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The framework of this paper is the field of decision-making processes in which people

face the choice between probabilistic and dated rewards. Traditionally, the preferences

for probabilistic outcomes have been analyzed by the Expected Utility (EU) model whilst

the preferences for dated rewards have been studied by the Discounted Utility (DU)

model. Nevertheless, recent empirical findings have revealed the existence of several

anomalies or paradoxes in both contexts. Specifically, EU and DU models exhibit an

anomaly affecting the amount of the reward, viz the “peanuts” and the magnitude effects,

respectively, which seem to go in opposite directions. The aim of this paper is to analyze

both effects jointly in a wide setting involving choices subject to risk and over a period of

time, and thereby identify and consider the implications of one anomaly on the other.

Keywords: intertemporal choice, discounted utility model, expected utility model, magnitude effect, “peanuts”

effect

1. INTRODUCTION

This manuscript deals with the interaction between magnitude effect and “peanuts” effect, a term
used by Prelec and Loewenstein [1], Weber and Chapman [2], and Haisley et al. [3] to describe
the effect of a decreasing risk-aversion with decreasing monetary rewards. This is of particular
importance since these two effects move in opposite directions, and the analysis of their interactions
can be useful to validate any decision-making model which takes into account the elements of
time and risk. The first part of the paper considers some implications of peanuts effect, magnitude
effect, subendurance, and their reverse versions. The second part of the paper focuses on discount
functions V given by the product of a utility function u and a function g depending on p and t,
and goes on to analyze the implications which the magnitude effect and peanuts effect have on the
utility function u.

Individual decision-making has been studied within disciplines which range from economics
to psychology, passing through areas such as neuroscience [4]. However, these studies have always
been carried out using two principal models:

1. The Discounted Utility (DU) model which is employed to assess a stream of rewards with
different maturities [5]. In this way, individuals try to maximize their discounted payoff or
“utility” which is given by:

U0 =
T∑

t= 0

δtut , (1)

where U0 is the present value of the sequence, ut is the utility obtained from the outcome
available at instant t (t = 1, 2, . . . ,T) and δ represents the discount factor (which is lower than
or equal to 1).
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2. The Expected Utility (EU) theory which is employed to model
those decision processes involving risky choices [6], that is
to say, when the amounts have been specified in terms of
probability. In the same way, individuals try to maximize their
expected utility:

U0 =
n∑

k= 0

pkuk, (2)

where U0 is the present value of the experience, uk the utility
obtained from the k-th experience and pk the probability
associated with this experience (where obviously the n
associated probabilities amount to 1:

∑n
k= 0 pk = 1).

The DU and EU models have a similar structure given that they
are based on the same theoretical principles, since alternatives
are assessed by taking into account the sum of their utilities
[7]. Moreover, DU and EU are general models with the power
to predict, and their high level of acceptance is explained
by their simplicity and the fact that they are based on the
traditional systems of calculation of the present and actuarial
values, respectively.

Nowadays, the DU and EU models are the standard theories
of rational choice over time and under risk, respectively, in many
social and behavioral sciences [8]. However, it is well known that
models are simplified representations of reality, and so this is a
limitation when trying to describe the actual behavior of people
[9]. In effect, several anomalies have recently been detected which
must be taken into account when analyzing a real situation.

Despite their similarity, decisions involving intertemporal
choices and uncertainty have traditionally been studied in
different research areas, given that delayed and risky rewards
do not require the same treatment. Some cautious attempts to
integrate DU and EU models, such as the Discounted Expected
Utility (DEU) [10, 11], have been made in order to analyze
individual behavior in decisions involving time delay and risk
[11, 12]. In the same vein, in psychology, it is usual to interpret
time in a probabilistic way [13], or to translate risks into delays
when facing risky choices [14].

Other scholars [1, 7, 15] have studied the analogies and the
anomalies observed in DU and EU models by arguing that
they start from certain fundamental psychological properties of
multidimensional prospect valuation. In the following paragraph,
some anomalies of the DU (intertemporal choices) and EU (risky
choices) models are jointly presented:

1. The common difference effect (DU anomaly) and the common
ratio effect (EU anomaly) [1].

2. The immediacy effect (DU anomaly) and the certainty effect
(EU anomaly) [16].

3. The magnitude effect (DU anomaly) and the peanuts effect
(EU anomaly).

In spite of the fact that the magnitude and the peanuts effects
are embedded in different frameworks, intuitively they seem to
move in opposite ways because “the peanuts effect seems to
reveal decreasing sensitivity to payoffs at larger stakes, while the
magnitude effect seems to reveal increasing sensitivity to payoffs

at large stakes” [11]. In effect, whilst the magnitude effect occurs
in the DUmodel, the peanuts effect makes sense in the EUmodel.
For this reason, in this paper we will follow a joint model in
which time and risk preferences are integrated, in the same line
as Schneider [11] and Baucells and Heukamp [17].

In this paper, we will focus on the study of the magnitude
effect and its relation with the peanuts effect both depending
on the amounts of reward. The importance of this research is
obvious: “Prelec and Loewenstein could not explain both effects,
and this challenge has remained unresolved over the subsequent
twenty-five years, posing an apparent impossibility result that no
common approach to modeling risk and time preferences can
capture both of these basic behaviors” [11].

The DU and EU models propose that relative preference
between two options is consistent, even if their amounts of
reward are increased by a constant factor [18, 19]. However,
some authors [20–23] have demonstrated that in decisions with
delayed rewards, the preference increases as its amount increases.
This magnitude effect is based on the premise that the patience
of individuals is directly related to the reward amount and that
individuals are more patient for large rewards than for those of
smaller amounts, leading to an increased preference for the larger
later outcomes [24, 25]. Following Schneider [11], the magnitude
effect may be represented as follows:

(x, p, s) ∼ (y, p, t) implies (kx, p, s) ≺ (ky, p, t), (3)

where x < y, s < t and k > 1, where p represents the probability
of occurrence which is considered constant in both alternatives.
This paradox explains how large outcomes are discounted at a
lower rate than smaller ones, the discount rate being a decreasing
function of the size of the reward [7].

On the other hand, in choices involving risk, the amount of the
reward has the opposite effect on the decision-making process. As
pointed out by some scholars [26, 27], the peanuts effect has not
yet been addressed as thoroughly as the magnitude effect. Only
some recent studies [11] havemathematically analyzed this effect.
It may be defined as follows (x < y):

(x, p, t) ∼ (y, q, t) implies (kx, p, t) ≻ (ky, q, t), (4)

the probabilities of occurrence being p and q, with p > q,
and k > 1. Another definition of the peanuts effect was
provided by Schneider and Day [28], as follows. Consider a
lottery f :(x, p; 0, 1 − p), with x > 0. Let c : = {f ,E(f )}. Then,
the peanuts effect holds if f ≻c E(f ), for sufficiently small x, and
E(f ) ≻c f , for sufficiently large x, for every p ∈ (0, 1).

Weber and Chapman [2] revealed that “a utility function
cannot account for the decrease in the size of the peanuts effect
for smaller probabilities”. In the same way, Schneider and Day
[28] proved that the peanuts effect cannot hold for Cumulative
Prospect Theory (CPT) or any non-choice-set-dependent EU
model. Finally, Leland and Schneider [8] define the indifference
relationship SS∼̂tLL in the framework of the so-called Salience
Weighted Utility over Presentations (SWUP) model in the
following way:

µ(x, y)[u(y)− u(x)]
δs + δt

2
= π(s, t)(δs − δt)

u(y)+ u(x)

2
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and the preference relationship SS′≺̂tLL
′ by the following

inequality:

µ(x, y)[u(y)− u(x)]
δs + δt

2
> π(s, t)(δs − δt)

u(y)+ u(x)

2
,

where µ(x, y) and π(s, t) are the so-called “salience functions”. In
this way, they characterize the magnitude and the peanuts effects
by imposing some conditions on the utility and the salience
functions.

As indicated in the previous paragraphs, the magnitude and
peanuts effects seem to move in opposite directions, and can be
explained by two a priori psychological principles:

1. The magnitude effect may be explained by the psychology of
perception, where individuals are more sensitive to absolute
than to relative differences in magnitude [1, 29]. It should be
borne inmind that decision-makers see larger delayed rewards
as investments. In this way, the potential of earning a bigger
amount of money leads to choosing the delayed reward with
its corresponding increase.

2. The risk-seeking in the peanuts effect may be explained by the
anticipated emotion of disappointment [16]. Disappointment
is an emotion which is experienced when perceiving that
a different situation would have led to a better result [30].
As some scholars [31, 32] suggest, the effect of anticipated
emotions may influence individual decisions. According to
the perceived level of this disappointment, the utility is a
function of the difference between the actual outcome and the
expected value of the gamble. In order to avoid the feeling of
disappointment, a person prefers a less risky gamble over a
riskier one. Because of this, the decision-maker becomes risk-
seeking for potential smaller rewards given that losing them
invokes less disappointment than losing a bigger one.

The influence of negative emotion is likely to be greater in
risky choice than in intertemporal choice because the possibility
of gaining a reward smaller than expected is implicit in risky
choices. The presented studies confirm that, from a psychological
point of view, probabilistic discounting is not identical to that
which underlies temporal discounting.

The methodology employed in this paper is the interaction
between time and risk preferences. Its main contribution is
the way by which time and risk preferences interact given
certain assumptions. As a result, a wide variety of mathematical
relationships arise by using the concepts of regularity and
subendurance, and an important representation of the discount
function V(x, p, t) as u(x)g(p, t).

After describing the state of the art concerning the
mathematical treatment in the existing literature of both the
magnitude and the peanuts effects, this paper is organized as
follows. In section 2, the possible relationships between the
magnitude and the peanuts effects are analyzed by using a very
general definition of discount function involving time delay and
risk, and the presence or absence of the so-called subendurance.
In section 3, the general expression of the discount function
V(x, p, t) is restricted to the functional form u(x)g(p, t), where u
is a utility function. Under these circumstances, some significant

relationships can be obtained between the reverse magnitude and
the peanuts effects in the presence of a regular discount function.
Finally, section 4 summarizes and concludes.

2. FRAMEWORK AND GENERAL RESULTS

2.1. Preliminaries
It will prove useful to begin with some definitions [17].

Definition 1. Consider the set M = X × P × T, where X =
[0,+∞), P = [0, 1], and T = [0,+∞). A discount function is a
continuous real-valued function V(x, p, t) defined onM which is
strictly increasing in the first and second components, and strictly
decreasing in the third.

However, Baucells and Heukamp [17] require that V tends
to zero whenever xpe−t tends to zero, but in this paper this
restriction will be relaxed, and we will assume that V converges
to zero only when x → 0 or p → 0, by allowing that

lim
t→+∞

V(x, p, t) := L(x, p) ≥ 0.

In the first case, V is said to be regular whilst, if L(x, p) > 0, V
is said to be singular. The paper by Baucells and Heukamp [17]
implicitly includes the regularity of V . In some further results we
will require this condition but in others this condition will not
be necessary. The following definitions have been obtained from
Schneider [11].

Definition 2. The peanuts effect (resp. reverse peanuts effect) is
said to hold if, for every 0 < x < y, p > q and k > 1, (x, p, t) ∼
(y, q, t) implies (kx, p, t) ≻ (ky, q, t) (resp. (kx, p, t) ≺ (ky, q, t)).

Definition 3. The magnitude effect (resp. reverse magnitude
effect) is said to hold if, for every 0 < x < y, s < t and
k > 1, (x, p, s) ∼ (y, p, t) implies (kx, p, s) ≺ (ky, p, t) (resp.
(kx, p, s) ≻ (ky, p, t)).

The following definition reflects the idea that the larger the
reward, the more subjects are willing to wait in exchange for
improved probabilities [17].

Definition 4. Subendurance (resp. reverse subendurance) is
said to hold if, for every 0 < x < y, s < t and p < q, (y, p, s) ∼
(y, q, t) implies (x, p, s) ≻ (x, q, t) (resp. (x, p, s) ≺ (x, q, t)).

2.2. General Results
Lemma 1.Given an x ∈ X, letVx : P×T → R be the real function
defined by Vx(p, t) := V(x, p, t). If V is regular, then, for every
(p, t) ∈ P×T and every q > p, there exists a1 = 1(x, p, q, t) > 0
such that Vx(q, t + 1) = Vx(p, t).

Proof. Given an x ∈ X, for every (p, t) ∈ P×T and every q > p,
let us consider the following real-valued function:

Vx,q :T → R

defined as:

Vx,q(r) := Vx(q, r).
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Taking into account the definition of V , the inequality Vx,q(t) >

Vx(p, t) holds. Moreover, as V is regular, when r → +∞,
Vx,q(r) → 0. Therefore, there exists a r0, large enough, such
that Vx,q(r0) ≤ Vx(p, t) < Vx,q(t). As V is continuous and
decreasing in t, by the Intermediate Value Theorem there exists
a value 1 > 0 such that Vx,q(t + 1) = Vx(p, t), from where
Vx(q, t + 1) = Vx(p, t).

Corollary 1. Let Vp :X × T → R be the real function defined
by Vp(x, t) := V(x, p, t). If V is regular, then, for every (x, t) ∈
X × T and every y > x, there exists a 1 = 1(x, y, p, t) > 0 such
that Vp(y, t + 1) = Vp(x, t).

Proof. The proof is analogous to that of Lemma 1 because the
amount x and the probability p play similar rôles.

Observe that the next two results do not require the condition
of regularity of V .

Lemma 2. Let Vt :X × P → R be the real function defined
by Vt(x, p) := V(x, p, t). For every (x, p) ∈ X × P and every
q > p, there exists a 0 < k = k(x, p, q, t) < 1 such that
Vt(kx, q) = Vt(x, p).

Proof. Given a t ∈ T, for every (x, p) ∈ X× P and every q > p,
let us consider the following real-valued function:

Vq,t :X → R

defined as:

Vq,t(z) := Vt(z, q).

Taking into account the definition of V , the inequality Vq,t(x) >

Vt(x, p) holds. Moreover, as Vq,t(0) = 0, then Vq,t(0) ≤
Vt(x, p) < Vq,t(x). As V is continuous and increasing in x,
by the Intermediate Value Theorem there exists a value 0 <

k = k(x, p, q, t) < 1 such that Vq,t(kx) = Vt(x, p), from where
Vt(kx, q) = Vt(x, p).

Corollary 2. Let Vt :X × P → R be the real function defined
by Vt(x, p) := V(x, p, t). For every (x, p) ∈ X × P and every
y > x, there exists a 0 < k = k(x, p, q, t) < 1 such that
Vt(y, kp) = Vt(x, p).

Proof. The proof is analogous to that of Lemma 1 because the
amount x and the probability p play similar rôles.

Observation 1. It can be shown that the peanuts effect holds
if and only if, for every 0 < x < y, p > q and 0 < h < 1,
(x, p, t) ∼ (y, q, t) implies (hx, p, t) ≺ (hy, q, t). In effect, assume
that (x, p, t) ∼ (y, q, t), with 0 < x < y and p > q. If, for
a given 0 < h < 1, (hx, p, t) � (hy, q, t), then Vp,t(0) ≤
V(hy, q, t) ≤ Vp,t(hx). As Vp,t is continuous and increasing, by
the Intermediate Value Theorem, there would be a h0 ≤ h such
that (h0x, p, t) ∼ (hy, q, t). As 1/h0 > 1, by hypothesis,

(
1

h0
h0x, p, t

)
≻

(
1

h0
hy, q, t

)
� (y, q, t),

which is a contradiction. Therefore, (hx, p, t) ≺ (hy, q, t). The
proof of the reciprocal implication is analogous.

Observation 2.Analogously to Observation 1, it can be shown
that the magnitude effect holds if and only if, for every 0 < x < y,
s < t and 0 < h < 1, (x, p, s) ∼ (y, p, t) implies (hx, p, s) ≻
(hy, p, t).

Observation 3. Finally, observe that it can be shown that
subendurance holds if and only if, for every 0 < x < y, s < t
and p < q, (x, p, s) ∼ (x, q, t) implies (y, p, s) ≺ (y, q, t). The proof
is analogous to that of observations 1 and 2.

Theorem 1. The magnitude and the peanuts effects imply
subendurance.

Proof. In effect, assume that the magnitude and the peanuts
effects hold. In order to show that subendurance is satisfied, we
are going to start from the following indifference relation:

(y, p, s) ∼ (y, q, t), (5)

where s < t, and p < q. By Lemma 2, there is a “trade-off”
between y and q, in the way that the amount y can be increased
until z, in exchange for diminishing the probability up to the
value p, keeping the former indifference between the involved
rewards, that is to say, such that:

(y, p, s) ∼ (z, p, t), (6)

where z > y. Therefore, as the magnitude effect holds, one has:

(ky, p, s) ≺ (kz, p, t), (7)

with k > 1. On the other hand, we can apply transitivity to
equivalences (5) and (6), and so derive that:

(y, q, t) ∼ (z, p, t). (8)

By applying now the peanuts effect to the former equivalence and
for the same value of k, one has:

(ky, q, t) ≻ (kz, p, t). (9)

Finally, the transitivity applied again to preferences (7) and (9)
results in:

(ky, p, s) ≺ (ky, q, t), (10)

from where subendurance holds (see Observation 3).

Theorem 2. The following statements hold1:

1. The magnitude effect and the reverse subendurance imply the
reverse peanuts effect.

2. The reverse magnitude effect and the subendurance imply the
peanuts effect.

3. The reverse magnitude effect and the reverse peanuts effect
imply the reverse subendurance.

1The additional condition of the discount function being regular will be taken

into account when a trade-off between reward amount (or probability) and time

is necessary in order to apply Lemma 1 and Corollary 1.
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4. The peanuts effect and the reverse subendurance imply the
reverse magnitude effect .

5. The reverse peanuts effect and the subendurance imply the
magnitude effect.

Proof. The proof is analogous to that of Theorem 1.

All the implications included in theorems 1 and 2 can be
schematized in Figure 12. Observe that:

1. Only in the context of subendurance, the magnitude and the
peanuts effects are compatible. That is to say, in the context of
reverse subendurance, these effects are incompatible.

2. In both contexts (subendurante and reverse subendurance),
there are some implications of the magnitude for the reverse
peanuts effects, and of the reverse magnitude for the peanuts
effects.

3. SEARCHING PARTICULAR
IMPLICATIONS

3.1. Introducing a Discount Function
Assume that the discount function has the functional form
V(x, p, t) := u(x)g(p, t), where u is a utility function and g(p, t) is
a non-negative continuous function defined in P × [0, t0) (t0 can
even be +∞, in which case [0, t0) = T) satisfying the following
conditions:

1. g(p, t) > 0.
2. g(p, t) is increasing with respect to p, and
3. g(p, t) is decreasing with respect to t.

The discount function is said to be [33]

1. Regular if t0 = +∞ and lim
t→+∞

g(p, t) = 0, for every p ∈ P (see

Figure 2).
2. Singular if t0 = +∞ and lim

t→+∞
g(p, t) := L(p) > 0, for some

p ∈ P (see Figure 3).
3. With bounded domain if t0 ∈ R.

3.2. Particular Results
According to Baucells and Heukamp [17], this model is not
compatible with subendurance and reverse subendurance. In
these conditions, we can put forward the following propositions.

Proposition 1. A sufficient condition for the magnitude effect
(resp. reverse magnitude effect) is that, for every 0 < x < y, s < t,
p ≥ q and k > 1, (x, p, s) ∼ (y, q, t) implies (kx, p, s) ≺ (ky, q, t)
(resp. (kx, p, s) ≻ (ky, q, t)). If V is regular, this condition is also
necessary.

Proof. Obviously, the condition is sufficient (it suffices to take
p = q). Let us see the necessity. In effect, assume that the
magnitude effect holds. In order to show that the aforementioned

2In order to interpret this chart and the next one correctly, it is necessary to

take into account the following criterium: if a cell can be vertically embedded

in a contiguous cell, the property indicated in the first (smaller) cell implies the

property enclosed in the second (bigger) cell.

condition holds, we are going to start from the following
indifference relation:

(x, p, s) ∼ (y, q, t), (11)

where 0 < x < y, s < t and p ≥ q. From the former equivalence,
it can be deduced that

u(x)g(p, s) = u(y)g(q, t). (12)

By Lemma 1, the next step is to propose a “trade-off” between
q and t, in the way that the instant t can be delayed until t′,
in exchange for increasing the probability up to p, keeping the
indifference between the involved rewards, that is to say, such
that:

(x, p, s) ∼ (y, p, t′).

In effect, it suffices to define (taking into account that g(p, ·) is
continuous and decreasing)

t′ := g(p, ·)−1

[
u(x)

u(y)
g(p, s)

]
> t. (13)

The existence of such t′ is guaranteed because V is regular.
Therefore, as the magnitude effect holds, one has:

(kx, p, s) ≺ (ky, p, t′), (14)

for every k > 1.
Finally, observe that, from the former equalities and

inequalities, the following inequality is satisfied:

u(kx)

u(ky)
<

g(p, t′)

g(p, s)
=

u(x)

u(y)
=

g(q, t)

g(p, s)
,

which obviously derives in:

(kx, p, s) ≺ (ky, q, t)

and so the condition is necessary. The reasoning for the reverse
magnitude effect is analogous.

Proposition 2. The peanuts effect (resp. reverse peanuts
effect) holds if and only if, for every 0 < x < y, s ≤ t, p > q
and k > 1, (x, p, s) ∼ (y, q, t) implies (kx, p, s) ≻ (ky, q, t) (resp.
(kx, p, s) ≺ (ky, q, t)).

Proof. Obviously, the condition is sufficient (it suffices to take
s = t). Let us see the necessity. In effect, assume that the peanuts
effect holds. In order to show that the aforementioned condition
holds, we are going to start from the following indifference
relation:

(x, p, s) ∼ (y, q, t), (15)

where 0 < x < y, s ≤ t and p > q. From the former equivalence,
it can be deduced that

u(x)g(p, s) = u(y)g(q, t). (16)
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FIGURE 1 | Implications between the magnitude and the peanuts effects.

Green denotes de presence of the mentioned effect. Yellow denotes de

absence of the indicated effect. Red represents the existence of the reverse of

the mentioned effect. Source: own elaboration.

FIGURE 2 | A regular discount function. Source: own elaboration.

The next step is to propose a “trade-off” between q and t, in the
way that the probability q can be reduced until q′, in exchange for
anticipating the availability of the second reward up to s, keeping
the indifference between the involved rewards, that is to say, such
that:

(x, p, s) ∼ (y, q′, s).

In effect, it suffices to define (taking into account that g(·, s) is
continuous and decreasing, and g(0, s) = 0)

q′ := g(·, s)−1

[
u(x)

u(y)
g(p, s)

]
< q. (17)

FIGURE 3 | A singular discount function. Source: own elaboration.

Therefore, as the peanuts effect holds, one has:

(kx, p, s) ≻ (ky, q′, s), (18)

for every k > 1.
However, observe that, from the former equalities and

inequalities, the following inequality is satisfied:

u(kx)

u(ky)
>

g(q′, s)

g(p, s)
=

u(x)

u(y)
=

g(q, t)

g(p, s)
,

which obviously derives in:

(kx, p, s) ≻ (ky, q, t)

and so the condition is necessary. The reasoning for the reverse
peanuts effect is analogous.

The following results are a direct consequence of propositions
1 and 2 in the framework defined at the beginning of
section 3.

Corollary 3. The peanuts effect implies the reverse magnitude
effect. Moreover, if the discount function involved in the
intertemporal choice is regular, then the reverse magnitude effect
implies the peanuts effect.

Corollary 4. If the model involved in the intertemporal choice
is the q-exponential discounting, then the reverse magnitude
effect is equivalent to the peanuts effect.

Proof. In effect, take into account that the q-exponential
(in particular, the exponential, the hyperbolic and the linear
discounting) discount function [34] is regular, as required by
Corollary 3.

The following proposition provides a characterization of the
utility function u involved in the context of the peanuts effect.
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Proposition 3. The peanuts effect holds if and only if the
elasticity of the utility function

ǫu(z) := z[ln u(z)]′

is decreasing.

Proof. Let us assume that the peanuts effect holds and that
0 < x < y. Let p and q (p > q) be two probabilities such that
(x, p, t) ∼ (y, q, t). In such a case,

u(x)g(p, t) = u(y)g(q, t).

By the peanuts effect, (kx, p, t) ≻ (ky, q, t) for every k > 1, and so

u(kx)g(p, t) > u(ky)g(q, t).

By dividing the left and the right-hand sides of the former
expressions, one has:

u(kx)

u(x)
>

u(ky)

u(y)

and so

ln u(kx)− ln u(x) > ln u(ky)− ln u(y).

As k > 1, we can write k := 1+ h, with h > 0. Therefore,

ln u(x+ hx)− ln u(x) > ln u(y+ hy)− ln u(y).

Dividing both sides of the former inequality by h and letting
h → 0, we obtain:

x
d ln u(z)

dz

∣∣∣∣
z= x

≥ y
d ln u(z)

dz

∣∣∣∣
z= y

.

Consequently, the elasticity of the utility function, z[ln u(z)]′, is
decreasing. The converse implication can be easily shown.

This result coincides with that provided by [35].

Corollary 5. If the peanuts effect holds then u is ln-concave.

FIGURE 4 | Counterexample of corollary 5. Source: own elaboration.

FIGURE 5 | Convexity, and peanuts and magnitude effects Green denotes de presence of the mentioned effect. Yellow denotes de absence of the indicated effect.

Red represents the existence of the reverse of the mentioned effect. Source: own elaboration.
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Proof. In effect, if the peanuts effect holds, by Proposition
3, z[ln u(z)]′ is decreasing. As z is increasing, then [ln u(z)]′ is
decreasing. Therefore, u is ln-concave.

The converse statement is not true. In effect, the utility
function u(z) = exp{

√
z} − 1 is ln-concave (see Figure 4, line

in blue) but

[z[ln u(z)]′]′ =
1

2

√
z exp{

√
z}

exp{
√
z} − 1

is increasing (see Figure 4, line in green).

Analogously, we can show the following statements.

Proposition 4. The magnitude effect holds if and only if the
elasticity of the utility function is increasing.

Corollary 6. If u is ln-convex then the magnitude effect
holds.

All the implications between the analyzed effects and the
ln-convexity of u can be seen in Figure 5.

4. CONCLUSIONS

In behavioral finance, the decision-making processes should be
explained through appropriate theoretical models and taking into
account the possible anomalies that human behaviors entail. The
treatment of these paradoxes can improve the explanatory power
of the economicmodels by involving some suitable tools from the
fields of economics and psychology.

Although sometimes time and risky preferences may be
considered as analogous concepts, the temporal and probabilistic
discount functions are not identical. To illustrate the difference
between intertemporal and probabilistic choices, we refer to two
anomalies of the discounted and expected utility models: the
magnitude and the peanuts effects, respectively.

The magnitude effect occurs in intertemporal choices where
the larger reward is usually related to a longer waiting time and

a lower discount rate. Given that these choices occur free of
negative feelings such as disappointment, the decision-maker, in
search of greater profits, may prefer to wait. However, the peanuts
effect occurs in uncertain choices in which the disappointment
experienced is directly related to the amount and probability
of the result. Specifically, the decision-maker is more prone to
make risky decisions when a small amount is involved in the
experiment.

This paper has presented a model simultaneously applied
to time and risk which could explain both the magnitude
effect in choices over time and the peanuts effect in choices
under risk. In pursuit of establishing the relationship
between both effects, we have obtained some implications
in a broad framework by considering the presence or
absence of subendurance. In the particular case in which
V(x, p, t) adopts the expression u(x)g(p, t), where u is a utility
function, the reverse magnitude and the peanuts effects are
equivalent when the discount function is regular. Finally, some
implications have been deduced involving the ln-convexity
of u(x).
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