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This paper explores the existence of homo- and heteroclinic connections between

solar-sail periodic orbits in the planar Earth-Moon circular restricted three-body problem.

The existence of such connections has been demonstrated to great extent for the

planar and spatial classical (no-solar sail) three-body problem, but remains unexplored

for the inclusion of a solar-sail induced acceleration. Similar to the search for homo- and

heteroclinic connections in the classical case, this paper uses the tools and techniques

of dynamical systems theory, in particular trajectories along the unstable and stable

manifolds, to generate these connections. However, due to the time dependency

introduced by the solar-sail induced acceleration, common methods and techniques to

find homo- and heteroclinic connections (e.g., using the Jacobi constant and applying

spatial Poincaré sections) do not necessarily apply. The aim of this paper is therefore

to gain an understanding of the extent to which these tools do apply, define new tools

(e.g., solar-sail assisted manifolds, temporal Poincaré sections, and a genetic algorithm

approach), and ultimately find the sought for homo- and heteroclinic connections. As a

starting point of such an investigation, this paper focuses on the planar case, in particular

on the search for homo- and heteroclinic connections between three specific solar-sail

Lyapunov orbits (two at the L1 point and one at the L2 point) that all exist for the same

near-term solar-sail technology. The results of the paper show that, by using a simple

solar-sail steering law, where a piece-wise constant sail attitude is applied in the unstable

and stable solar-sail manifold trajectories, homo- and heteroclinic connections exist for

these three solar-sail Lyapunov orbits. The remaining errors on the position and velocity

at linkage of the stable and unstable manifold trajectories are <10 km and <1 m/s.

Future studies can apply the tools and techniques developed in this paper to extend

the search for homo- and heteroclinic connections to other solar-sail Lyapunov orbits in

the Earth-Moon system (e.g., for different solar-sail technology), to other planar solar-sail

periodic orbits, and ultimately also to the spatial, three-dimensional case.

Keywords: solar sailing, circular restricted three-body problem, homoclinic connections, heteroclinic connections,

transfer trajectories, Lyapunov orbits, libration point orbits
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INTRODUCTION

In recent years, the L1 and L2 libration points of the Earth-Moon
system have drawn renewed interest as they hold potential to
support future human space exploration activities. Such support
may come in the form of landing missions [1, 2], lunar far-
side communication capabilities [3, 4], or as a gateway to more
distant interplanetary destinations [1, 5, 6]. The natural motion
around the libration points has been studied in great detail
[7–9] and several families of (quasi-)periodic orbits around
the libration points have been identified, e.g., Lissajous [10],
Lyapunov [11], and halo [12] orbits, with more families in, for
example, Kazantzis [13, 14]. Though of immense importance,
the fact that the spacecraft dynamics in these works are
fully governed by gravitational accelerations only leaves little
flexibility. Recent work by the author and her collaborators [15]
has therefore explored an extension of the families of libration
point orbits by complementing the dynamics with a solar-sail
induced acceleration.

Solar sailing is a flight-proven form of in-space propulsion
that makes use of an extremely thin, mirror-like membrane
to reflect solar photons. The momentum exchange between
the photons and the membrane induces a force, and therefore
an acceleration, on the spacecraft which can be used for
spacecraft orbit and trajectory design [16]. As a propellant-less
form of propulsion, it holds great mission enabling potential
[17] with applications in advanced space weather warning
[18, 19], multi-asteroid rendezvous [20, 21], geomagnetic
tail monitoring [22], and polar observation [23, 24]. With
a range of successful solar-sail technology demonstration
missions to date [25–27] and more such missions planned
for the near future [28, 29], the application of solar sailing
as main propulsion system on a science mission is in
reach.

The addition of a solar-sail induced acceleration to the
classical Earth-Moon three-body dynamics yields families of
solar-sail planar and vertical Lyapunov, halo, and distant
retrograde orbits [15, 30] and allows new orbit families to
arise with potential applications for high-latitude observation
of the Earth and Moon [4]. In particular, the work in
Heiligers et al. [4] shows that a constellation of two sailcrafts
in so-called clover-shaped orbits can achieve near-continuous
coverage of the Earth’s North Pole. If motion to the mirrored
counterpart of this constellation can be achieved, a single solar-
sail mission may enable high-temporal resolution observations
of both the North and South Poles, thereby significantly
increasing the mission’s scientific return. To date only one
mission, the ARTEMIS mission, has exploited such motion
between libration point orbits when it transferred between
Lissajous orbits at the Earth-Moon L1 and L2 points [31,
32].

The objective of this paper is to start the investigation
of maneuver-free motion between solar-sail periodic orbits
in the Earth-Moon system, where “maneuver-free” refers to
no induced acceleration other than from the solar sail. Both
homoclinic and heteroclinic motion will be investigated. In
the classical system, the design and application of homo-

and heteroclinic connections has already been researched
extensively [33–38] with extensions to higher-fidelity dynamics
in Haapala and Howell [38] and optimal control approaches
for the inclusion of a variable specific impulse system or
to connect periodic orbits in different three-body systems in
Stuart et al. [39] and Heiligers et al. [40]. In the classical
sense, homo- and heteroclinic connections are established by
exploiting the instability of the libration point orbits and
exploring motion along their associated invariant manifolds.
By identifying connections on suitable spatial Poincaré sections
of trajectories that depart from one orbit along the unstable
manifold and arrive on another orbit along the stable
manifold, such transfers can be established. A similar approach
is adopted here, however connections between trajectories
along the solar-sail assisted stable and unstable manifolds
are sought after in order to achieve homo- and heteroclinic
connections between solar-sail periodic orbits in the Earth-
Moon system. Here, solar-sail assistedmanifolds are the invariant
manifolds of the solar-sail periodic orbit where the same
sail-steering law is adopted along the manifolds as in the
solar-sail periodic orbits. The dynamics are thus consistent
throughout the solar-sail periodic orbit and its invariant
manifolds.

Though the approach may be similar, the search for
connections in the solar-sail three-body problem is more
complex due to the (periodic) time dependency that the solar-
sail induced acceleration introduces into the dynamics. This
prevents, for example, the use of “spatial” Poincaré sections.
The effect of this time dependency needs to be understood,
appropriate searchmethods need to be established, and the actual
existence of homo- and heteroclinic connections needs to be
verified. This paper will go through each of these individual
steps. As a first investigation into the problem, the paper
will limit itself to planar motion, in particular to homo- and
heteroclinic connections between solar-sail Lyapunov orbits,
with the idea to define a framework that can be extended in
future work to other planar solar-sail periodic orbits in the
Earth-Moon system as well as to the spatial, three-dimensional
case.

To set up such a framework, the rest of this paper is organized
as follows. First, the dynamical framework is introduced in the
section “Dynamical Framework”. The three solar-sail Lyapunov
orbits that will act as test cases in this paper will be discussed
in the section “Solar-sail Lyapunov Orbits” with a description
of their associated solar-sail assisted invariant manifolds in the
section “Solar-sail Assisted Invariant Manifolds”. The section
“Problem Definition” will continue with the problem definition
and a discussion on the applicability of tools traditionally
used for the search of homo- and heteroclinic connections in
the classical three-body problem (spatial Poincaré section and
the Jacobi constant). The conclusion of that section leads to
an exploration of new tools (temporal Poincaré section and
a figure of merit) in the section “Exploration Methodology”.
In the sections “Homoclinic Connections” and “Heteroclinic
Connections” these tools will be further extended to generate
homoclinic and heteroclinic connections through grid searches
and a genetic algorithm. The paper ends with the conclusions.
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DYNAMICAL FRAMEWORK

The dynamical framework employed in this paper is that of
the Earth-Moon circular restricted three-body problem (CR3BP)
[41], complemented with the acceleration generated by the
solar sail. Note that the perturbative acceleration due to the
gravitational attraction of the Sun is not included in the
dynamics: for reasonable solar-sail technology, this perturbative
acceleration is much smaller than the solar-sail induced
acceleration throughout much of the Earth-Moon system. The
assumptions in the classical (no-solar sail) CR3BP are that the
motion of a mass m is governed by the gravitational attraction
of two larger masses m1 and m2; that the gravitational effect of
mass m on masses m1 and m2 is negligible; and that m1 and m2

move in circular co-planar orbits about their barycenter. When
complementing the classical CR3BP with a solar sail, the motion
of m is no longer governed by gravitational accelerations only,
but also by the acceleration generated by the sail. In this paper,
m is thus the sailcraft, whereas m1 and m2 represent the Earth
and Moon, respectively. It is convenient to define the motion
of the sailcraft in a synodic frame of reference, R

(

x, y, z
)

, which
has its origin at the Earth-Moon barycenter, the x axis pointing
from the Earth to the Moon, the z axis perpendicular to the
Earth-Moon orbital plane, and the y axis completing the right-
handed reference frame, see Figure 1. With respect to inertial
space, this frame rotates at an angular rate ω around the z axis:
ω = ωẑ. Furthermore, a set of canonical units is used, where
the sum of m1 and m2, the distance between m1 and m2, and
1/ω are taken as the units of mass, length, and time, respectively.
Finally, the mass ratio µ = m2/ (m1 +m2) = 0.01215 is defined.
Then, the dimensionless masses of the Earth and Moon become
1 − µ and µ , respectively, and their location along the x axis
of frame R

(

x, y, z
)

are −µ and 1 − µ , respectively. In frame
R

(

x, y, z
)

, the equations of motion of the sailcraft are given
as [16]

FIGURE 1 | Schematic of top view of solar-sail Earth-Moon circular

restricted three-body problem.

r̈+ 2ω × ṙ+ ∇U = as (t) . (1)

The left-hand side of Equation (1) represents the classical
CR3BP, whereas the right-hand side adds the solar-sail induced
acceleration. In Equation (1), r is the sailcraft position vector,
which, combined with the sailcraft velocity vector, gives its state

vector, x =
[

r ṙ
]T
; U is the effective potential from which the

gravitational and centripetal accelerations can be computed

U = − 1
2

(

x2 + y2
)

− ([1− µ] /r1 + µ/r2) , (2)

where r1 =
∥

∥

∥
r+

[

µ 0 0
]T

∥

∥

∥
and r2 =

∥

∥

∥
r−

[

1− µ 0 0
]T

∥

∥

∥
.

Finally, in Equation (1), as (t) is the solar-sail induced
acceleration vector.

To define the solar-sail induced acceleration vector, the
motion of the Sun in frame R

(

x, y, z
)

is assumed to be in the
Earth-Moon plane, i.e., in the

(

x, y
)

plane, thereby neglecting the
small, 5◦ inclination difference between the ecliptic and Earth-
Moon orbital planes. Furthermore, the Sun orbits the Earth-
Moon system in a clockwise direction at a dimensionless rate of
�S = 0.9252 with a dimensionless period of PS = 2π/�S, which
will be referred to as the synodic period throughout the paper.
The position vector of the Sun is then given through

rS = rSŜ = rS





− cos (�St)
sin (�St)

0



 . (3)

In Equation (3), the Sun is assumed to be on the negative x
axis at time t = 0. In this work, a constant value for the
magnitude of the Sun’s position vector rS of 1 astronomical
unit (au) is assumed. Furthermore, because the magnitude of
the sailcraft’s position vector is much smaller than that of the
Sun, i.e., ‖r‖ << rS, the sail-Sun distance is also assumed to
be equal to 1 au, i.e., ‖rs→S‖ = rS, see Figure 1. The result of
this assumption is a constant solar radiation pressure throughout
the Earth-Moon system. To further define the solar-sail induced
acceleration vector, an ideal solar-sail model is adopted where the
sail is assumed to be a perfect reflector, resulting in pure specular
reflection of the impinging solar photons [16]. For realistic sails,
optical imperfections and wrinkles will cause diffuse reflection,
absorption, and thermal emission of the solar photons [16], but
for the preliminary analysis considered in this paper, these effects
are neglected. Under the assumption of specular reflection, the
solar-sail induced acceleration vector acts perpendicular to the
solar-sail membrane and can be defined as [15, 42]

as (t) = a0,EMcos2 (α) n̂ (4)

with a0,EM the dimensionless characteristic solar-sail
acceleration, −90o ≤ α ≤ 90o the solar-sail pitch angle,
see Figure 1, and n̂ the unit vector normal to the solar-sail
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membrane. The latter can be defined through the pitch angle, α ,
and a rotation around the z axis of angle−�St

n̂ = Rz (−�St)





cosα
sinα

0



 . (5)

Finally, the characteristic solar-sail acceleration, a0,EM , is the
acceleration generated by the solar sail at 1 au when α = 0,
i.e., when the sail is oriented perpendicular to the direction
of sunlight and the unit vectors n̂ and Ŝ are aligned, but
opposite, i.e., n̂ = −Ŝ. Near-term values for this dimensionless
characteristic solar-sail acceleration are in the order of a0,EM =

0.1, which equates to a dimensional value of 0.2698 mm/s2

[15, 18].

SOLAR-SAIL LYAPUNOV ORBITS

As mentioned in the introduction, previous work by the author
and her collaborators [15] has extended the families of classical
Lyapunov orbits to families of solar-sail Lyapunov orbits. These
orbits are generated by first selecting classical Lyapunov orbits
with a period that coincides with the period of the Sun around
the Earth-Moon system, i.e., the synodic period. Subsequently, a
continuation is started on the solar-sail characteristic acceleration
a0,EM and for each increment in a0,EM a differential correction
scheme is applied to find a periodic solar-sail Lyapunov orbit.
This procedure results in a family of solar-sail Lyapunov orbits
parameterized by a0,EM . Different families can be generated for
different steering laws and by choosing either of the two y axis
crossings of the initial classical orbit as the starting point for the
orbit propagation, i.e., either the initial condition on the left-
or right-hand side of the libration point. This choice of starting
point, hereafter referred to as the Sun-sail phasing, results in a
different phasing of the solar sail and the Sun over time and
therefore in different solar-sail Lyapunov orbit families.

The orbits selected for this study are shown in Figure 2A

(Figure 2Bwill be discussed in the section “ProblemDefinition”).
The figure shows three orbits, designated by the numbers 1–
3, which all have a period equal to one synodic period, PS,
and they exist for a0,EM = 0.1 and a zero-pitch angle steering
law, i.e., α = 0 and thus n̂ = −Ŝ. Orbits 1 and 2 exist
around the L1 point, whereas orbit 3 exists around the L2 point.
Finally, the initial condition of orbit 1 lies on the left-hand
side of L1, while the initial conditions of orbits 2 and 3 lie on
the right-hand side of either L1 or L2. Note that many other
solar-sail Lyapunov orbits could have been selected [15], e.g.,
for different steering laws, different dimensionless characteristic
solar-sail accelerations, and so on. However, the three orbits
in Figure 2A are considered sufficient for the purpose of the
current investigation: they consider a realistic value for the
characteristic solar-sail acceleration, consider orbits about both
the L1 and L2 points, incorporate both types of Sun-sail phasing,
and use a simple steering law. Finally, by limiting the number
of orbits to three, the number of connections to be investigated,
see Table 1, also remains limited to a workable number of six.
Note that the numerical designation of the transfers introduced

in Table 1 will be used throughout this paper. While transfers
1–3 represent homoclinic connections, transfers 4–6 consider
heteroclinic connections, where transfers 4 and 5 connect orbits
around the L1 point with orbits around the L2 point, while
transfer 6 connects the two different orbits at the L1 point. The
latter allows a change in the Sun-sail phasing between the orbits.
Note that the reverses of transfers 4–6 (e.g., from L2 to L1) are not
considered.

SOLAR-SAIL ASSISTED INVARIANT
MANIFOLDS

The stability analysis carried out in Heiligers et al. [15] showed
that all three orbits in Figure 2A are highly unstable, implying
the existence of stable and unstable invariant manifolds [9,
43]. Trajectories along these manifolds can be obtained by
propagating the dynamics in Equation (1) from a state-vector
along the stable and unstable eigenvectors of the linearized
system around the periodic orbit, i.e., the reference trajectory,
r0. Replacing r → r0 + δr in Equation (1) gives the following
linearized system

δẋ = Aδx (6)

and

A =

[

0 I

− ∂∇U
∂r

∣

∣

r0
�

]

,� =





0 2 0
−2 0 0
0 0 0



 . (7)

Note that the solar-sail induced acceleration does not appear in
the linearized system as it is not a function of the Cartesian
position coordinates. This is a direct result of the assumption that
‖rs→S‖ = rS and therefore that the solar radiation pressure is
constant throughout the Earth-Moon system. For a system of the
form δẋ = Aδx, the state-vector at time t after the initial time
t0 can be obtained through the state transition matrix (STM),
8 (t; t0), as

δx (t) = 8 (t; t0) δx (t0) , (8)

where the STM can be obtained by simultaneously propagating
the equations of motion in Equation (1) and

8̇ (t; t0) = A8 (t; t0) . (9)

The STM evaluated after one full orbit, i.e., at time t = t0 + PS,
is called the monodromy matrix. Its six eigenvalues, λi with i =
1, 2, ..., 6, appear in reciprocal pairs and define the linear stability
properties of the orbit. An orbit is stable if all six eigenvalues
lie on the unit circle. If the norm of any of the eigenvalues is
larger than one, ‖λi‖ > 1, the orbit is unstable, with larger norm
values indicating greater instability. The largest eigenvalues,
λmax = max (λi), for orbits 1–3 in Figure 2A are 7.09410 × 105,
11.08556 × 105, and 8.12799 × 105, respectively, indicating that
these orbits are indeed highly unstable. The unstable invariant
manifold is defined as the set of trajectories that the spacecraft
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FIGURE 2 | Selected solar-sail Lyapunov orbits. (A) Orbits. (B) Jacobi constant value along the orbits.

TABLE 1 | Homo- and heteroclinic connections to be investigated.

Transfer number Homo- or heteroclinic Starting orbit Final orbit

1 Homoclinic 1 1

2 Homoclinic 2 2

3 Homoclinic 3 3

4 Heteroclinic 1 3

5 Heteroclinic 2 3

6 Heteroclinic 1 2

takes if it is perturbed anywhere along the orbit in the direction
of the local eigenvector associated with this largest eigenvalue,
wU
0 [9, 43]. Similarly, the stable invariant manifold contains all

trajectories that a spacecraft takes backwards in time after a
perturbation in the direction of the local eigenvector associated
with the eigenvalue 1/λmax,wS

0 [9, 43]. This manifold contains
the trajectories that asymptotically wind onto the periodic orbit.
The local stable and unstable eigenvectors along the orbit at any
time t, wU (t) and wS (t), can efficiently be obtained after a single,
full-orbit propagation of the STM through

wU (t) = 8 (t, t0)w
U
0 (10)

wS (t) = 8 (t, t0)w
S
0. (11)

Initial conditions along the local unstable and stable invariant
manifolds, xUM,0 and xSM,0, are obtained by perturbing any state

vector along the periodic orbit, x
(

tM,0

)

, by a magnitude ε along
the unstable and stable eigenvectors as

xUM,0

(

tM,0

)

= x
(

tM,0

)

± ε
wU

(

tM,0
)

∥

∥wU
(

tM,0
)
∥

∥

(12)

xSM,0

(

tM,0

)

= x
(

tM,0

)

± ε
wS

(

tM,0
)

∥

∥wS
(

tM,0
)∥

∥

. (13)

The actual trajectories along the unstable invariant manifolds
can be obtained by forward propagating the initial condition
in Equation (12) in the dynamics of Equation (1), whereas

the actual trajectories along the stable invariant manifolds can
be obtained by backward propagating the initial conditions
in Equation (13) in the dynamics of Equation (1). Note that
the dynamics in Equation (1) include the solar-sail induced
acceleration. The propagation thus leads to solar-sail assisted
manifold trajectories where the same sail steering law is applied
as in the orbits themselves, i.e., n̂ = −Ŝ. This steering law
will be used throughout the paper unless explicitly mentioned
otherwise (from the section “Non-zero Pitch Angles” onwards).
The plus-minus signs in Equations (12) and (13) represent
the two branches of the invariant manifolds that either move
toward the smaller body (the interior manifold) or away from
the smaller body (the exterior manifold). In this work, only the
interior manifolds will be exploited for both the homoclinic and
heteroclinic connections. Finally, in this work a value for the
perturbation magnitude in Equations (12) and (13) of ε =10−6

(0.38 km) is used.
The resulting solar-sail assisted manifolds for orbit 1

appear in Figure 3. This figure has been generated by
propagating 50 trajectories along each manifold (unstable/stable
and interior/exterior) for an integration time of 1.2 PS and
by truncating the trajectories when their distance to the
Moon becomes smaller than twice the lunar radius to prevent
operational difficulties. The red trajectories follow the unstable
manifold, whereas the green trajectories follow the stable
manifold. The figure shows that the symmetry, which is
inherent in the classical CR3BP, is preserved in the solar-sail
CR3BP due to the periodicity and symmetry of the solar-
sail induced acceleration. Therefore, the interior and exterior
unstable and stable manifolds are mirrored in the (x, z) plane.
More specifically, mirrored trajectories can be found for initial
conditions xUM,0

(

tM,0
)

and xSM,0

(

PS − tM,0
)

along the solar-sail
Lyapunov orbits.

PROBLEM DEFINITION

For the rest of the paper, it is useful to specify a set of conventions,
see Figure 4. This will allow to properly define the initial and
final conditions of the unstable and stable manifold trajectories as
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FIGURE 3 | Trajectories along the solar-sail assisted stable (green) and

unstable (red) manifolds of orbit 1.

well as the time of linkage between these trajectories. The initial
conditions of the (un)stable manifold trajectories are defined
as discretized coordinates along the periodic orbits, while their
final conditions and the time of linkage are defined through the
integration time along the manifolds. Note that, throughout this
and the following sections, a subscript M relates to variables
associated with the manifold trajectories, while the omission of
the subscript M refers to variables associated with the solar-sail
periodic orbits.

First of all, the initial time in the starting and final solar-sail
Lyapunov orbits are designated by tU0 = 0 and tS0 , respectively,
see Figure 4. The initial time in the final orbit, tS0 , occurs an
integer number of synodic periods after tU0 , i.e., t

S
0 = nPS to

allow time for the homo- or heteroclinic transfers to take place.
Note that tS0 = nPS can be seen as the earliest arrival time
in the final orbit. The value chosen for n will determine how
much time is allowed for the transfer and may take on different
values for different cases throughout the paper to achieve the best
results.

The orbits are discretized into NM number of equally spaced
points in time from where different manifold trajectories are
assumed to start. The actual node numbers are denoted by iUM and
iSM for the unstable and stable manifold trajectories, respectively,
with iUM and iSM from 1 to NM , see again Figure 4. Note that the
first and last nodes coincide, i.e., iUM = 1 and iUM = NM as well
as iSM = 1 and iSM = NM , in order to demonstrate some periodic
features throughout the paper. The time between discretization
nodes is given by 1t = PS/ (NM − 1). The time at each of the
discretization nodes is the initial time of the manifold trajectory
and is given by tUM,0 = tU0 +

(

iUM − 1
)

1t for the starting orbit and

tSM,0 = tS0 +
(

iSM − 1
)

1t for the final orbit. The state vector at the
start of the unstable and stable manifold trajectories are denoted
as xUM,0 and xSM,0. These are propagated over an integration time

of tUint and tSint up to the final times tU
M,f and tS

M,f so that tUint =

tU
M,f − tUM,0 and tSint = tS

M,f − tSM,0. The state vectors at the end of

the propagation are denoted as

xUM,f =
[

rU
M,f vU

M,f

]T
=

[

xU
M,f yU

M,f ẋU
M,f ẏU

M,f

]T
and

xSM,f =
[

rS
M,f vS

M,f

]T
=

[

xS
M,f yS

M,f ẋS
M,f ẏS

M,f

]T
.

For a connection, the state vectors at the end of the unstable and
stablemanifold trajectories shouldmatch, i.e., xU

M,f = xS
M,f , which

occurs at the linking time, tlink. This implies that the following
four constraints need to be satisfied

xU
M,f = xS

M,f (14)

yU
M,f = yS

M,f

ẋU
M,f = ẋS

M,f

ẏU
M,f = ẏS

M,f .

For the classical (no-solar sail) case, two of these constraints can
easily be satisfied by choosing a suitable Poincaré section, e.g., by
propagating both the unstable and stable manifold trajectories up
to xU

M,f = xS
M,f = 1 − µ , thereby inherently satisfying the first

constraint in Equation (14). In addition, by choosing the starting
and final orbits such that they have the same Jacobi constant
value (which is inherently the case for a classical homoclinic
connection), the compliance of another constraint, e.g., the third
constraint in Equation (14), can be ensured. This leaves only
the compliance of two constraints to be evaluated, which can

be found visually by plotting the values for
(

yU
M,f , ẏ

U
M,f

)

and
(

yS
M,f , ẏ

S
M,f

)

at the Poincaré section.

When adding the time-dependent solar-sail induced
acceleration to the dynamics, an additional constraint needs to
be satisfied: the ends of the stable and unstable trajectories not
only need to match in the spatial domain, but also in time

tlink = tUM,f = tSM,f . (15)

The consequence of this time constraint is that it impedes the use
of “spatial” Poincaré sections as the time of arrival at the Poincaré
section will be different for each trajectory. Instead, Poincaré
sections “in time” will have to be used, where all trajectories are
not propagated up to, for example, a prescribed x coordinate, but
up to a specific integration time.

The time-dependent solar-sail induced acceleration also
impedes the use of the Jacobi constant to automatically satisfy
one of the constraints in Equation (14). The Jacobi constant is
defined as [41]

CJ = 2

(

1− µ

r1
+

µ

r2

)

+
(

x2 + y2
)

−
(

ẋ2 + ẏ2 + ż2
)

. (16)

First of all, for heteroclinic connections between solar-sail
periodic orbits in the Earth-Moon system (like the solar-sail
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FIGURE 4 | Schematic of conventions. Note that, for a homoclinic connection the starting and final orbits are the same orbit.

FIGURE 5 | Jacobi constant along six trajectories along the stable (red, solid) and unstable (green, dashed) manifolds of orbit 1, where iM = iU
M

= iS
M
.

Lyapunov orbits considered in this paper), it will be difficult,
if not impossible, to find two orbits with the same value for
CJ , as the main orbit selection criterion will be that both orbits
exist for the same sail technology, i.e., for the same value for

a0,EM . Furthermore, due to the time dependent solar-sail induced
acceleration, the value for CJ is not constant along the orbits, see
Figure 2B. Though not constant, its value is periodic and could
therefore potentially provide a means to reduce the number of
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constraints. However, as soon as the manifold trajectories are
being propagated from their initial condition, the periodicity in
the value for CJ is lost, see Figure 5.

Figure 5 provides the CJ-value along the stable and unstable
manifolds of orbit 1 for NM = 6 (six trajectories per manifold),
n = 2 (the earliest arrival time in the final orbit is two synodic
periods after the initial time of the starting orbit), and tUint =

tSint = PS (the manifold trajectories are propagated for one
synodic period). By selecting the parameter values as such, the
time constraint in Equation (15) is automatically satisfied for
iUM = iSM . However, the different plots in Figure 5 show a
difference in CJ-value at the end of the stable and unstable
manifold trajectories for iUM = iSM . Only for iUM = NM + 1 − iSM
does the symmetry in the dynamical system guarantee the same
CJ-value after an integer number of synodic periods, see for
example the thick lines for iUM = 2 and iSM = 5 in Figure 5.
However, for this combination of manifold trajectories, the time
constraint is not satisfied, i.e., while a link in CJ-value exists, the
trajectories do not link in time. It can therefore be concluded that
the Jacobi constant does not provide any benefit in the search for
either homoclinic or heteroclinic connections between solar-sail
Lyapunov orbits in the Earth-Moon system.

EXPLORATION METHODOLOGY

The previous section has demonstrated that methods,
conventionally used to find homo- or heteroclinic connections
between Lyapunov orbits in the classical Earth-Moon system, do
not apply for the inclusion of a solar-sail induced acceleration.
Connections can therefore not simply be obtained from a
visual inspection of two-dimensional spatial Poincaré sections.

This section will explore a different methodology, where the
time constraint in Equation (15) is satisfied by suitable choices
of “temporal” Poincaré sections (either by defining a fixed
propagation time, see the section “Fixed Propagation Time”,
or a fixed linkage time, see the section “Fixed Linkage Time”).
Furthermore, the coordinate constraints in Equation (14) are
assessed by defining the following figure of merit (or objective):

J = w1r + 1v, (17)

with w a weight and

1r =
∥

∥

∥
rUM,f − rSM,f

∥

∥

∥
,1v =

∥

∥

∥
vUM,f − vSM,f

∥

∥

∥
. (18)

The objective in Equation (17) is thus a weighted sum of the error
in dimensionless position and dimensionless velocity between the
ends of the unstable and stablemanifold trajectories. In this work,
a value for the weight of w = 5 is selected. This value is based on
trial runs as well as the fact that an error in velocity is of slightly
less importance than an error in position as it can be physically
overcome, e.g., in worst case, by an additional propulsion source.

For brevity, the applicability of the proposed tools will be
explored for homoclinic connections only, i.e., for transfers 1–3,
and will be shown to provide a good framework. However, more
flexibility in both the temporal “positioning” of the Poincaré
section as well as other design parameters such as the solar-
sail steering law is required to fully satisfy the constraints in
Equations (14) and (15). This will be further explored for the
homo- and heteroclinic connections separately in the sections
“Homoclinic Connections” and “Heteroclinic Connections”,
respectively.

FIGURE 6 | Search for homoclinic connections for a fixed propagation time of one synodic period (FLTR: transfers 1–3).
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Fixed Propagation Time
In the section “Problem Definition”, a propagation time of one
synodic period was used to generate the results in Figure 5, in
which case the time constraint in Equation (15) is satisfied only
for connections between trajectories where iUM = iSM . This can
be generalized to a propagation time of any integer number of
synodic periods, i.e., tUint = tSint = nintPS. Then, the total transfer
time becomes 2nint and thus n = 2nint, i.e., tUM,0 ∈ [0, PS] and

tSM,0 ∈ [2nintPS, (2nint + 1) PS].
The results for nint = 1 and NM = 1,000 appear in

Figure 6 and in the first data column of Table 2 (heading “Fixed
propagation time”). Note that the other columns in Table 2 will
be discussed in the following sections where more advanced
approaches in the search for homoclinic connections will be
explored. The figures in the top row of Figure 6 provide for
transfers 1–3 the objective value for the different manifold
trajectory numbers, i.e., for different values for iUM = iSM . Gaps
in these results appear due to the early truncation of trajectories
that approach the Moon at less than twice the lunar radius. The
figures clearly show the symmetry in the dynamics, i.e., the results
in terms of objective value are the same for iUM = iSM andNM+1−
iUM = NM+1− iSM . The computational effort for generating these
results could thus be reduced by only considering iUM = iSM =

1, 2, ..., 12NM . The red star indicates one of two minima in the
objective value with further numerical values on the departure,
link and arrival times (tUM,0, tlink, and tSM,0, all in synodic period

units) in Table 2. These different epochs are all one synodic
period apart due to the fixed propagation time. The figures
in the bottom row of Figure 6 show the actual unstable (red)
and stable (green) manifold trajectories corresponding to that
minimum objective value, where circles and crosses mark the
start and end of the manifold trajectories. Due to the condition
iUM = iSM , the circles overlap. For true homoclinic connections,
the crosses should also overlap. This is clearly not the case for
the results in Figure 6. In fact, Table 2 shows that the errors
on the position are between 18,000 and 83,000 km and that the
errors on the velocity are in the range 17–606 m/s. Note that
longer integration times have been considered, e.g., nint = 2,
but that this did not lead to improvements in the objective
value.

Fixed Linkage Time
To loosen the requirement that only connections for iUM = iSM can
be explored, this section moves away from a fixed propagation
time of an integer number of synodic periods and instead
propagates the initial conditions xUM,0 and xSM,0 forward and

backward up to a specific linkage time, tlink. Consequently, t
U
M,f =

tS
M,f = tlink and Equation (15) is automatically satisfied. The

results can then be presented as temporal Poincaré sections at
the linkage time, see the figures on the left-hand side of Figure 7.
In this figure, the red and green dots represent the position

TABLE 2 | Objective value, dimensional errors on position and velocity, and further details for transfers 1–3 for different approaches in the search for homoclinic

connections.

Transfer Fixed propagation

time

Fixed linkage time Grid search: free

linkage time

Grid search: non-zero pitch

angles

Genetic algorithm

1 J 0.8414 0.2226 0.0836 0.0262 5.111 × 10−7

1r, km 18962.9 2554.9 113.3 609.6 4.7 × 10−3

1v, m/s 605.6 192.9 83.6 18.6 4.6 × 10−4

tU
M,0, synodic period 0.212 0.563 0.999 0.83 0.641

tlink , synodic period 1.212 2 1.906 2.048 1.791

tS
M,0, synodic period 2.212 3.385 3.020 3.16 3.308

αU, deg 0 0 0 63 40.2

αS, deg 0 0 0 −63 −27.8

2 J 0.4552 0.1146 0.0734 0.0165 2.199 × 10−4

1r, km 33705.5 592.8 1361.4 1141.1 0.8

1v, m/s 17.1 108.8 56.7 1.7 0.2

tU
M,0, synodic period 0.349 0.523 0.636 0.84 0.836

tlink , synodic period 1.349 2 2.142 2.046 1.950

tS
M,0, synodic period 2.349 3.478 3.479 3.17 3.153

αU, deg 0 0 0 46 48.2

αS, deg 0 0 0 −46 −43.9

3 J 1.2099 0.0366 0.0098 0.0350 2.609 × 10−4

1r, km 82925.4 530.4 424.1 900.2 0.6

1v, m/s 133.6 30.2 4.4 23.7 0.3

tU
M,0, synodic period 0.726 0.571 0.573 0.47 0.480

tlink , synodic period 1.726 1.5 1.504 1.456 1.483

tS
M,0, synodic period 2.726 2.429 2.432 2.53 2.540

αU, deg 0 0 0 15 13.9

αS, deg 0 0 0 −15 −15.6
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FIGURE 7 | Search for homoclinic connections for a fixed linkage time. (A) Transfer 1. (B) Transfer 2. (C) Transfer 3.

coordinates at the end of the unstable and stable manifold
trajectories, respectively, for transfers 1–3. For transfers 1 and
2, these Poincaré sections are generated for n = 3 (i.e., tUM,0 ∈

[0, PS] and tSM,0 ∈ [3PS, 4PS]), while for transfer 3 better results

were obtained for n = 2 (i.e., tUM,0 ∈ [0, PS] and tSM,0 ∈

[2PS, 3PS]). Furthermore, the linkage time is defined halfway, i.e.,
tlink = 1

2 (n+ 1) PS, NM = 1,000 and trajectories that approach
the Moon by less than twice the lunar radius are again discarded.

The symmetry in the dynamics is once again clear from
these figures (allowing the computational effort to be halved)
and some connections in position can be observed, i.e., where
the red and green dots overlap. Information on the velocity
at the end of each trajectory can be included in the temporal
Poincaré sections by using the “glyph representation” introduced
by Haapala and Howell [38]. This glyph representation is shown
in the figures in the middle column of Figure 7 where an arrow
indicates a scaled version of the velocity vector at the end

of the unstable and stable manifold trajectories, i.e., vU
M,f and

vS
M,f . If a green and red dot overlap and the accompanying

velocity arrows are of the same magnitude and point in the
same direction, a homoclinic connection is established. The best
connection, i.e., the combination of unstable and stable manifold
trajectories with the smallest objective value in Equation (17),
is highlighted in color in the figures in the middle column of
Figure 7, while all other velocity vectors are marked in gray.
The corresponding trajectories appear on the right-hand side of
Figure 7. Comparing these trajectories with those in Figure 6

shows the improvement that a fixed linkage time can establish
over a fixed propagation time. Actual numerical values on the
objective value and errors in position and velocity are provided
in the second data column of Table 2 (heading “Fixed linkage
time”), which shows a reduction in the objective by a factor
3.7–33.1 and a reduction in the position error of 1–2 orders of
magnitude.
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FIGURE 8 | Trajectory times per manifold trajectory number for transfer 1 including the departure, link, and arrival epochs for the best stable and unstable manifold

trajectories.

FIGURE 9 | Search for homoclinic connections for a free linkage time (FLTR: transfers 1–3).

This section has shown the usability of temporal Poincaré
sections and the figure of merit in Equation (17) for the search
of homoclinic connections. However, the highly constrained
definition of the temporal Poincaré section as well as other
design parameters such as the solar-sail steering law, cause the
absolute values for the linkage errors to be too large in order
to consider these transfers as true homoclinic connections. The
subsequent sections will therefore introduce more flexibility
into the design of the homo- and heteroclinic connections

in the sections “Homoclinic Connections” and “Heteroclinic
Connections”, respectively.

HOMOCLINIC CONNECTIONS

Building on the results found for homoclinic connections in the
previous section, this section introduces more flexibility into the
design of the homoclinic connections by allowing the linkage
time to be freely selected and by adopting non-zero solar-sail
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pitch laws. To find the optimal linkage time and sail-steering law,
two approaches are adopted: a simple grid search in the section
“Grid Search” and a genetic algorithm approach in the section
“Genetic Algorithm”.

Grid Search
This section will explore the use of grid searches to improve the
quality of the homoclinic connections by choosing a free linkage
time, see the section “Free Linkage Time”, and non-zero solar-sail
pitch angles, see the section “Non-zero Pitch Angles”.

Free Linkage Time

To explore the idea of a free linkage time, the following grid-
search approach is adopted:

- NM = 1,000 trajectories are propagated along the unstable and
stable manifolds for two synodic periods, i.e., tUint = tSint = 2Ps.

- As in the previous section, n = 3 for transfers 1 and 2,
while n = 2 for transfer 3. This means that the initial
conditions of the trajectories along the unstable and stable
manifolds are bound to the domains tUM,0 ∈ [0, PS] and tSM,0 ∈

[2PS, 3PS] (n = 2) and tSM,0 ∈ [3PS, 4PS] (n = 3).
- A minimum transfer time of 0.9PS is enforced to ensure that
the trajectories will sufficiently move away from the solar-sail
Lyapunov orbits. The final conditions of the trajectories along
the unstable and stable manifolds are then confined to the
domains tU

M,f ∈ [0.9PS, 3PS] and tS
M,f ∈ [0, 2.1PS] (n = 2)

and tS
M,f ∈ [PS, 3.1PS] (n = 3). There thus exists an overlap

in linkage time in the domain t
link

∈ [0.9PS, 2.1PS] (n = 2)
and t

link
∈ [PS, 3PS] (n = 3).

- Each propagated trajectory is interpolated at nnodes = 1,000
equally spaced nodes in time.

FIGURE 10 | Effect of non-zero pitch angle on the unstable (red) and stable

(green) manifold trajectories of orbit 1 for iU
M

= iS
M

=1, i.e., at tU
M,0 = tS

M,0 = 0,

and for pitch angles between −90◦ (dark color) and 90◦ (light color) with a

step size of 10◦.

- The position and velocity coordinates at those nodes
are stored in four individual matrices (one for each of
the two position and two velocity coordinates) of size
[

NM , 12 (n+ 1) nnodes
]

. The rows of these matrices represent
the trajectory numbers, whereas the columns represent the
time at the nodes. This is further demonstrated in Figure 8

for transfer 1, where the horizontal and vertical axes can
be interpreted as the columns and rows of the matrices,
respectively, and the colored surfaces indicate which elements
of the matrices are filled. Note that the gaps in Figure 8 are
introduced by an early truncation of the trajectories because
of a close lunar approach.

- After filling up the four individual matrices, for each
potential linkage time [i.e., for each column between t

link
∈

[0.9PS, 2.1PS] (n = 2) or t
link

∈ [PS, 3PS] (n = 3)], the errors
in position and velocity for each combination of rows of the
matrices for the stable and unstable manifolds are computed.

- Finally, the absolute minimum objective value for the best
linkage time is extracted and the corresponding unstable and
stable manifold trajectories are further evaluated.

The results for transfers 1–3 appear in Figure 9. The figures
in the top row of Figure 9 show the smallest objective value
at each possible linkage time and the red star indicates the
absolute minimum. The corresponding trajectories appear in the
bottom row of Figure 9 with numerical values for the objective,
errors in position and velocity, and departure, link and arrival
epochs in the third data column of Table 2 (heading “Grid
search: free linkage time”). For transfer 1, the epochs are also
illustrated in Figure 8. From Table 2 it can be concluded that
a free linkage time further reduces the objective value by a
factor 2.7–8.9, bringing the errors on the position and velocity
at linkage down to less than the lunar radius (<1,738 km)
and <100 m/s, respectively. For transfer 3, the result is very
close to that for a fixed linkage time: the departure and
arrival conditions along the solar-sail Lyapunov orbit and
linkage time are only slightly changed. The result is a near-
homoclinic connection with 1r = 424.1 km and 1v =

4.4 m/s.

Non-zero Pitch Angles

Up to this point, the attitude of the solar sail in the stable and
unstable manifold trajectories has been assumed equal to that of
the solar-sail Lyapunov orbits, i.e., α = 0 and thus n̂ = −Ŝ.
This section investigates if further improvements on the objective
value can be achieved by orienting the sail at a constant, but
non-zero, pitch angle along the stable and unstable manifold
trajectories. Note that, when considering non-zero pitch angles,
the terms “invariant manifolds” or “manifold trajectories” no
longer really apply, but that, for consistency, this paper will
continue to use these terms.

By changing the sail’s orientation with respect to the incoming
solar radiation through the pitch angle, see Figure 1, the solar-
sail induced acceleration changes as per Equation (4). Figure 10
demonstrates the effect of a non-zero pitch angle along the
manifold trajectories of orbit 1. To generate Figure 10, the initial
conditions at iUM = iSM = 1, i.e., xUM,0 (0) and xSM,0 (0), are
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forward and backward propagated for different pitch angles in the
unstable, αU , and stable, αS, manifold trajectories. In particular,
a range in αU and αS of [−90o, 90o] is considered with a step
size of 10o. Note that pitch angles larger than 70o may not always
fall within mission constraints [29], but that the full theoretical
range in pitch angles is considered in this paper for illustrative
purposes. Also note that using different pitch angles in the stable
and unstable manifold trajectories requires an instantaneous
attitude change at linkage, but that this may be smoothed in
future work by employing optimal control algorithms. However,
this is considered beyond the scope of the current investigation.

Figure 10 shows that, by pitching the sail away from αU =

αS = 0, a wealth of new trajectories arises. Note that the sign in
Equations (12) and (13) is chosen such that the interior manifold
results for αU = αS = 0 and that non-zero pitch angles
subsequently cause the manifold trajectories to divert away from
the Moon and move toward the Earth. The figure furthermore
shows that the symmetry as explained in the section “Solar-sail
Assisted Invariant Manifolds” is maintained for xUM,0(tM,0 ) and

xSM,0(PS−tM,0) as long as αU = −αS, see the trajectories indicated

with αU = −60◦ and αS = 60◦ in Figure 10.
To assess the improvement in the objective value for non-zero

pitch angles, the approach detailed in the section “Free linkage
Time” is expanded by a loop around that approach to evaluate the
minimum objective value for a mesh in αU of αU ∈ [−90◦, 90◦]
with a step size of 1

◦
. The pitch angle in the stable manifold

trajectories is constrained to αS = −αU The only difference with
respect to the approach in the section “Free linkage Time” is a
reduction in the number of manifolds trajectories to NM = 100

to counter the increase in computational time introduced by the
loop over αU . The trajectories that yield the smallest objective
value for transfers 1–3 appear in the top row of Figure 11 with
numerical values in the fourth data column of Table 2 (heading
“Grid search: non-zero pitch angles”). From Table 2 it can be
concluded that the best trajectories abide by, or are close to,
the condition of xUM,0(tM,0) and xSM,0(PS − tM,0) (i.e., the sum of

tUM,0 and tSM,0 is equal to an integer number of synodic periods)
and thus exploit the symmetry in the system. This is also clear
from the position of the circle markers in Figure 11. As such, for
transfers 1 and 2 a further reduction in the objective value of a
factor 3.2–4.4 is achieved to position and velocity errors that start
to resemble true homoclinic connections. However, the reduction
in the number of manifold trajectories from NM = 1000 in the
previous section to NM = 100 in the current investigation leads
to an increase in the objective value for transfer 3.

Genetic Algorithm
The use of a grid search inherently limits the search space to
discrete steps in the departure/arrival locations along the solar-
sail Lyapunov orbits (tUM,0 and tSM,0), the linkage time, tlink, and
the pitch angles in the unstable and stable manifold trajectories
(αU and αS). To efficiently explore the design space in between
these discrete steps, this section investigates the use of a genetic
algorithm. In particular, the Matlab R© function ga.m is used to
find the values for the design parameters, pGA, that minimize
the objective in Equation (17). The parameters are the previously
used design variables tUM,0, t

S
M,0, α

U , αS, and tlink, and bounds on

FIGURE 11 | Best homoclinic connections (FLTR: transfers 1–3). (A) For opposite-sign pitch angles. (B) For genetic algorithm approach.
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these parameters are defined as
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. (19)

Furthermore, the following linear constraints are imposed to
ensure that departure, linkage and arrival occur sequentially

tUM,0 + ξ ≤ tlink ≤ tSM,0 − ξ . (20)

In Equation (20), ξ represents the previously introduced
minimum transfer time to ensure that the trajectories move
sufficiently away from the solar-sail Lyapunov orbits

ξ = 0.9PS. (21)

The genetic algorithm is initiated for a population of 1,000
individuals, is run for 100 generations and for five different seeds
of the random generator to account for the inherent randomness

of the genetic algorithm approach. For ease of implementation,
the ga.m function is used with its default settings. The results
appear in the bottom row of Figure 11 and in the last column
of Table 2. Especially the last column of Table 2 shows that
the continuous, instead of discrete, design space for the design
parameters enables a reduction in the objective value of several
orders of magnitude, with resulting errors in the position and
velocity of <1 km and <1m/s. This proves the feasibility of
homoclinic connections between solar-sail Lyapunov orbits as
well as the applicability of temporal Poincaré sections, the figure
of merit in Equation (17), and the genetic algorithm approach for
finding these connections.

HETEROCLINIC CONNECTIONS

This section follows the same approach as in the section
“Homoclinic Connections” to find heteroclinic connections
between the different solar-sail Lyapunov orbits, see trajectories
4–6 in Table 1. However, while that section first considered zero-
pitch angles in the stable and unstable manifold trajectories,
followed by opposite-sign pitch angles, the section “Grid Search”

FIGURE 12 | Best heteroclinic connections (FLTR: transfers 4–6) for grid search in pitch angles (top and middle row) and for genetic algorithm approach (bottom row).
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TABLE 3 | Objective value, dimensional errors on position and velocity, and further

details for transfers 4–6 for different approaches in the search for heteroclinic

connections.

Transfer Grid search: non-zero Genetic

pitch angles algorithm

4 J 0.0203 6.8450 × 10−4

1r, km 535.0 4.8

1v, m/s 13.6 0.6

tU
M,0, synodic period 0.76 0.613

tlink , synodic period 2.188 1.389

tS
M,0, synodic period 3.93 3.454

αU, deg −60 36.0

αS, deg −80 −32.2

5 J 0.0124 5.9987 × 10−4

1r, km 934.2 9.8

1v, m/s 0.2 0.5

tU
M,0, synodic period 0.62 0.766

tlink , synodic period 2.058 1.676

tS
M,0, synodic period 3.95 2.5072

αU, deg −90 34.5

αS, deg −90 −9.6

6 J 0.0248 2.0332 × 10−4

1r, km 1524.5 3.6

1v, m/s 5.1 0.2

tU
M,0, synodic period 0.01 0.034

tlink , synodic period 1.758 2.989

tS
M,0, synodic period 3.11 3.257

αU, deg −90 −80.6

αS, deg −70 −25.3

below will immediately merge those approaches based on the
improvements that non-zero pitch angles provided. The section
“Grid Search” will even expand the search space on the usable
pitch angles. Subsequently, in the section “Genetic Algorithm”
the genetic algorithm approach will be applied to the search for
heteroclinic connections.

Grid Search
To consider a wide range of pitch angle values in both the stable
and unstable manifold trajectories, this section takes an approach
similar to the one described in the section “Non-zero Pitch
Angles”. However, that section constrained the pitch angle in the
stable manifold trajectory to αS = −αU to exploit the symmetry
in the system. Because this symmetry is lost for heteroclinic
connections, this section allows αS to take on any value within
a predefined mesh. For this, an extra loop is created around the
approach in the section “Non-zero Pitch Angles”, where now
the inner- and outer loops consider meshes in the pitch angles
of αU ∈ [−90◦, 90◦] and αS ∈ [−90◦, 90◦]. Note that the
only differences with the methodology for the grid search for
homoclinic connections are that no minimum transfer time is
defined, that n = 3 for all transfers, and that, to limit the increase
in computation cost introduced by the additional loop, the step
size in αU and αS is increased to 10◦.

For each combination of αU and αS, the unstable and stable
manifold trajectories that yield the smallest objective value for
transfers 4–6 appear in the top row of Figure 12. From this
figure the lack in symmetry for the heteroclinic connections
is indeed clear. The best result, i.e., the combinations of αU

and αS that lead to the absolute minimum objective value are
indicated by a white cross. Further details on these trajectories
are shown in the middle row of Figure 12 with numerical details
in the first data column of Table 3 (heading “Grid search: non-
zero pitch angles”). The remaining results in these tables will
be discussed in the section “Genetic Algorithm” below. Despite
the lack in symmetry, the objective values in Table 3 hint at
the possibility for heteroclinic connections with errors on the
position and velocity that are of similar magnitude as for the
“opposite-sign pitch angles”-approach in the section “Non-zero
Pitch Angles”. Finally, from the data in Table 3 it is interesting
to note that very large pitch angles provide the best results.
Since very large pitch angles create very small solar-sail induced
accelerations, the current approach appears to provide the
best heteroclinic connections by exploiting the (near-)classical
dynamics.

Genetic Algorithm
The second, and final, step in the search for heteroclinic
connections is near-identical to the approach previously
described for homomclinic connections: a genetic algorithm
is taken at hand to explore the design space in between the
discrete steps of the meshes used in the previous section for the
design parameters tUM,0, t

S
M,0, tlink, αU , and αS. The set-up of

the algorithm is that as described in the search for homoclinic
connections, only the margin on the minimum transfer time
in the unstable and stable manifold trajectories is significantly
loosened, i.e., ξ = 0.01PS for use in Equation (20).

The results appear in the bottom row of Figure 12 with
numerical details in the last column of Table 3. With errors
in the position and velocity of <10 km and <1 m/s, also
the feasibility of heteroclinic connections between solar-sail
Lyapunov orbits and the suitability of the proposed tools has
been demonstrated. While for the grid searches in the previous
section the best pitch angles were of rather large values, the
genetic algorithm approach shows that much smaller angles
(and therefore significant solar-sail induced accelerations) are
required to establish these connections.

CONCLUSIONS

This paper has established an understanding of, and a framework
for, the computation of homo- and heteroclinic connections
between planar solar-sail Lyapunov orbits in the Earth-Moon
three-body problem. These connections have been found by
linking the unstable and stable solar-sail assisted invariant
manifolds associated to the orbits. Since the solar-sail induced
acceleration introduces a time dependency into the dynamics,
the use of traditional techniques (Jacobi constant and spatial
Poincaré sections) were proven to be of no benefit in the search
for these connections. Instead, connections have been found
by introducing temporal Poincaré sections, defining a suitable
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figure of merit to assess the quality of the connections, and using
grid searches on the departure, arrival and linkage times as well
as on constant, non-zero solar-sail pitch angles in the unstable
and stable manifold trajectories. While these methods allowed
to find homo- and heteroclinic connections with errors on the
position and velocity at linkage of <1,525 km and <25 m/s, true
connections were only found when exploring the design space in
between the discrete mesh of the grid search. For this a genetic
algorithm approach has been successfully applied, reducing the
errors down to <10 km and <1 m/s. With that, this paper has
proven the feasibility of homo- and heteroclinic connections
between solar-sail Lyapunov orbits for a simple solar-sail steering

strategy in the form of a piece-wise constant sail attitude. These
results and the framework defined in this paper form only the
start of a much larger investigation into homo- and heteroclinic
connections between other planar solar-sail periodic orbits in
the Earth-Moon system as well as into the extension to the
spatial, three-dimensional case.
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