x1 . . . xP} is a set of random vectors, then it is most likely
a linearly independant set. Therefore, the set Y = {Ax1 . . .AxP}
is most likely linearly independant, which means that it spans the
range of A.

One major contribution of Halko et al. [23] and the
references therein is that they have provided a mathematical
justification of these ideas. In particular, they have given
statistical performance bounds for the random svd algorithm and
emphasised the fact that, on average, the (spectral or Frobenius)
error of the resulting truncated svd with P columns should
be close to the minimal error for a truncated svd with P
columns.

Finally, Halko et al. [23] have introduced two elements to
improve the numerical stability and efficiency of the random
svd algorithm. The first element is a loop over i ∈

{
1 . . . q

}
,

which forces the algorithm to construct singular vectors of(
AAT

)q
A instead of A. However,

(
AAT

)q
A and A share the

same singular vectors. Moreover, the singular values of
(
AAT

)q
A

decay faster than those of A, which means that this technique
enables a better approximation of the decomposition as shown
by Corollary 10.10 of Halko et al. [23]. The second element is to
include QR factorisations to make the algorithm less vulnerable
to round-off errors. Both elements have been taken into account
in Algorithm 2.

Algorithm 2 Random svd algorithm.

Require: M × N matrix A (input); number of columns P in the
truncated svd, number of iterations q (parameters).
Draw a N × P Gaussian random matrix �.

2: B0 = A�.
Compute the QR factorisationQ0R0 = B0.

4: for i = 1 to q do
B̂i = ATQi−1.

6: Compute the QR factorisation Q̂iR̂i = B̂i.
Bi = AQ̂i.

8: Compute the QR factorisationQiRi = Bi.
end for

10: B = QT
qA.

Compute the svd Û6VT = B.
12: U = QqÛ.

return Approximate truncated svd with P columns A ≈
U6VT.

B.2. Application to the Prior Covariance
Matrix
In section 3.2.4, we need to compute the truncated svd
Equation (26) of the prior covariance matrix. To do this, we
can apply Algorithm 2 using the input matrix A = ρ ◦

(
XXT

)
.

The prior covariance matrix is a large Nx × Nx matrix. However,
Algorithm 2 can work with the map

{
R
Nx → R

Nx

v 7→
(
ρ ◦

(
XXT

))
v
, (A5)

which can be efficiently computed using Equation (30). Steps 2,
5, 7, and 10 of Algorithm 2 can even be parallelised by applying
A = ρ ◦

(
XXT

)
independently to each column.

Finally, the approximate truncated svd

A = ρ ◦
(
XXT

)
≈ U6VT, (A6)

resulting from Algorithm 2 does not necessarily satisfy U = V

even though the input matrix is symmetric positive definite. The
simplest fix is to make the additional approximation

U6VT ≈ U6UT. (A7)
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