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Upon amatrix representation of a binary bipartite network, via the permutation invariance,

a coupling geometry is computed to approximate the minimum energy macrostate of a

network’s system. Such a macrostate is supposed to constitute the intrinsic structures

of the system, so that the coupling geometry can be taken as the information content

of the network or even the nonparametric minimum sufficient statistics of the network

data. Based on this, pertinent null and alternative hypotheses, such as nestedness,

are to be formulated according to the macrostate. That is, any efficient testing statistic

needs to be a function of this coupling geometry. These conceptual architectures and

mechanisms are, by and large, still missing in community ecology literature and have

rendered misconceptions to be prevalent in this research area. Here, the algorithmically

computed coupling geometry is shown to consist of deterministic multiscale block

patterns, which are framed by two marginal ultrametric trees on row and column

axes, and stochastic uniform randomness within each block found on the finest scale.

Functionally, a series of increasingly larger ensembles of matrix mimicries is derived by

conforming to the multiscale block configurations. Here, matrix mimicking is meant to be

subject to constraints of row and column sums sequences. Based on such a series of

ensembles, a profile of distributions becomes a natural device for checking the validity

of testing statistics or structural indexes. An energy-based index is used for testing

whether network data indeed contain structural geometry. A new version of block-based

nestedness index is also proposed. Its validity is checked and compared with the existing

ones. A computing paradigm, called Data Mechanics, and its application in one real data

network are illustrated throughout the developments and discussions in this paper.

Keywords: Data Mechanics, minimum energy macrostate, permutation invariant, matrix mimicking, nestedness

1. INTRODUCTION

Ever since the “assembly rules” were proposed inDiamond [1] andCase and Sidell [2], the presence-
absence matrix has been the fundamental data type in community ecology. A presence-absence
matrix is also called a co-occurrence matrix. In fact, from a data structural perspective, as being
permutation invariant on both axes of matrix, this kind of data type should be precisely termed
as a binary bipartite network. Such network data are now a major data type for understanding
mutualistic system interactions in a wide range of ecological studies [3]. An ecological mutualistic
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system is concerned with mutually beneficial interactions
between a collection of animal species and a collection of plant
species. One typical example is the flowering plants and their
insect pollinators. The binary bipartite network records the
presence-absence of a target interaction upon each animal vs.
plant entry. In other words, a binary bipartite network is used to
approximate an ecological system from a mutualistic perspective.
In contrast, the directed binary network is used to approximate
an antagonistic system, such as a food web. It should be noted
that these two binary networks have rather distinct structures
and information contents. They cannot be mixed. The directed
network is not being considered here.

Given its fundamental role, the controversy centered on the
binary bipartite network has never faded away in the past four
decades. One key reason underlying this controversy, in our
opinion, is that the intrinsic mathematical architectures and
proper physical mechanisms underlying such binary bipartite
networks are, by and large, still missing in current ecological
literature. The consequences of these missing architectures and
mechanisms include (1) an observed pattern within a binary
bipartite network has never been identified analytically [4]; (2)
network- or matrix- based structural hypotheses are not precisely
formulated [5, 6]; (3) the validity of testing statistics is not
properly checked [1, 7]; and (4) the computations of p-value
for statistical inference are apparently incorrect [5, 6, 8]. All
these consequences are caused in part by the lack of knowledge
about the information content contained within an observed
binary bipartite network and the lack of proper algorithms
for mimicking and generating matrices with distinct structural
information. Above all, the challenging tasks of defining an
effective testing statistic on matrix or network data have not
been systematically resolved. Only heuristic and parsimonious
solutions have been suggested so far in the literature.

All these aforementioned issues have been systematically
discussed, developed, and resolved in this paper. Throughout
this paper, a binary bipartite network and its approximating
mutualistic system are the primary concerns. Therefore, the
network’s rectangular matrix representation has one axis for a
collection of animals of interest and the other for a collection of
plants under study.We first discuss computational developments
for those visible geometric patterns that are indeed embedded
within the matrix, and then we discuss whether such embedded
geometric structures are coherent with the idea of nestedness.
The first part of the discussion resolves the issues arising from
co-occurrence matrices observed in biogeographic systems.

By making use of the fact that a binary bipartite network is
permutation invariant with respect to the nodes on both the axes,
a new computing paradigm, called Data Mechanics, is applied
to extract a combination of a deterministic multiscale structure
and a stochastic uniformity from such data [9]. The coupling
of deterministic (i.e., multiscale structures) and stochastic (i.e.,
stochastic uniformity of blocks) structures is termed as a coupling
geometry. Such coupling measures that minimize the Gromov-
Wasserstein distance of these two marginal geometries are also
seen to be in the vicinity of the macrostate [9]. This resultant
coupling geometry is assumed to be the computable information
contents of the network data, because it is very close to the

minimum energy macrostates of the target system. From a
statistical physics perspective, all microstates are supposed to
conform to such macrostates. Such a conformation indicates
a principle on how to mimic observed network data [9].
Specifically, the deterministic multiscale structures are the visible
patterns contained in the data, which are those that have been
missing in Connor and Simberloff [4], while the uniformity
enables us to mimic and to generate various ensembles of
matrices with different geometric pattern information.

Another concept proposed in this paper is that the conceptual
nestedness in a data matrix has to be adapted upon the
computed deterministic multiscale structure. This adaptation is
meant to build the least nestedness-bearing construct containing
observed deterministic multiscale structures. As such, testing the
hypothesis of whether a data matrix is nested is to evaluate the
degree of structural differences between this nestedness-bearing
construct and the original coupling geometry’s deterministic
structure. Based on this concept, we propose a block-based
nestedness index and compare it with three existing popular
indexes. Among these three indexes, one is originally proposed
in Patterson and Atmar [10] and the other two are the improved
versions [11, 12]. Ironically, we found that these two improved
versions are indeed improper. Throughout this paper, we use the
well-studied mammal data from Patterson and Atmar [10] for
illustration and expositional purposes.

2. RELATED WORK

2.1. Nested Pattern in Ecosystem
A presence-absence co-occurrence matrix of small mammal
species inhabiting forested habitats in the southern Rocky
Mountains, U.S.A, has raised an interesting question, and it
suggests that the extinctions are highly selective. A historical
background might explain such interaction patterns. In early
glacial period, the species that were restricted to the mountaintop
habitats in the south expanded their range to lower altitudes
and latitudes. With the retreat of continental glacier, the warmer
and drier climates made the boreal habitats and taxa return
to higher altitudes and latitudes. So, the southern species were
left on the isolated mountaintops. The relationship between the
boreal habitats and the isolated mountaintops can be considered
as similar to the one between adjacent mainland and island areas.
Apparently, the extinction of these two disjoint populations was
determined by local probabilities.

Inspired by such phenomenon, Patterson [13] proposed a
“nested subset” relationship among montane biotas: depauperate
fauna support species, Which collectively comprise proper
subsets of those in richer faunas. The idea of nested subset
hypothesis is influential on colonization and extinction of species.
Patterson and Atmar [10] stated that nestedness is a particular
ecological pattern widely reported for species occurrences in
metacommunities. Nestedness is found when sites with lower
species richness tend to harbor proper subsets of those species
present in richer sites. Other studies have also confirmed that
the nested ecological pattern is ubiquitous in metacommunities
[14–17]. The major explanation for the emergence of nestedness
in metacommunities includes the differences in habitat features
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such as isolation, size, quality, and nested habitats or in species
attributes such as area requirements, abundance, and tolerance
to abiotic factors [10, 15–20].

Apart from metacommunities, the nested pattern is also
widely found in species-interaction networks, especially in
plant-animal mutualisms [3]. They analyzed 52 mutualistic
networks and show that they are highly nested. Other
studies have also discovered such nested ecological patterns
in interaction networks including a plant-flower visitor system
[21], an ant-extrafloral nectary-bearing plant network [22], a
plant-herbivore assemblage [23], and a more geographically
widespread mutualistic network [24]. So, mutualistic networks
are neither randomly assembled nor organized in compartments
arising from tight, parallel specialization.

There are three possible consequences or influences of such
nested patterns on species-interaction networks. First, it may
result in an abundance of interacting species, since, nested
structures appear within compartments. In studies across sites
or time periods species shift in position within a nested set
far more often than they should shift compartments [23].
Second, nested patterns may have higher extinction rates
for specialists that interact with other specialists [21]. Third,
owing to the coextinction of species within these interactions
over evolutionary time, these species also coevolve, causing
convergence and complementarity of traits among a set of species
in a nested antagonistic or mutualistic network [22, 25].

2.2. Nestedness Index
To formalize how nested the species-area relationship is,
Patterson and Atmar [10] derived a “nestedness” index denoted
as N index, that is, the extent of departure from perfect
nestedness. To compute it, we first determine the fauna that has
the lowest species richness, in which species i occurs, in which
species i occurs and then count the number of absences of species
i in richer faunas and mark it with (+). The Ni index is the
summation of these (+)s. Such a nestedness index is used as a
testing statistic while conducting a statistical hypothesis test.

Later on, several other nestedness measurements have been
developed to improve the detection of nested patterns. The
nestedness temperature (T) is another index proposed by Atmar
and Patterson [12] as an improved version of N+. It is based on
the isocline of perfect order, a curve drawn from the lower-left
corner of the matrix to the upper-right corner, with curvature
defined by matrix fill. Temperature is computed by summing all
the “unexpected” species. Brualdi and Sanderson [26] developed
BR, also known as discrepancy, as a count of the number of
discrepancies that should be erased to have a perfect nestedness.
It is an index that quantifies the difference between the network
binary matrix and the theoretically perfect nested matrix. These
nestedness measurements have two things in common: (1) they
measure distinct matrix properties such as presence or absence
and (2) they give different weights to these properties. However,
these measurements are all associated with their own maximum
degrees of nestedness. They do not consider an independent
maximum benchmark derived from the concept of nestedness:
decreasing marginal totals [11]. Proposed by Almeida-Neto et al.
[11], nestedness metric based on overlap and decreasing fill
(NODF) is a state of the art method for measuring nestedness,

which is based on overlap and decreasing fill. Even thoughNODF
includes the basic nestedness property–decreasing marginal
totals–the penalty for nondecreasing marginal totals might not
be large enough, because the null matrices they generated were
drawn from a uniform random distribution per cell rather than
fixed row and column sums.

2.3. Hypothesis Sampling
In terms of hypothesis sampling, both margins of a binary matrix
should be fixed. Patterson and Atmar [10] used two sampling
algorithms: (1) RANDOM0 assumed that all species had equal
probabilities to be assigned and selected species using uniform
probability distribution and (2) RANDOM1 used a probability
distribution weighted by the actual range occurrences of species,
namely, the entries of each column are drawn proportionally
to the row sums, conditioned on the column sum. RANDOM1
is better and more accurate in terms of capturing the global
interaction pattern. However, the margins may not be fixed
because of the stochastic process of these two methods.

There are many other sampling methods with fixed margins
that have been proposed. The swap method, known as
checkerboard, extracts two rows and two columns from the
matrix at random. Stone and Roberts [7]. If the 2× 2 sub-matrix
is a checkerboard unit, we swap it. The biggest problem with
checkerboard is that it creates bias among consecutive samplings.
Part of the reason for this is that the checkerboard is dependent,
meaning that the generated sample matrix is correlated to its
predecessor. As the difference between the two consecutively
sampled matrices is at most four entries, the generated matrices
will show preferences to the predecessor’s matrix configurations.

The sequential swap is an improved version of the
checkerboard [27]. It generates a first null matrix by performing
20,000 swaps, and then creates each subsequent null matrix by
performing a single swap on the last generated matrix. However,
it still cannot solve the problem of unbiasedness. Swap methods,
in general, tend to be biased toward the matrices with more
checkerboard units [28].

The Bayati sequential method [29] starts from a blank matrix
and fills the matrix by adding an edge based on probability that

is proportional to pij = d̂id̂j(1 −
didj

4m
), where (d1, ...dn) are

the degree sequences and (d̂1, ..d̂n) is an n-tuple of integers,

and each of d̂i, d̂j will be reduced by 1 for every iteration. The
running time for bounded dmax is O(mdmax), where 2m =
∑

i di and dmax = max(d1, ...dn). However, the probability
of failure of this algorithm is o(1). While o(1) is not a big
problem, asymptotically, but, in reality, the method fails even
in matrices of small size. Similar to Bayati’s method, there are
several other approximate sampling algorithms that are based
on probability that use different sampling methods such as
sequential importance sampling (SIS) and Markov chain Monte
Carlo (MCMC). [30–33].

Miller and Harrison [34] proposed an efficient algorithm of
exact sampling. This method samples matrices from the uniform
distribution over binary matrices with fixed margins. The row
and column sums of the sampled matrix should be exactly the
same as of the observed matrix. By grouping the same column
sums as blocks and counting all the possible solutions of each
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row recursively, Miller’s method runs in polynomial time. This
method is unbiased and runs in polynomial time formatrices that
are not so big; the running time will become exponential when
matrix size is big (over 100× 100) with unbounded a and b. One
example is that for a 28×26 matrix, there are approximately 1027

solutions. The number of solutions will become almost infinitive
if the matrix size is very large.

In an ecological community structure, nestedness is found
when sites with lower species richness tend to harbor proper
subsets of those species present in richer sites. It is a very specific
species-area interaction pattern and to test such structures,
an appropriate nestedness index and an efficient unbiased
hypothesis sampling method are needed, which inspire us to
explore them.

3. METHOD

3.1. From Intuitive Grouping Ideas to
Coupling Geometry
Within an ecological system, all intrinsic patterns of the
mutualistic interactions between a collection of animal species
and a collection of plant species, beyond individual-to-individual
level, are the supposed information content to be contained
within the observed binary bipartite network. Such pattern
information, intuitively, would be jointly expressed through
clusters of similar animals coupled with clusters of similar
plants in a fashion of block-wise uniformity. In other words,
on multiple global levels, dissimilar clusters on one axis would
reveal contrasting configurations of clusters on the other axis.
As such, scientists can visualize why different clusters of animal
are characterized distinctively with respect to differences among
clusters of plant. This means that the information content within
a binary bipartite network data is multiscale and visible, more
importantly, they are computable.

Hierarchical clustering can somehow capture and help
visualize block-wise clustering of a matrix, but it tends to produce
clusters with imbalanced sizes and each block lacks uniformity
[35]. Several multiscale tree-related methods have been
developed on certain domains such as semisupervised learning,
convex pattern structures, etc [36–38]. Currently, multiscale
information patterns on bipartite network are being computed
through a new computing paradigm, called Data Mechanics,
developed in Fushing and Chen [9]. Computationally, Data
Mechanics indeed attempts to solve an optimal permutation
problem of achieving the minimum total variation among
all possible matrix representations of the observed bipartite
network. Here, the total variation is defined with respect to the
choice of neighborhood system, such as the set of immediate
neighbors on the rectangle matrix lattice. Detailed formula of
the total variation, also known as energy in physics, is given
in Supplementary Section 1.1. This discrete combinatorial
optimization is operated based on the permutation invariance
of a bipartite network with respect to its nodes of animals and
plants. The complexity of this problem surely depends on the
exponentially growing factorials of sizes of the animal and
plant collections. Though the concept of pattern information
content contained within a binary bipartite network is intuitive,

computing for the multiscale structures can be a rather complex
problem. Data Mechanics is designed to provide optimal or
nearly optimal solutions to this computational problem.

The algorithm for computing ultrametric trees, a key part
of Data Mechanics, is called Data Cloud Geometry (DCG).
Developed in Fushing and McAssey [39], DCG intends to
construct ultrametric trees via multiscale clustering, which has
been widely used in many fields [40, 41]. Another important
aspect of Data Mechanics is the iterative computation of
ultrametric trees. Iterative algorithm has been proven that it can
reduce systemetical errors and improve overal performance on
many domains [42–44]. With the iterative computing of DCG
on row and column axes, Data Mechanics converts unstructured
binary biparite networks into multiscale block patterns framed
by two ultrametric trees iteratively built upon the two axes,
respectively.

The stochastic structures are found within each block formed
by a core cluster on the row axis and one core cluster on
the column axis. Such two-dimensional uniform randomness is
subject to row sum and column sum sequences of the block
involved. Here, core clusters of an ultrametric tree are identified
on its bottom tree level, that is, the finest scale structure
of a coupling geometry refers to block patterns formed via
core clusters, whereas the coarsest structure refers to the one
framed by one cluster containing all animals and another cluster
containing all plants. The scales between these two extremes are
specified by tree levels between the top and the bottom.

Thus, by designing all the resultant optimal and nearly optimal
solutions, we illustrate multiscale block patterns through the
coupled framework of two ultrametric trees built on animal and
plant axes in Figures 1A,B.

Coupling geometry with trees reveals multiscale block pattern
information that characterizes multiple layers of interacting
relationships between clusters on row and column axes. These
data-driven deterministic multiscale block structures brought
out by multiple tree levels of two ultrametric trees, frame
and summarize the interacting relational patterns between
animals and plants. The coupling relation of these two trees
is, in fact, derived iteratively and alternatively by applying a
computing algorithm, called DCG, which serves as the key
device of Data Mechanics. The iterative procedure is designed
to update a distance measure used in the previous iteration by
taking the currently computed tree structural information into
consideration, while the procedure of alternating between animal
and plant axes is designed to build the dependence or coupling of
the two trees.

Notably throughout this paper, a computed coupling
geometry (with an energy of –2,184) of the mammalian data
not the actual lowest energy matrix configuration, is employed
as the foundation for all the developments. The reason for the
parsimonious approach is purely the computational effectiveness.
For instance, one of the lowest energy matrices (with energy
–2,204) of the mammalian data is shown in Figure 2.

Typically, the computed coupling geometry is pretty close
to the solution of to the one with the lowest energy; it is the
appropriate starting point for the search to find the optimal
solution. However, it should be noted that it usually takes a huge
amount of computing effort to achieve the optimal goal.
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FIGURE 1 | (A) Illustration of theoretical multiscale block structures and coupling geometry of a perfectly nested bipartite network. Interactions are marked in gray

while noninteractions are in white. (B) The multiscale block structures and coupling geometry of a mammalian dataset that contains 26 mammalian species in 28

mountain ranges [10]. Interactions are in black and non-interactions are in yellow.

FIGURE 2 | The heatmap of a binary matrix for the mammalian dataset. This

binary matrix has the lowest energy given that the row and column sums are

fixed.

Besides the deterministic multiscale block structures, Data
Mechanics computations also bring out block-wise stochastic
randomness. This stochastic component is specifically seen as the
uniformity within each block found on the finest scale.

3.2. From Coupling Geometry to
Block-Based Testing Statistics for
Structural Hypothesis
Here, we construct a reasonable and effective testing statistic
in regard to nestedness as a hypothesized geometric structure
upon an observed binary matrix or a binary bipartite network.

Owing to the fact that the coupling geometry is very close to
the minimum energy macrostate of the system approximated
by the data network, it is necessary to treat such a coupling
geometry as the minimum sufficient statistic. A fundamental
principle in statistical thinking is that an efficient testing statistic
should be based on the computed coupling geometry as the
data’s minimum sufficient statistic. Therefore, the most relevant
geometric structure of nestedness must be its least version that
contains the coupling geometry. So, theoretically, finding the
least containment is an optimization problem.

LetNG denote the least nestedness geometric structure defined
on the same matrix lattice as that of the originally observed
data matrix. However, there is no need to explicitly compute
it because of the multiscale block patterns of the computed
coupling geometry. Thus, we only need to evaluate the functional
characteristics of NG in terms of all the blocks involved, which
are found on the finest scale in a coupling geometry, as shown in

Figures 1, 2. This means that λ(B
(NG)
ij ), the intensity of 1s in block

Bij, has to satisfy the following two properties to be in accordance
with nestedness.

1) 1st order property: {λ(B
(NG)
ij )} is decreasing with respect to all

the given js and, at the same time, increasing with respect to
all the given is.

2) 2nd order property: {∇λ(B
(NG)
ij |C)}, 2nd order differences on

ith row:

∇λ(B
(NG)
ij |C) = λ(B

(NG)
ij+1 )− 2λ(B

(NG)
ij )+ λ(B

(NG)
ij−1 )

has at most one sign change from positive (+) to negative (−),
that is, being concave downward to concave upward; whereas
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{∇λ(B
(NG)
ij |R)}, 2nd order differences on jth column:

∇λ(B
(NG)
ij |R) = λ(B

(NG)
i+1j )− 2λ(B

(NG)
ij )+ λ(B

(NG)
i−1j )

has at most one sign change from negative (−) to positive (+),
that is, being concave upward to concave downward.

Another property of the second order is that sequences

of {sign(∇λ(B
(NG)
ij |C))} and {sign(∇λ(B

(NG)
ij |R))} contain the

corresponding sequences of signs pertaining to the coupling
geometry, denoted as CG. For the mammalian data, the 5 ×

5 matrix [λ(B
(NG)
ik

)] of block-wise intensities of the coupling
geometry is calculated as:

λ(B
(CG)
ik

) =













0.20 0.00 0.00 0.00 0.00
0.84 0.07 0.00 0.04 0.00
0.96 1.00 0.36 0.02 0.00
0.95 0.50 0.50 0.14 0.00
1.00 0.83 0.93 0.89 0.29













For j = 2, 3, 4; i = 1, 2, ..., 5,

sign(∇λ(B
(NG)
ij |C)) =













+ + +

+ + +

− + +

− − +

− − −













For i = 2, 3, 4; j = 1, 2, ..., 5,

sign(∇λ(B
(NG)
ij |R)) =





− + + − −

+ + + + −

+ + + + −





Based on the above block-based nestedness perspective, the
following nestedness-index for a simulated matrix, denoted by S,
is proposed:

NCG =
∑

i

ri{
∑

j

[
∑

k 6=j

(λ(B
(S)
ij − λ(B

(S)
ik
))(j− k)]}

+
∑

j

cj{
∑

i

[
∑

k 6=i

(λ(B
(S)
ij − λ(B

(S)
kj
))(k− i)]}

−
∑

i

ri{
∑

j

(I − i+ 1)(j)
∑

j>k>1

{∇λ(B
(S)
jk
)}sign(∇λ(B

(NG)
ik

)|C)}

−
∑

j

cj{
∑

i

(I − i+ 1)(j)
∑

I>h>1

{∇λ(B
(S)
hj
)}sign(∇λ(B

(NG)
hj

)|R)}

(1)

The first two terms on the right-hand sides of index NCG are
“costs” against the linear ordering along the column-index on
every row and along the row-index on every column. The product
terms are designed to be negative in value if the linear ordering
holds and positive if the linear ordering fails. So, larger the NCG

value, the farther it is from nestedness. The 3rd and 4th terms
are for counting the coherence of the 2nd order differences with
that of NG. Positive and larger values indicated incoherence or
violations of nestedness.

4. RESULT

4.1. From Coupling Geometry to Matrix
Mimicking
The primary use of a computed coupling geometry from a binary
network is to make it possible for generating a series of ensembles
of matrix or network mimicries bearing with decreasing degrees
of geometric structural information from the finest to the coarsest
scales. Matrix mimicking is subject to constraints of row and
column sums sequences of the observed binary matrix, that is,
a matrix mimicry is a matrix that meets the same row sum and
column sum constraints. Based on such a series of ensembles,
a profile of distributions becomes a natural device for checking
the validity of testing statistics or structural indexes. The matrix
ensemble pertaining to the finest scale of structural information is
generated by patching up all simulated blocks, which are marked
by core clusters of ultrametric trees of animals and plants, subject
to block-version row and column sums sequences. This is an
ensemble that conforms to the minimum energy macrostate of
the ecological system from a statistical physics perspective. The
ensemble pertaining to the coarsest scale of structures simply
refers to the collection of matrices that satisfy the constraints
of row sum and column sum sequences of the entire matrix
observed as a block.

The generative algorithm employed here is the one
proposed and used in Miller and Harrison [34]. A brief
illustrating example and summary of this algorithm are given
in Supplementary Section 2. But, it is worthwhile to note that
this algorithm is effective for small sizes of binary data matrix,
such as the mammalian data. It breaks down even on the 50× 50
matrix. The key factor affecting the performance of the algorithm
is the matrix’s sparsity of 1s.

In ecological literature, 2 × 2 checkerboard switching and its
improved version, curveball algorithm [45], are also popularly
used to generate binary matrices with constraints of row and
column sums sequences. Basically, the 2 × 2 checkerboard
switching and its variants are a way of searching for new solutions
by moving away from the existing ones. In contrast, Miller
and Harrison’s algorithm intrinsically and simultaneously solves
the linear equations imposed by the constraints of row sum
and column sum sequences. Thus, these two matrix matrix-
generating algorithms are rather distinct in nature; both types of
algorithms suffer from distinct drawbacks to be applicable widely.

The drawbacks of 2 × 2 checkerboard switching and

its variants are as follows: firstly, they generate dependent

matrices depending on the initial matrix, and secondly,
their energy spreads are relatively too narrow, indicating
that they have preference for previously sampled matrix
configurations. One evident view of such drawbacks is revealed
in Figure 3. Furthermore, our computer experiments show
that the generating processes have rather short recurrent time
cycles, that is, repeated matrices being generated too often. This
phenomenon indicates that the generated trajectory might have
been confined within a small region.

Here, we tentatively propose a practical way of resolving
the issue of large data matrix that currently limits Miller
and Harrison’s algorithm. By incorporating a randomized
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FIGURE 3 | Energies of a total of 15,000 sampling matrices with fixed row and

column sums. The formula for energy is defined in S1 (Supplementary

Section 1). Three different colors represent the sampling methods used: 2 ×

2 checkerboard, dependent Miller’s algorithm, and independent Miller’s

algorithm.

divide-and-conquer sampling scheme in the observed data
matrix, the whole matrix is divided into blocks, on which Miller
and Harrison’s algorithm becomes applicable. This sampling
scheme can be made to accommodate the heterogeneity brought
out by the coupling geometry on both axes.

4.2. From Matrix Ensembles to Energy
Profile
The entropies of this series of ensembles are defined as the
logarithm of their sizes. The notation Ea×b represents that matrix
ensembles are mimicked via a×b blocks, that is, anm×nmatrix,
M is decomposed by a × b blocks. There are a × b blocks in
total. Each block matrix is of the size Sm1×n1 , ...Sma×nb , where
m = m1 + m2 + ...ma and n = n1 + n2 + ...nb. For example, in
Figure 1A, if we decompose it by 2×2 blocks, we group the rows
and columns into two clusters, respectively, according to their
ultrametric trees. Hence, Block 1 = (B11,B21,B31,B12,B22,B32),
Block 2 = (B13,B23,B33,B14,B24,B34), Block 3 = (B41,B42), and
Block 4 = (B43,B44). When generating matrix ensembles, each
block generates a sequence of sub-matrix ensembles that meets
the same row sum and column sum constraints. By putting these
a× b sub-matrix ensembles together, the matrix ensembles have
the same row and column sum sequences as the matrix M. It is
to be noted that E1×1 does not require the decomposition of the
observed matrix.

For the mammalian data in Figure 1B, the serial sizes of
ensembles are computed via an algorithm from Miller and
Harrison [34] described as follows: the size of the finest scale
(E5×5 version) ensemble is 1.3 × 108, the E4×2version is 4.47 ×

1016, the E2×2 version is 1.45 × 1029, and the E1×1 version (the
coarsest scale one) is 2.7 × 1039. Such quantities of ensemble
size or entropy bring out the quantitative sense of the structural
differences among multiscale block geometries embedded within
the originally observed network.

Another important aspect of such differences is revealed via
a profile of energy distributions, as shown in Figure 4 for the
mammalian data. It is evident that the two versions, E5×5 and

E1×1, of ensembles are very different in a sense that a randomly
chosen matrix from the E1×1 ensemble would appear very
different from any matrix from the E5×5 ensemble. The shifting-
to-right pattern of the energy distribution profile strongly implies
that it is computable and that the observable block patterns
contained in the coupling geometry are persistently eroding.
The nearly complete separation of the two energy distributions-
based ensembles E5×5 and E1×1, respectively, indicates that the
coupling geometry is not likely to result from a random sampling.
In this fashion, the hypothesis of co-occurrence patterns is
tested if the original binary bipartite network is represented by
a presence-absence data matrix (See Supplementary Section 1

for comparisons of energy index with other indexes of co-
occurrence).

4.3. From Coupling Geometry to
Block-Based Testing Statistics for
Structural Hypothesis
So far, there are at least three nestedness indexes that have
been proposed in literature. They are the “N+ counts” [10],
T (temperature) [12], and NODF [11] indexes. We computed
these three indexes and the index NCG based on four ensembles:
E5×5, E4×2, E2×2, and E1×1, derived from the coupling geometry
of the mammalian data. Their corresponding distributions are
presented in the following four panels. From panel (a) for
“N+,” though we see that the distribution based on E5×5 is
somehow overlapping with the one based on E1×1, their two
modes are evidently separated. Moreover, their relative positions
are correct, with the distribution based on E5×5 being more
toward the nestedness and on the left of the one based on E1×1.
In contrast, from panels (b) and (c) for T (temperature) and
NODF indexes, it can be seen that all their distributions are
almost completely overlapping with each other. Such complete
overlapping phenomena strongly indicate that both indexes, T
(temperature) and NODF, are not effective statistics for testing
nestedness given that the two ensembles E5×5 and E1×1 are very
different in energy and size, so as their pattern information.
Finally, on panel (d), the profile of distributions of NCG based on
E5×5, E4×2, E2×2, and E1×1 is progressively shifting to the right
as it is away from nestedness. Notedly, the singleton based on
the ensemble E5×5 is located at the extreme left tail of the one
based on E1×1; it is understood that the 2nd order differences
component in such an index is the key aspect that separates the
coupling geometry and matrices in E4×2, E2×2 away from E1×1.

Among the three existing nestedness indexes, N+, T
(temperature), and NODF, the last two indexes are newly
proposed and supposedly improve the first index. However, as
shown in the Figure 5, these two supposedly improved versions
are indeed “improper.” These two nestedness index values of
the fine scale (i.e., E5×5, E4×2) and coarse scale (i.e., E2×2,E1×1)
share almost the same density distributions, meaning that they
are not different from each other. On the contrary, though it
might not be effective, the originally proposed “N+ count” is not
unreasonable, since, it separates index distributions of different
scales. The only considerable part is that the finer scale, E4×2, has
higher value distributions than E4×2, which theoretically should
be in the opposite direction.
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FIGURE 4 | (A) Two energy trajectories from two scales of matrix structures. The light blue ones are sampled with fixed row and column sums of the overall matrix;

however, the orange-red ones are sampled with fixed row and column sums in each 5× 5 block. (B) Four energy distribution curves fit four different scales of block

structures.

FIGURE 5 | The distribution of different indexes that are sampled, constrained by different scales of block structures. Each index and each scale of block structure are

sampled 5,000 times using Miller’s algorithm. The dash line represents the indexes of Data Mechanics. (A) Distribution generated by N+. (B) Distribution generated by

Temperature. (C) Distribution generated by NODF. (D) Distribution generated by NCG.

Here, we make a remark on the current state of knowledge
such as the issue of how to systematically define an efficient
testing statistic even on a binary bipartite network is still wide

open at the current state of knowledge. In fact, it is expected
because a bipartite network is indeed used to approximate
a complex system state. This system state is very much
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nonparametric in nature in the sense of containing nonlinearity,
dependence, and heterogeneity.

4.4. From Coupling Geometry to
Formulating the Structural Hypothesis
Finally, we discuss two issues: (1) What are the rationales behind
comparing the two distributions based on ensembles E5×5 and
E1×1 in the mammalian data? (2) Why a hypothesis based on
a binary bipartite network has to be formulated and tested in a
conditional setting? These two issues are indeed two sides of the
network data’s information content.

The first insight that comes from the data’s matrix
representation is that the row and column sums sequences
might as well be deterministic, that is, the two sequences involve
no randomness at all. Such deterministic feature is formed when
data are collected. Therefore, conditioning on the two sequences
is not only preferable but necessary.

By means of conditioned thinking, the null and alternative
hypotheses, Ho and Ha, have been formulated as follows.

Ho: The mutualistic system of animal and plant interactions
does not contain nestedness related patterns beyond the
minimum patterns sustained by the row and column sums
sequences.

Ha: The mutualistic system of animal and plant interactions
does contain more nestedness related patterns in its minimum
energy macrostate than the minimum patterns sustained by the
row and column sums sequences.

Under Ho for the mammalian data, the null distribution
with respect to any testing statistic is exactly the corresponding
distribution derived from the ensemble based on E1×1. However,
under Ha, typically there exists one or many lowest energy
macrostates embedded within an observed binary bipartite
network data. For instance, we can find more than 300
matrices with the lowest energy for the mammalian data.
However, explicitly finding minimum energy macrostates can
be impractical because of huge computational loads. This
is usually the case for large data networks. Hence, on one
hand, a computable coupling geometry is the pragmatic
candidate.

On the other hand, the hypothetical geometry specified
on the alternative has to contain the minimum energy
macrosate, so that an efficient testing statistic has a function
of the coupling geometry as a minimum sufficient statistics.
This is why the testing statistics is defined based on the
finest scale block patterns. Such testing statistics are nearly
identical with the ones defined on the real minimum energy
microstates. Therefore, the distribution under Ha pertaining
to any efficient testing statistics has to be singleton based
on the finest scale blocks, such as E5×5 in the mammalian
data.

Nonetheless, it is critically important to emphasize here
that any non-efficient statistics will have many “observed”
values under the alternative hypothesis, such as index on the
mammalian data on the E5×5 ensemble. So, there would be a
distribution of p-values. In other words, the report of one single
p-value is not valid in such a hypothesis testing setting.We indeed
need to report such a distribution of p-values.

5. DISCUSSION

We computationally extracted a coupling geometry, consisting
of deterministic and stochastic structures, embedded within an
observed binary bipartite network as its information content.
From the perspective of physics, it is a minimum energy
macrostate, and, at the same time, from a statistical perspective,
it is the minimum sufficient statistic. Therefore, any microstates
as mimicries of the observed data network have to conform to
this coupling geometry, while any potentially efficient testing
statistic has to be a function of it. Furthermore, the pertinent
geometric structure of nestedness has to be the least construct
containing such a coupling geometry. These are fundamental
facts underlying any coherent data analysis on binary bipartite
networks. Significant implications include that the formulations
of hypotheses need to be based on the minimum energy
macrostate, and any potential nestedness index has to be in a
form based on the block patterns found on the finest scale.

The computable coupling geometry also facilitates various
ensembles of matrix-mimicking according to its multiscale block
patterns. Owing to the fact that the profile of ensembles bears
with monotonically less geometric structures, any reasonably
effective nestedness index will give rise to gradually separating
index-based distributions: from the finest scale to the coarsest
scale. This means that an index is not effective if it misses such
a gradually separating pattern. When an index, such as NCG

proposed here, is defined based on the finest scale blocks, it gives
rise to singleton on the finest scale ensemble. Otherwise, there
would be a distribution of p-values.

On the front of generating random matrices that are subject
to the two sequences of row and column sums, experiences from
our computer experiments reveal that the commonly used 2 × 2
checkerboard swapping and its variants need “big” perturbations
in order to achieve “more uniform” sampling. A perturbation-
aided sampling scheme, based on a coupling geometry andMiller
and Harrison’s algorithm [34] can generate and sample large
random matrices up to 1,000× 1,000 in size.

As a final remark, a coupling geometry computed from a
binary bipartite network data can further afford an approach
to compare the marginal tree structure on one axis with its
corresponding phylogenetic tree as a new way of evaluating
phylogenetic effects. Such a comparison of two tree structures can
be performed via a technique called partial coupling geometry,
which was developed in the spirit of mutual information in
information theory.
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