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This paper considers the propagation of neurological shock-waves in the human head

due to improvised explosive devices (IEDs). The models adopted here use various

mathematical techniques, including adoption and application of the two most important

partial differential equations (PDEs) in this area, such as the Burgers’ and Transport

equations—together with a discussion of the inherent mechanics witnessed during

experiments. In particular, only a one-dimensional model of the propagation of an intense

acoustic compression wave—known as a shock-wave—traveling from air into the human

head, is analyzed, using experimental data taken from existing literature. Computer

simulations of these models also reproduce published experimental measurements

of these acoustic dynamic pressures within the human brain, with graphs describing

shock-wave motion in both two- and three- dimensions. There follows analysis and

explanations of this phenomena, developed more thoroughly, to explain in detail features

of experimentally-observed dynamic-pressures resulting in the brain, after a transitory

shock-wave rapidly passes through the human head. The final part of this paper leads to

further mathematical exposition—intended to be discussed within future publications—of

dynamic-pressures, the latter being explained more comprehensively, and in greater

detail, for clarity, especially in terms of the inherent physics and mechanical properties of

the ensuing dynamics.

Keywords: traumatic brain injury, brain, skull, partial differential equation, Burgers’ equation, transport equation,

blast, IED

INTRODUCTION

Many current neurological shock-waves occurring within the human brain result from the blasts
that emanate from improvised explosive devices (IEDs), within the context of modern warfare.

These multi-directional, transitory shock-waves (otherwise known as compression-waves)
propagate radially and, therefore, spherically outwards from the IED, through the atmosphere and
into the body and brain. Considering the exposure of the head only to a direct IED blast, as the
shock-wave exits the inner-side of the skull-bone, entering the less dense brain-tissue at this very
thin interface, its high velocity drops almost instantaneously to a much lower magnitude, therefore
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resulting in a dual-valued discontinuity. This is known as a
shock. The wave then continues to propagate, non-linearly,
through the brain-tissue, until it reaches its exit point at the
adjacent interface, which can be taken (for simplicity) to be
diametrically opposite the initial point of entry. At this final point
of exit, almost as instantaneously as the first shock occurred, the
propagating wave increases to the same velocity as its initial value,
before continuing through the skull-bone, traveling onwards and
outwards.

ASSUMPTIONS AND DEFINITION OF THE
PROBLEM

This shock-wave motion is described largely by the mass-
momentum-energy conservation laws resulting from the
differing bone–brain densities and the brain mass-diffusivity
coefficient, γ , which has the value of γ = 1 × 10−9 m2/s.
When dealing with the modeling of both energy and
temperature within the brain, in addition to the transfer of
particulate matter, the larger convective-diffusivity coefficient
of γ = 1.38 × 10−7 m2/s is also adopted. This is usually
added to the mass-diffusivity coefficient of γ = 1 × 10−9 m2/s,
thus yielding γ = 1.39 × 10−7 m2/s, allowing more involved
calculation and analysis of the overall advective, dynamical
neurological properties. These factors also affect other features of
the shock-wave’s propagation. For example, components of the
propagating wave are both reflected and transmitted as dictated
by reflection coefficient, R, and the transmission coefficient,
T, respectively. Each of these proportions are explained by
the above same momentum and energy conservation laws,
describing the behavior of billiard balls as they impact one
another and are deflected on a billiard table. There follows a
discussion of the mechanics and physics of such shock-wave
motion, as a precursor to the main exposition in the following
sections.

The effect of the propagating shock-wave then creates a
disturbance in the brain pressure, which has been experimentally
observed to almost instantly increase to a peak, then dissipates
either exponentially, sinusoidally—or a combination of each of
these factors. The variation in this pressure, which includes both
positive and negative pressures and pressure-gradients—and, in
many cases, a succession of oscillatory decreasing peak and
trough magnitudes—is highly damaging within a neurological
context. In many cases, this results in both neurological trauma,
such as traumatic brain injury (TBI), and mental disorders later.

This paper seeks to mathematically model the mechanics of
this shock-wave motion, simply within the human brain itself.
This is in order to illustrate and explain why these physical
characteristics occur, and to further propose ways and means to
mitigate against shock- and pressure-waves, either before or after
the event, and how possibly to prevent—or at least alleviate—
resultant harmful effects.

The main aim of this research, however, will be to
mathematically model the physics of shock- and pressure- waves
propagating through the brain. It is a particular objective of this
to verify the model by comparison with existing experimental

data, and to also predict the results of future experimental data
in the hope of building upon existing scientific knowledge.

A secondary outcome of this research will hopefully be to
give particular emphasis to the modification of the incident
waves, prior to entry into the skull-brain configuration. This will
possibly be achieved by way of application of an appropriate
smoothing term that will be described within the body of this
paper, along with other better-known wave-attenuating methods.

Prior to commencing the modeling of the above mechanics
and physics, a number of assumptions will be made, in order to
simplify the model in the initial stages:

1. As a basic simplification of the model, only IED shock-
waves that are immediately incident upon the human skull
(resulting in those that directly propagate through the
human brain) will be considered, even though they are often
transmitted to the head via other parts of the body, the limbs,
and from all external directions as well.

2. Initially, the skull-brain configuration will be depicted
by the construction of two uniform parallel plates, x
meters apart, with a uniform, largely incompressible, gel-
like fluid contained between each of them. Initially, all wave
propagation and associated flow-mechanics will be assumed
to have features occurring only in a one-dimensional spatial-
frame of reference.

3. Throughout the models, both media such as the skull-
bone and the brain tissue (through which the initial
shock- and pressure-wave propagate) will be considered
as incompressible. However, for the purposes of modeling
distributions of respective energies, the compressibility
of flow will also be a factor requiring consideration,
especially for reasons of conservation. This is because
energy distribution is variable in such a way that total
energy requires overall summation—or integration—of each
individual, variable, infinitesimal energy present.

4. Following on from point 3, the system as a whole
will ultimately be modeled as a semi-compressible, or
visco-elastic, set of models, in which the Euler-Lagrange
equations of state (such as Navier-Stokes’, Burgers’, and
Transport equations) require application and solution.
Additionally, the conservation equations—such as those of
mass, momentum, and energy—will also be utilized, since
they are fundamental considerations within this area of
research.

5. Given that shock-wave propagation across an interface
incurs both reflection, R, and transmission, T, components
(of the original wave due to the same conservation laws),
then the impedance, Z, of each medium through which the
shock-wave travels will be calculated to derive R and T. In
carrying out these calculations, it should be possible to assist
in predicting the nature of the inherent physics, as inferred
by point 9, below.

6. Whilst it is also possible to model external factors, such as
the shock-wave’s behavior prior to its entry into the human
head, these will be neglected to simplify matters given that
the post-shock physical situation within both the skull and
brain themselves is ofmore important significance within the
body of this research.
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7. For the purposes of this research, the spheroidal dimensions
of the human skull-brain configuration have been
neglected for simplicity, as they would potentially instigate
unnecessary over-complexity at this stage.

8. Although the curved nature of the internal walls of the skull-
cavity may eventually be modeled as a parabolic reflector,
they are not factored into the research at this stage for
simplicity. This is the reason why one-dimensional wave
propagation is only considered, as discussed in point 2.

9. Coefficients R and T, respectively, will also help to
explain the oscillatory behavior observed, along with
additional under- and over- pressures and the initial peak
pressure value, including an explanation of why this latter
factor occurs sooner when the wave-velocity is of higher
magnitude. The multi-directionality of both the initial
and ensuing mechanics and physics is also mentioned,
bearing these reflection and transmission coefficients and
components in mind.

10. In each of the above cases, we define the velocity of the shock-
wave as u (t, x), which propagates over the spatial-interval
(diameter of the brain), 0 ≤ x ≤ 0.176m, [1], and over an
interval of time defined as the period 0 ≤ t ≤ T seconds, for
time, t. In any future research papers, u(t, x) will also be used
to represent both pressure and energy, and so should not be
confused.

11. For accuracy in the mathematical models, and to compare
them with other experimental results and observations, the
initial conditions associated with the peak-pressures, PM , will
be taken to be T = 4.65× 10−4 s and L = 2.325× 10−3 m at
this value, as outlined by Moore et al. [2].

EXPERIMENTAL AND OBSERVED
RESULTS

Up to the present, a number of non-standardized experiments
have been conducted, [3–5], with the intention of simulating
the initial neurological shock–waves that originate from IED
blast exposure, resulting in somewhat contradictory results [3].
Also, it has recently been stated that “clinical needs continue
to exceed current knowledge” [3]. This is taken to infer that
the mathematics and physics of the initial blast and resulting
shock-wave dynamics, as well as mitigation of harmful effects, is
not clearly understood in neurological terms [5–7], nor suitably
explained [2]. It was stated by Mediavilla et al. [1] that “the
mechanisms of wave propagation in the human head must
be investigated.” Keeping this mantra in mind, this paper’s
mathematical- and physics- based findings have been conducted.

NEUROLOGICAL SHOCK-WAVE
DYNAMICS EXPLAINED

Because TBI results from the exposure of military personnel
to explosive detonations during modern warfare [5–9]—largely
due to IEDs—there is a considerable need for further research
in this area. This is to explain, and ultimately mitigate against,

the negative consequences of harmful brain trauma, as well as
possible mental and psychological disorders that often result.

Experimental results have indicated that shock waves resulting
from IEDs, which enter the skull-bone and then propagate
through the brain, travel at very high velocities. These are
sometimes as high as 5,000m per second, [1]. As verified by the
literature available, these velocities are considerably variable and
of a non-linear nature, given their measured variability as they
transit through the human skull-brain structure.

The literature refers to the motion of these acoustic waves
as shock-wave dynamics, which indicates that these features
can indeed be modeled by the application of partial differential
equations (PDEs). There is a particular set of PDEs that can be
particularly applied in this area, to model the whole physical
situation regarding this motion and the resulting shock–wave
dynamics.

PRELIMINARY MATHEMATICAL
EXPOSITION: THE EFFECT OF THE
DIRECTIONAL NATURE OF
SHOCK-WAVES ON THE REFLECTION
AND TRANSMISSION COEFFICIENTS, AND
RESULTING PRESSURE-WAVE AND
ENERGIES RELATING TO CONSERVATION
LAWS AND THE RANKINE-HUGONIOT
JUMP CONDITION

All acoustic waves encountering an obstacle, boundary, or
interface, are reflected to various extents. This is directly related
to both the conservation of mass, momentum, and energy.

When an object with mass,m1, impacts with another of mass,
m2, then there are largely three cases to consider, especially
given that the transfer of acoustic energy and the momentum
of the atmosphere through which the shock-wave travels—before
impacting with the body or head—all behave in much the same
way as colliding and deflected billiard balls.

These momentum—and energy—changes (or impulses) can
be expressed in terms of both density and velocity, and we refer
to the product of such quantities as the impedance, Z, which is
unique to each and every medium through which the shock-wave
travels.

The calculated reflection coefficient, R–due to the ratio of
the difference to the sum of the respective impedances of each
of the two media through which a wave propagates—therefore
affects the ultimate transmission of the initial shock-wave and its
resulting components, such as the eventual pressure-wave.

There are essentially three separate cases of momentum
change affecting the nature of the reflection coefficient, R, which
largely depend upon the “mass of the shock-wave,” ms, the mass
of the head,mh, the initial shock-wave velocity, vs, and the initial
velocity of the head, vh, for example.

If the mass, ms, of the shock-wave is less than the mass,
mh, of the head, ms < mh, a lower value of the energy will
be transmitted to the latter, with a resulting minimal pressure-
wave and, ultimately, both small reflection and transmission
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components resulting in less serious damage. If the masses are
equal, ms = mh = m, then this is equivalent to the momentum
of one of the objects either being reflected or transmitted by
a factor of m (vs + vh), in which the final velocity is equal
to 1

2 (vs + vh). This latter assertion ties in directly with the
Rankine-Hugoniot condition, which is a conservation law in
itself [10]. However, one should bear in mind that one of the
two rebounding velocities will be negative in value when a
reflection takes place. In the third scenario, when ms > mh for
a very powerful shock, then there will be a similar high level
of both energy reflection and transmission, and more serious
consequences therefore arising from significant transfer of both
momentum and energy, the latter causing acceleration of the
head.

Given that momentum is also highly correlated with energy,
as previously referred to, then it is clear that such mechanics
will inevitably affect the energy of each system being observed.
In short, according to Gerber [11], “the reflection coefficient
is a measure of the strength and magnitude of the reflected
wave.” In particular, it is the related momentum that ultimately
imparts the energy of the wave to the whole system being
considered. This is explained by the magnitude and direction
of both reflection and transmission coefficients described
above.

Impedance is denoted by the letter Z, where Z = Vρ, in
which V represents the velocity of the propagating wave, and
ρ represents the density of the media through which it travels.
By analyzing the dimensional units of this quantity, which are
in the form ML−2T−1, it is possible to assert that impedance
is equivalent to energy flux, a vital concept becoming apparent
in later sections–and in the adoption of Green’s Theorem. For
an incident shock-wave passing through two media, but only
very close to either the discontinuous air-skull or skull-brain
interfaces, each with different densities, ρs and ρh, with velocities
vs and vh, respectively, the reflection coefficient, R, may then be
expressed in terms of the impedances of each medium, such that:

R =
ZS − ZB

ZB + ZS
(1)

where ZS represents the impedance of the skull and ZB represents
the impedance of the brain from which the shock initially passes
into the brain as it propagates.

From existing medical literature, one can show that average
densities for skull-bone and brain-tissue are 1,750 and 1,170
kg/m3 respectively.

Let us ignore the importance of the initial shock-wave as it
enters the skin of both the body and the head, given that it
then meets the vanishingly small skull-brain interface with the
initial and secondary velocities of vs =3,415 m/s and vh =

1461.794 m/s [1]. In addition, since the respective skull-bone
and brain-tissue densities through which it travels are taken to
be both ρs = 1, 750 kg/m3 and ρh = 1, 170 kg/m3 on average,
respectively, then we write:

R =
1,750× 3,415− 1,170× 1461.794

1,750× 3,415+ 1,170× 1461.794
(2)

in which we see that the impedances for both the skull-bone and
the brain are 5.98 × 106 kgm−2s−1 and 1.7103 × 105 kgm−2s−1

respectively, for the given parameters in question.
From Equation (2), we find that:

R ∼= 0.555 (3)

This value of R indicates that the initial, incident, shock is
reflected by 55.5 per cent of its original impact value, which is
a significant component consistent with the respective change
in the reflection of the momentum involved. Moreover, were
this latter value to be even larger—due to the ratio of difference
of the impedances to the sum of each of them—then an even
larger component of the shock-wave would be reflected. We note
that the total magnitude of both the transmission and reflection
coefficients is T + R = 1, meaning that T = 0.445, as discussed
further below.

Given the fact that there will always be some type of reflection
coefficient, one may query the apparent coincidence that, in
some cases, such reflected values of R (and T) often appear to
be accompanied by initial negative valued pressures, otherwise
known as under-pressures. In fact, the above sum can also be
written as T = 1 − R for waves traveling to the right, or
alternatively as T = −(1 − R) for waves traveling to the left-
hand side, where R < 0. Not only is the resulting wave equal
to 2T, but this emphasizes the point that a negative value of
R appears to be coincident with such under-pressures. This is
especially true when the superposition of all the reflected waves
takes account of alternating negative components symbolizing
troughs, as well as positive ones that indicate the presence of
peaks, the theory of which is shown below. This is exemplified,
not only in pressure-time plots and integrals throughout this
paper but also in currently published papers.

Such alternating positive and negative values of R and T in
each subsequent reflection are also explained by the conservation
laws, either prior to the peak pressure occurring, or after
this point of discontinuity, where shock-wave reflections are
always significantly larger shortly after impact than they are
elsewhere during their journeys. Just as the impact velocity
produces either a given peak under-pressure or over-pressure, the
reflection coefficient is also similarly affected. All these factors are
interconnected, so it is perhaps of little surprise that each of them
is indicative and explicable in terms of the physical natures of the
others.

These latter considerations support the point regarding the
transmission coefficient, T, which dictates the size of the resulting
shock-wave’s amplitude in the original direction of motion, as
opposed to the incident value of R < 0 in the other. This has
further implications for the nature of the pressure-wave—along
with its reflected components—such as its overall amplitude
magnification, which results from the initial shock-wave impact.

As outlined above, the transmission of the first resulting
pressure wave (on impact with the initial interface) is described
by the resultant relationship:

T = 1 − R (4)
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or, by substituting Equation (1) into Equation (4) and simply
manipulating algebraically, we have:

T =
2ZB

ZS + ZB
(5)

This amplification factor will undoubtedly raise the prospect of
a similarly induced and magnified or shrunken pressure-wave,
and certainly explains the occurrence of both under- and over-
pressures as an alternative to the previous analysis.

Similarly, when the shock wave meets the secondary interface,
at the diametrically opposite side of the brain, at x = 0.176m
(which we shall refer to as surface 2), then the magnitude of
the reflection coefficient there is reversed, and we theoretically
also obtain a positive value of R ∼= 0.555. In reality, and using
current laws of physics, R is likely to be less than 0.555 due
to both frictional forces and energy conversion, but its positive
value implies that the wave now propagates, this time, in the
direction of the exiting shock-wave motion. Due to the initially
large, positive value of T close to the interface, and its assumed
reduction in value after the peak-pressure point, these factors
indicate that there is a loss of energy with subsequent attenuation
of the resulting pressure-wave—until the next point of lower-
valued reflection.

As the pressure wave continues reflecting, ultimately
oscillating back and forth with successively lower values of R
and T each time—whilst also changing their directional signs
in accordance with this motion—one will often (predictably)
witness a rapid increase in the resulting pressure-wave up to
the peak value and a rapid damping of it thereafter. This is
due to frictional forces and the conversion of energy into other
forms, as explained by the conservation laws, particularly as t
increases without bound. Depending on the nature of the initial
shock-wave, the converse of the above may also be true and,
sometimes, an asymptotic discontinuity occurs at the interface
due to these factors, as some models in the section on Boundary
Conditions for a Typical Case indicate.

One should also bear in mind that the first positive value of
R > 0 at surface 2 (along with its negative valued T component,
toward the left at this point), after the initial value R ∼= −0.555
occurs at surface 1 (x = 0m), will also frequently be responsible
for the secondary under-pressure, which often occurs after the
peak pressure-magnitude has taken place at the point of the
phase-angle depicted by x = 2.325 × 10−3 m and t = 4.65 ×

10−4 s.
Again, due to both conservation of mass, momentum, and

energy, since each of the quantities repeatedly change sign—
therefore implying that energy appears to either leave and enter,
or be transferred within, the system during what may or may not
be adiabatic processes. The continually reversing magnitudes of
both R and T then rapidly decrease in size. They oscillate between
polar positive and negative values, therefore approaching zero
magnitude, so that the overall resulting pressure-wave not only
exhibits under-pressures, but is also ultimately attenuated before
assuming a steady state.

If these processes prove to be adiabatic, it is, therefore,
reasonable to assume that, once the shock-wave has entered

the human head, then the energy changes that are witnessed
are being continually converted into other forms, rather than
a supposition that it is actually entering or leaving the system.
This is the reason why an adiabatic system, from which energy
does not rapidly leave again, post-impact, could be highly
damaging to a fragile structure—because the energy present is
transferred to the various parts of the brain in ways ultimately
resulting in neurological trauma, rather than being released in
ways that possibly do not have as harmful and damaging an
impact.

By adopting a method of recursion, we may assume that the
superimposition of all the n reflected amplitudes of the reflected
waves in Equation (5) will be of the form:

{

ψI = A (Tn + Rn)
ψR = −A (Tn + Rn)

(6)

for n = 1, 2, 3, . . . , although it is likely that both R and T
will be decaying quantities as the wave’s components lose energy
after repeatedly rebounding back and forth. At this stage, we
simply assume that R and T remain constant at the calculated
values of 0.555 and 0.445, respectively. In adopting this stance,
we ensure that the eventually magnified wave amplitude is of
a maximum value for the purposes of reference in further
calculations.

Subtracting the odd expressions (reflected waves) from the
even (transmitted waves) in Equation (6), we obtain the amplified
wave:

ψ = 2A
[

(1− R)n + Rn
]

(7)

Expanding this as a power series, we obtain:

ψ = 2A

[

1− nR+
n (n− 1)

2
R2 −

n (n− 1) (n− 2)

6
R3

+ . . .− O
(

Rn
)]

+ 2ARn (8)

This is a convergent series for R < 1, and by considering each
separate series for n = 1, 2, 3, . . . , 8, for example, we may write
the total series as:

ψ = 2A
[

8− 35R+ 85R2 − 125R3 + 127R4 − 83R5

+37R6 − 8R7 + 2R8
]

(9)

Substituting R= 0.555, we have:

ψ = 2A (8− 19.425+ 26.182− 21.369

+12.050− 4.371+ 1.081− 0.130+ 0.018)A

ψ = 4.072A (10)

Using the basic formula for the sum to infinity of a geometric
progression:

ψ = 2A

(

a

1− R

)

(11)

where a represents the first term and R the common ratio, we can
check that as n → ∞, Equation (7) yields the maximum possible
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amplitude magnification of ψ = 4.098A, which means that the
above value in Equation (10) is in very close agreement with this.

Given that we observe damped oscillating values of R and T,
these factors strongly suggest that any resulting pressure-wave
solution to the model will be in the form of an exponentially
decreasing sinusoidal function whose peak value prior to decay
is magnified around a maximum of 4 times that of the original
incident wave. However, this figure is likely to be less—for this
particular model—when the original function is multiplied by
each of the coefficients in Equation (9) due to the enhanced
destructive components of each successive sinusoidal wave
reflection. In other words, any function—or physical process—
which experiences decreasing oscillating values (as described in
this section)—a process further enhanced by R–can be said to
display exponentially damped sinusoidal motion in the form
y = Ae−ksin

(

ωk
)

, or other variation of this. Here, k represents
a generalized variable, ω represents some as yet unknown
value of the angular frequency, and A and B are constants.
These latter assertions are directly obtained from what the
conservation laws, reflection and transmission coefficients, and
elementary mathematics, reveal. In future work, a maximum
amplitude magnification factor less than or equal to 4.098 will
be especially used in the plotting of decaying sinusoidal pressure-
time graphs.

It is significant to further emphasize that this latter section,
regarding reflection coefficients, has been primarily concerned
with incident shock-waves for simplicity. However, shock-waves
that impact the human skull at angles other than at 90◦ must
also be considered, as must the whole asymmetric mechanics of
neurological shock-waves in a more holistic sense. It is, therefore,
important to at least state the analogous equation, as illustrated
by Gerber [11], which reads:

R =

(

dp
dη

)

sin (µ+ λ)
(

dp
dζ

)

sin (µ− λ)
(12)

where:

dp

dζ
= cos (µ)

dp

ds
+ sin (µ)

dp

dn
(13)

and:

dp

dη
= cos (µ)

dp

ds
+ sin (µ)

dp

dn
(14)

where p represents pressure, and µ and λ are the angles of
incidence in the directions of ζ and η, respectively, for some
dummy-variables, s and n.

One should, therefore, adopt Equation (12), and the
directional derivatives—Equations (13) and (14)—for more
complex situations in which multi-directional shock-waves need
to be modeled.

In conclusion, therefore, the conservation of mass,
momentum and energy, together with the implications of
the related reflection and transmission coefficients, infer
that much of currently unexplained neurological shock-wave
physics can be explained in a more concrete fashion with these

considerations in mind. In addition, our understanding of
this area can be engineered and facilitated to greater depth
by further considering related areas with the use of partial
differential equations, such as Burgers’ equation, together with
at least sinusoidal-based boundary conditions and the resulting
sinusoidal-based solutions. To this effect, the solutions of this
equation further model and describe all the features observed
during experimental studies, which have not been explained and
are currently poorly understood.

THE BURGERS’ AND TRANSPORT
EQUATIONS AS APPROPRIATE MODELS

Suggesting the existence of neurological shock-waves
implies that the well-known parabolic quasi-linear Burgers’
equation, and its linear form—known as the transport
equation—can be applied to appropriate situations to model
observed mechanics resulting from individual exposure to
IEDs.

As can be illustrated by using various mathematical
transformations, such as the Hopf-Cole transformation, these
basic forms of Burgers’ equation can be reduced to the
heat- and diffusion- equation, which together are another
two (almost identical) results, particularly crucial in terms
of further modeling other factors, such as the heat and
diffusion transfer rates due to cavitation, [7], within this
analysis [12]. The wave-equation may also be applicable here,
especially in terms of modeling other aspects of the propagation,
such as vast increases in both pressure and energy levels
resulting from reflection of propagating shock-waves. These
reflected waves serve to often amplify the initial shock-wave,
a process known in engineering and physics as superposition
(which serves to equally cancel out waves), certainly a
factor that has been observed during shock-tube simulations
[12].

In some of the literature, such as Physics of IED Blast
Shock Tube Simulations for mTBI Research [1], fluid–structure
interaction (FSI) has been applied by utilizing the Euler–
Lagrangian. These computer-aided simulations were, in turn,
based upon mathematical models developed by other researchers
prior to these 2011 experimental results [13]. Such factors,
therefore, support the conclusion that application of Burgers’ and
Transport equations are correct PDEmodels to apply, given prior
theoretical application of the Euler–Laplacian.

Moore et al. [2], emphasize the fact that IED mechanics is
indeed a non-linear process, and further indicate that a smoothing
algorithm is already available within the finite element method
(FEM) software that they themselves used in optimizing their
own models. To clarify this statement further, they explain
that “in addition, the software provides mesh decimation,
refinement and smoothing algorithms that can be used to
optimize the mesh for computational efficiency.” A possibly
similar mathematical factor, γuxx, on the right-hand-side of
the second-order Burgers’ equation (Equation 2, below) has
this effect—graphically speaking—particularly when plotting the
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FIGURE 1 | (A) Shock-wave solution illustrating the discontinuity between the

incoming (horizontal) wave velocity of u (t, x) = vI = 3, 415m/s, and the

outgoing velocity of u (t, x) = vF = 1461.794m/s—where vI and vF are each

taken to be constant for −∞ ≤ x ≤ 0 and 0 ≤ x ≤ ∞, in this case,

respectively. In the case of a spatially fixed-size skull, there are actually three

intervals, whereby −∞ ≤ x ≤ 0, 0 ≤ x ≤ xR and xR ≤ x ≤ ∞, each

representing vI = 3, 415m/s, vF = 14671.794m/s and then vI = 3, 415m/s

again, respectively. Note that, in this graph, the vertical-axis represents general

(non-linear) velocity, u (t, x), whilst the horizontal-axis generally represents

distance, x meters. (B). Shock-wave solution, with a vanishingly-small diffusion

coefficient, in 3-dimensions over the spatio-temporal ranges of

−0.176 ≤ x ≤ 0.176m and −1 ≤ t ≤ 1 s. If the solution is plotted with x and t

axes reversed, Mathematica simply rotates the plot by 90◦. As characteristic

of plotting all shock-waves, its motion is essentially illustrated as propagating

with respect to both the x- and t-axes, with a sharp discontinuity at x = 0 and

t = 0, primarily. (C) Shock-Wave solution, with a moderately-small diffusion

coefficient, in 3-dimensions over the spatio-temporal ranges of

−0.176 ≤ x ≤ 0.176m and −1 ≤ t ≤ 1 s. As in (B), if the solution is plotted

with x and t-axes reversed, Mathematica simply rotates the plot by 90◦. As is

characteristic of the plotting of all shock-waves its motion is, again, essentially

illustrated as propagating with respect to both the x- and t-axes.

three-dimensional shock-wave solution in Figure 1C, where
Mathematica software was used.

Taking this explanation further, it is hoped that the smoothing
term of Burgers’ equation could potentially be applied—
within more practical contexts—to mitigate against both initial
shock- and resulting pressure-wave within an actual combat
situation, for example. Certainly, graphically speaking, when
γuxx is applied to the original first-order Burgers’ equation—
Equation (3)—one can clearly see that the shock-wave becomes
considerably (and necessarily) smoothed out, as illustrated in
Figure 1C. It should be obvious—from the three-dimensional
graphical plots—that this factor has had considerable effect
in greatly reducing the severity of the shock, within a purely
mathematical context.

Given this mathematical and physical evidence, it may
be conjectured that such theoretical calculations, and the
clear negative damping effects to this extent, will eventually
be the basis for a technology that will ultimately mitigate
not only against initial transitory IED shock-waves, but also
against resulting, equally harmful, pressure-waves that occur
immediately thereafter, either within the brain, or on the
battlefield.

In the following models from the literature, the solutions
to the associated PDEs—such as the Burgers’ and Transport
equations, especially involving calculated variable pressures—will
illustrate just how significant (within the context of mathematical
models at this stage) this smoothing term is, in greatly reducing
high-magnitude pressures (often in terms of Mega- or Giga-
Pascals) to nothing more than mere fractions. These will
sometimes be in the order of one millionth of a Pascal, or
smaller, above and below the base-level of atmospheric standard
temperature and pressure (STP), the latter taken to be that of zero
Pascals.

One should be aware, given the experimentally-observed,
calculated (experimentally or theoretically) and graphically-
plotted pressure curves where the pressure generally tends to
repeatedly vary between negative and positive values, and similarly
for pressure-gradients of the same respective signs, that they
are generally not referred to as monotonic functions. Instead,
they are more likely to be oscillatory in nature—or at least
may contain oscillatory frequencies within an exponentially
decaying curve itself, at least—where respective functions also
display varying opposite signs and varying first derivatives, as
suggested by the analysis of both reflection and transmission
coefficients in the section Preliminary Mathematical Exposition:
Effect of the Directional Nature of Shock-Waves on Reflection
and Transmission Coefficients, Resulting Pressure-wave and
Energies, Related to Conservation Laws and the Rankine-
Hugoniot Jump Condition. It is this oscillatory nature of
pressure-waves that sets them apart from the oftenmonotonically
decreasing or increasing functions that generally describe initial
shock-waves in the theoretical sense, as profiled in Figures 1A–C,
2 (though the latter can also illustrate oscillatory motion as well,
under certain circumstances). These are facts a researcher should
be aware of, certainly in terms of mathematically modeling
both types of observed results—for example, when an individual
intends to apply Fourier analysis to transform a discrete curve (or
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FIGURE 2 | Rarefaction-wave solution illustrating the discontinuity between

incoming (horizontal) wave velocity of u (t, x) = vI = 1461.794m/s and

outgoing velocity of u (t, x) = vF = 3,415m/s—where vI and vF are each

taken to be constant for −∞ ≤ x ≤ 0 and 0 ≤ x ≤ ∞, in this case,

respectively. For the case of a spatially fixed-size skull there are, again, three

separate intervals, whereby one writes, −∞ ≤ x ≤ 0, 0 ≤ x ≤ xR and

xR ≤ x ≤ ∞, each representing vI = 1461.794m/s, vF = 3,415m/s and then

vI = 1461.794m/s again, respectively. Note, in this graph, the vertical-axis

represents general (non–linear) velocity, u (t, x), and the horizontal–axis

generally represents distance, x meters.

discrete data) into its representative continuous form. In these
terms, oscillatory—and therefore periodic—solutions have been
sought for the pressure-models, in several cases in this paper,
in order to describe and explain the varying pressures observed
experimentally. Fourier analysis should also bear fruit in this
respect.

It is worth noting, at this point, that the brain mass-diffusivity
coefficient, γ , of the one-dimensional Laplacian, uxx, as is well
known in neurological literature, is often vanishingly small,
having the dimensions of square meters per second. This results
in the product of these two factors, known as the smoothing term,
γuxx, displaying the dimensions of acceleration, or meters per
second squared (as might be expected) —a potentially important
factor both significant and vital later in this paper’s analysis. This
assumes that we first consider pressure as the ratio of force to
area, as will be explained and illustrated. Figures 1A,C illustrate
shock-wave solutions for at least two values of γ , and (Figure 1B)
describes a shock with a much smaller diffusivity coefficient as
opposed to that of Figure 1C.

A series of further suggestions, including re–direction of the
wave, would also use existing knowledge of wave mechanics,
such as: absorption, reflection, refraction, diffraction, polarization,
dispersion and the final technique of interference—the latter
particularly utilizing the application of superposition to cancel
out the waves (the converse of which enhances them in size
and amplitude). The adoption of such principles within a more
practical context, also taking into consideration the wave’s phase
(including possible application of the above smoothing term),
would inevitably be highly beneficial in many ways.

THE MATHEMATICAL MODEL AND ITS
ANALYSIS

We first define the velocity of the shock-wave as u (t, x), which
propagates over the spatial-interval (diameter of the brain), 0 ≤

x ≤ 0.176m [1], and over an interval of time defined as the
period, 0 ≤ t ≤ T s, for some value of t.

We can apply the chain-rule to u (t, x), in order to arrive at
the following quasi–linear Burgers’ equation although, since it is
a well-known PDE, it is stated here for brevity, which is:

∂u

∂t
+ u

∂u

∂x
= γ

∂2u

∂x2
(15)

or otherwise depicted as:

ut + uux = γuxx (16)

When γ is vanishingly small, either of these two equations reduce
to the first-order form, as follows:

ut + uux = 0 (17)

Equation (17) is very similar to the following Equation (18), in
which the weakly non-linear term, u, transforms into its linear
version, c (a constant velocity), such that we now have:

ut + cux = 0 (18)

Equation (18) is known as the Transport equation, or linear
Burgers’ equation, andmost forms of the above PDEs will be used
in the analysis below, when and where necessary. In addition, one
should also note that it is possible for u to be a function of x only,
such that u = c(x), in some situations. This should be taken into
consideration when applying the respective models.

BURGERS’ EQUATION DERIVATION IN
TERMS OF VELOCITY AND PRESSURE—A
SIMPLIFIED RESULT OF THE
NAVIER–STOKES EQUATION

Since pressure is equal to force per unit area, and assuming
incompressibility of brain tissue, we canmake the assumption that
pressure, in the case of a shock-wave, can be written as:

P1 =
F

A
=

m

A
U̇ =

m

A
(ut + uux) (19)

where the sum of ut and uux is simply the overall acceleration,
U̇, expressed as such, not only due to requiring correct units and
dimensions, but because it is necessary to write the equation in
this form for a shock-wave propagating with respect to both the
t − x axes. The analogy is that of both radial- and transverse-
velocity (and acceleration) within the discipline of Newtonian
Celestial Mechanics.

Given that the left-hand-side of Equation (19) can also be
expressed in terms of the smoothing-term, γuxx, otherwise
known as the Laplacian—having exactly the same dimensions as
the expression on the right-hand-side, ut+uux–then we have the
second-order version, given by:

P2 =
mγ

A
uxx (20)

Note that uxx is the second partial derivative of the velocity, u,
the latter being the partial derivative of x, which means that uxx–
representing the third partial derivative of x—does not represent
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acceleration, unlike the additive terms on the right-hand-side of
Equation (19).

In many neurological contexts, when the pressures, P1 and
P2, are required to be the same, Equations (19) and (20) may
be equated to yield the original Burgers’ Equation (16), in which
the common factor m/A then simply cancels completely—thus
leaving the mass-diffusivity coefficient, γ , on the right-hand-side
of the PDE, including the remaining partial derivatives on both
sides. Therefore, as expected, we have the Burgers’ equation once
again:

ut + uux = γuxx

This identical result to Equation (16) further suggests that
Burgers’ equation is the most appropriate model, at this stage,
to employ—to model neurological shock- and pressure-waves,
as explained in the next paragraph. It is also noteworthy here
that both Equations (19) and (20) in their individual forms will
be vital, later on, for modeling the two types of pressure-wave
according to each of these respective equations. This is especially
so for mathematically applying the smoothing term in Equation
(20), to vastly reduce the otherwise enormous pressures.

In terms of the significance of Burgers’ equation, the
author concludes that it can be applied for purposes of
mathematical calculation—and for modeling of (especially) the
non-linear variation in neurological pressure. Merely postulating
its potential relevance and use to this effect is further supported
by its being a simplification of the incompressible Navier-Stokes’
equation:

∂u

∂t
+ (u∇) u− γ∇2u = ∇P + g (21)

In the above equation, Equation (21), ∂u
∂t represents the variation

of u with respect to increasing time; (u∇) u represents the time-
independent acceleration of flow (of the shock, with velocity
u) with respect to space (or more simply, the convection); the
Laplacian term, γ∇2u, is the diffusion (or acceleration of that
diffusion with respect to spatial coordinates), perhaps more
accurately described as the diffusion momentum of the fluid
viscosity, determined by the diffusion coefficient, γ . The first term
on the right-hand-side of the equals sign, ∇P, often known as the
internal source, is simply a pressure gradient, otherwise described
as the time-independent rate of change of pressure with respect
to the spatial coordinate, x, whilst the final term, g, is simply an
external source.

Although proof and use of the Burgers’ equation—Equation
(16) —to model neurological pressure–waves was independently
verified above, the terms ∇P and g were not initially considered.
It is perhaps fortunate that their inclusion at this point was
formerly neglected, partly for ease and simplicity of calculation.
Furthermore, the external source, g, can be neglected, unless one
finds it advantageous to model factors occurring outside the skull
and brain. The resultant equation, therefore, which is as follows:

∇P =
∂u

∂t
+ (u∇) u− γ∇2u (22)

is either a positive or a negative resultant pressure gradient,∇P. It
is also the case that, according to both the Divergence Theorem

and Green’s Theorem for conservative (vector) fields—both of
which are related—this pressure gradient, ∇P, is sometimes
equal to zero. The mathematical modeling of this result has
already been achieved inMathematica, and will be discussed later.
However, one should point out that the explanation of Equation
(22) has important consequences, not only tomodel pressure, but
also with regard to energy considerations and other factors.

Now that we have established at least one correct equation to
use in the following model for both shock and pressure-waves,
we need to determine appropriate boundary conditions (BCs),
before these equations are solved and appropriately plotted using
Mathematica software.

BOUNDARY CONDITIONS FOR A TYPICAL
CASE

A General Shock-Wave (or
Compression-Wave) Solution
For the current mathematical-model in a real-life simulation of a
shockwave entering the skull-bone from the atmosphere, before
propagating through the brain, exiting at the opposite side, then
traveling onwards and outwards indefinitely, we take data from
the literature [1].

It is necessary to note that initial pressure-wave speed, cp,
of 3415m/s through the skull-bone, as modeled by Mediavilla
et al. [1], is assumed to be constant. However, on reaching the
initial skull–brain interface, there is an almost instantaneous and
discontinuous drop in this velocity to 1461.794m/s (the value
having been re–calculated, from their own experimental data,
for greater accuracy). This is one of the factors determining the
non-linearity of the system, the shock being due to the Rankine-
Hugoniot jump-condition relating to the conservation laws, viz.,
the conservation of mass, energy, and momentum.

The Mathematica plots, employed throughout this paper,
indicate that this latter initial velocity of 1461.794m/s then
increases non–linearly as the wave propagates through the
brain tissue, as Mediavilla et al. [1] confirmed on measuring
the velocity increasing to 1463.415m/s at a distance of 0.03m
to the next sensor. At the final distance of 0.176m, at the
opposite brain-skull interface—using the conservation laws—
the velocity instantaneously jumps back up to its original value
of 3,415m/s once more, energy transfer issues being ignored
here. It travels through the skull-bone once again, and exits
the head as described above—though the Mathematica plots do
not specifically show this physical feature, largely for analytical
reasons.

The Mathematica simulation also indicates that there is still
some variability in this velocity, in terms of it increasing non-
uniformly to a higher value than that of 1461.794 m/s, before
then rapidly increasing to the final higher velocity of 3,415m/s
(again due to the conservation laws [10]) in the final stage of
transit, as Mediavilla et al. [1] confirmed. Most mathematical
shock-wave simulations do consider these two initial and final
(Rankine-Hugoniot) velocities of the wave to be constant over
the relevant intervals, especially for simplicity of calculation, as
illustrated in Figure 1A.
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Rarefaction-Waves (or Expansion-Waves)
It is also necessary to point out that, if the velocity magnitudes (or
speeds) had been reversed in the above general shock-solution,
such that vI = 1461.794m/s and vF = 3, 415m/s, over the
same intervals, then we would have a special case of a solution;
this would be known as a rarefaction (or expansion) wave, as
illustrated in Figure 2.

The nature of a rarefaction-wave is that, over a given spatial
interval, in this case, 0 ≤ x ≤ 0.176m, the gradient being

u (t, x) = dx
dt
, each characteristic curve describing a shock-wave’s

propagation (as plotted with respect to the t − x axes) dissipates
with increasing time. A more detailed explanation of this motion
can be seen by solving Equations (17) and (18) via the method of
characteristics. One of the simplest examples of such a solution
is the linear case, resulting in straight lines “fanning-out” with
respect to the t − x axes as time, t, increases indefinitely vs.
the given, fixed diameter, x, of the brain. A general solution to
Equations (17) or (18) can be shown to yield an expression in the
form:

u (t, x) =
α1x+ β1

α2t + β2
(23)

where α1, β1, α2, and β2 are constant coefficients. One can see
that for each particular-solution, as t increases indefinitely over

the region 0 ≤ x ≤ xR, where t > −
β
α
, the limiting value of

u(t, x) is:

lim
t→∞

{u (t, x)} = lim
t→∞

{u (t, L)} = lim
t→∞

{

xR

αt + β

}

= lim
t→∞

{

L

αt + β

}

= 0 (24)

From the above analysis, we can see that the velocity, u (t, x),
becomes negligible with increasing time, t, for each characteristic
curve, and therefore approaches the value of zero m/s when x
is equal to the fixed and relatively small, finite value of L. In
many cases, u(t, x) can even change magnitude and direction,
depending upon evolutionary conditions within the situation,
thus assuming a negative value. One could ascertain this from the
slope of such characteristics, certainly within a theoretical sense,
but also physically, particularly when the shock-wave induces the
resulting, reflected pressure-wave, for example. This is especially
true when considering the limiting value of u (t, x) as t →

−∞, although this is perhaps impractical and unrealistic, except
analytically. In addition, if the constant, β , is calculated to be
negative, such that αt − β < 0, or αt < β , then the velocity will

again be negative. One can also verify that, when t = −
β
α
, such

that α t + β = 0 (where u (t, x) is undefined), one witnesses
an inherent discontinuity, as in the case of the initial shock-
wave solution described in the section General Shock-Wave (or
Compression-Wave) Solution.

One may infer that, given a range of velocities describing
the same propagating shock—especially when considering the
resulting reflected pressure-wave, where negative velocities are
indeed apparent—then a change in velocity from positive to
negative value, or vice versa [through a stationary state, u (t, x) =
0], for example, has an equally damaging effect due to this

motion. One harmful effect of this continually reflected pressure-
wave, and therefore its resulting oscillatory behavior, is that it
actually causes a reduction in the existing normal neurological
pressure. The consequences of such reductions in this pressure
are that the lower-than-average values are scientifically measured
in terms of negative quantities. This effect in many cases results
in an observable presence of cavitation [14], a process whereby
liquids boil at lower temperatures, given their presence in lower-
than-average pressure environments. This effect is a process
allowing the molecules of a fluid to escape, usually from the
surface, when the surrounding atmospheric pressure is reduced
to below normal levels. This could also result in the equally
harmful effects of mTBI—in tandem with equally damaging
effects of very high velocities and pressures [14].

The fact that the shock-wave velocity is so variable,
throughout its spatio-temporal journey, to the extent that
resulting pressure-waves even switch signs (due to reflection
and continually rebounding inside the skull, from wall-to-wall)
and direction, is precisely why the whole science of shock-wave
dynamics is said to be non-linear, as opposed to the linearity
of constant velocity. This is why shock-waves are described and
explained by the above non-linear PDEs, and Burgers’ equation
in particular, especially within a neurological context, as in any
other.

As mentioned above, the variation in both positive and
negative velocities and pressures, due to reflection of the incident
shock-wave within the skull–brain configuration, leads to the
conclusion that resulting propagation of such a pressure-wave is
not only oscillatory but also potentially periodic. The presence
of these factors leads one to assume that a choice of periodic
boundary-conditions is often more suitable to model this type
of behavior. Accordingly, some of these functions will now be
adopted below.

In addition to the above, for the purposes of this particular
model, and in the case of either non-linear shock- or rarefaction-
waves (and precisely because of this non-linearity), one needs to
find a sufficient function that satisfies, or yields, the two values of
the function, |u (t, x)|L = vI and |u (t, x)|R = vF , at both initial
and final boundaries (given either of the values for t or x, or even
a combination of both).

Also, only a function that varies according to this non-
linearity will suffice for any model, so it is very necessary
to ensure that an appropriate function satisfying the given
boundary conditions is deduced, as we then require this
suitably chosen function to successfully derive both general
and particular-solutions. This should ultimately predict
the resulting motion, as accurately as possible, within a
reasonable degree of error. However, achieving mathematical
perfection, in terms of precisely modeling observations of
experimentation in this regard, may leave something to be
desired, given the multitude of complex factors involved in
nature itself.

Partially due to the damping of the resulting oscillatory
behavior of the waves—as experimentally observed—a number
of different models containing boundary conditions of both
exponential and sinusoidal natures may be adopted in the initial
stages. It is also possible to choose other more complicated
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functions where necessary, including hyperbolic functions, as
may occasionally be required.

Thus, combinations of the elementary exponential functions
of form eax and ebt and the trigonometric functions of form
sin (ωx) and cos (ωt), such as eax sin (ωx) and ebt cos (ωt)–
even perhaps involving both independent variables, t and x,
simultaneously—will often satisfy the modeling of damped IED
shock-wave dynamics, certainly for the purposes of this paper.

Determining General Boundary Conditions
for Each Case
In the above section, the boundary conditions that were
suggested as appropriate functions to use in this particular set of
models, as dictated by existing literature, can be deduced, then
applied to the general solution of Burgers’ equation: Equation
(17).

To initially model the resulting neurological shock-waves with
Mathematica, the PDEs that best describe the mechanics are—as
highlighted above—Equations (16) and (17):

ut + uux = γuxx

and:

ut + uux = 0

for which the average brain mass-diffusivity coefficient, γ , in
Equation (2), is so vanishingly small, roughly equal to 1 ×

10−9m2/s, that it has been neglected in Equation (3), for
modeling the human brain, in the first instance.

Each of the above Equations (16) and (17) are relatively
elementary to solve (in the absence of initial conditions), but
Equation (17) is perhaps easier to adopt for modeling both
the initial shock-wave and resulting pressure-wave, given that
it represents the actual discontinuous shock-wave in contrast
to the continuous solution described by Equation (16). Indeed,
Equation (17) is in the form:

a (t, x) ut + b (t, x) ux = c (t, x) (25)

whereby, in this case:

a (t, x) = 1, b (t, x) = u (t, x) = u, and c (t, x) = 0

To solve (17), and then seek to run the resulting shock-wave
simulation in Mathematica, we reduce it (as is normal for this
type of parabolic PDE), to the set of three ordinary differential
equations (ODEs) representing the characteristic lines of slope for
the system, written as:

dt

a (t, x)
=

dx

b (t, x)
=

du

c (t, x)
(26)

Equations (25) and (26), which describe the solution to every
single point on the surface of the shock–wave, are fairly
elementary to prove but, for the purposes of this model, we find
the general solution in the first instance.

Thus, we write Equation (26) as follows, performing the usual
methods of integration. Henceforth, we have:

{

dx
b(t,x)

= du
c(t,x)

dt
a(t,x) =

du
c(t,x)

(27)

Due to a, b and c being constants, in this case, then each of
these twoODEs in equation (27) are separable, therefore yielding:

{

b
∫

du = c
∫

dx
a
∫

du = c
∫

dt
(28)

On solving each of these equations in Equation (28), where the
first yields a function of x, and the second a function of t, the
solutions are written as:

{

u = α1x+ A
(

k
)

u = α2t + A
(

k
) (29)

The next step is to determine the third solution to Equation (26),
obtained by writing:

dt

a
=

dx

b

which yields:

x = A
(

k
)

t + k (30)

such that the constant of integration, k, can now be expressed as:

k = x− A
(

k
)

t (31)

before substitution into A
(

k
)

to obtain a solution of u (t, x) =

u
(

x− A
(

k
)

t
)

.

Preamble to the Cauchy Problem
In the section Determining General Boundary Conditions in
Each Case, the latter characteristic solution is at least one of two
well-knownmethods for solving both Burgers’ and the Transport
equations—apart from several other methods, at least—allowing
for the deduction of a minimum of one solution as outlined in
Equation (29), especially when the situation being considered
is an initial-boundary-value problem. There are infinitely many
solutions for the Transport equation, depending on the choice of
the velocity-gradient, c, and the value of the intercept, k, along
with the intersection of each characteristic with another for a
different velocity, c, resulting in a shock at the relevant point,

(t, x)–so no individual curve in this situation is unique.
Each of the methods referred to above utilizes the general

method of characteristics, and the second—in addition—makes
close reference to the Cauchy Problem, therefore resulting in
a pair of equations for both t and x–along with expressions
representing other combinations of relevant parameters, such as
k. This can usually be solved simultaneously in order to facilitate a
more appropriate expression for u (t, x) as accurately as possible,
where necessary. This is particularly true when dealing with these
types of parabolic PDEs, especially when the situation requires an
initial-boundary value problem approach.
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In such models as these, which include most of the PDE
problems throughout this paper, the characteristic method of
solution has largely been adopted, particularly to model shock-
wave solutions wherever necessary. As will be discussed in
this latter section, a slightly more convoluted—but necessary—
method has been implemented, in which an extra dummy-
variable, s, or k (as stated above), has been introduced to obtain
the highest degree of precision available that the model requires.

In order to solve this type of problem effectively, one must
apply the Cauchy Problem, as stated in definition 1 below. If
this problem is applicable, as it is for the purposes of this
research, then it will greatly assist the determination of at least
one solution.

In the non-linear problem, expounded in the section
Boundary Conditions Within a Typical Case, it turns out that the
combined solution of the two equations in Equation (29) yields
an implicit function of k. This means that the resulting function
cannot easily be solved explicitly for k, without employing further
analytic methods. This indicates that the Cauchy Problem is ideal
in finding a solution, since both of the composite functions that
have been adopted as a model can be expanded as a composite
series, the Cauchy Problem specifically requiring such a feature.

For example, in such a situation, one expands the initial
boundary condition, u (x) = u

(

k
)

, ideally as a spatially-based
series in the form of u

(

k
)

= a0 + a1x + a2x
2 + . . . + anx

n and
then the limit of this as k approaches zero is determined. This
process enables one to separate out the necessary variables, to
obtain an expression for k in the usual manner. Adopting this
method should result in a satisfactory solution for u (t, x), once
the eventual expression for k has been re-substituted into the
original function, u

(

k
)

. As the graphical-curves imply within this
section, the models that follow this procedure appear to indicate
the experimental observations.

The Use of the Cauchy Problem to
Determine More Appropriate Spatial
Boundary Conditions for the Shock-Wave
Solution
Definition 1: The Cauchy Problem
For a partial differential equation that defines a surface, S ∈ Rn,
for n = {1, 2, . . .}, then the Cauchy Problem specifies that if
both an initial analytic function, φ (0, x) = φ (x), and its normal

derivative, ∂φ
∂x = φx (x), exist within the neighborhood of point

(t0, x0), for both the initial conditions, t = t0 and x = x0, and
where the boundary conditions can be expanded and defined by
the series:

φ (x) = a0 + a1x+ a2x
2 + . . .+ amx

m

where ai ∈ R, for i = {0, 1, 2, . . . ,m}, making it possible to
differentiate this function:

∂φ

∂x
= φx (x)

then this results in both a unique and reasonably applicable
solution, a procedure known as the Cauchy problem.

An Appropriate Boundary Condition
Leading to a Characteristic Solution in the
Case of a Shock-Wave
Following on from the section Use of the Cauchy Problem to
Determine More Appropriate Spatial Boundary Conditions for
Shock-wave Solution, since c (t, x) = 0 in the above equations—
Equation (28) in this particular case—then each is effectively
identical, either simultaneously yielding the integral:

∫

du = 0 (32)

to which the solution, again, for both of them, is:

u = A
(

k
)

(33)

Here, u is a “quasi–constant,” or a currently unknown function
of k, the latter being, as yet, the undetermined characteristic
equation, written in terms of independent variables, t and x.

The third ODE from (26), above, is:

dt

a (t, x)
=

dx

b (t, x)
(34)

or, since a (t, x) = 1 and b (t, x) = u = A
(

k
)

, we have:

∫

dx = A
(

k
)

∫

dt (35)

or

x = A
(

k
)

t + k (36)

Normally, if one knew the identity of function, A
(

k
)

, which
satisfies the boundary conditions at this stage, one would
substitute it into Equation (33) and thus determine the time at
which the shock will occur by partially differentiating each side of
it, with respect to k. A basic linear boundary condition of the form
A

(

k
)

= αk + β , in which k is a characteristic curve, a function
of t and x itself, will return general solutions in the form of both
Equations (29) and (33), respectively, dependent upon the given
parameters.

We do not need to differentiate Equation (33) immediately, at
this stage, but need a boundary condition representing a shock-
wave solution, certainly at either end of the range 0 ≤ x ≤

0.176m, and one not only plotting a more accurate graph of
the wave-like nature of this phenomenon, but one resulting in
a reasonable particular-solution for shock–wave velocity, u (t, x),
over the range of x itself. It is again not only practical, but
mathematically required, as outlined in definition 1 in the section
Use of the Cauchy Problem to Determine More Appropriate
Spatial Boundary Conditions for Shock-wave Solution, to choose
a boundary condition only including the variable x–chosen
because the boundary condition must also be analytic at t = 0,
and ideally not undefined. In other words, one must be able to
write the boundary condition as a function of x, and x only,
such that a solution exists within the neighborhood of the point

(t0, x0).
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Once we obtain the velocity, u (t, x), after first applying the
method of characteristics, we shall be able to compare this
result with the solution for u (t, x), obtained via perhaps the
more well-known method of substituting u (t, x) = v (x− ct)
for a wave propagating with velocity, c, from the left–hand–
limit, measured at x = 0m, toward the right–hand–limit,
measured at x = 0.176m, over the diameter of the brain. This
second method, utilizing the smoothing term as discussed in the
section Burgers Equation Derivation in Terms of Velocity and
Pressure—Simplified Result of Navier-Stokes Equation’, may be
outlined within any future papers when discussing continuity
of the solution and mitigation against the shock-wave’s jump–
discontinuity, in which one obtains the solution:

u (t, x) =
α + βe

−
(β−α)(x−ct−δ)

2γ

1+ e
−
(β−α)(x−ct−δ)

2γ

(37)

or, whereby the often vanishingly small term, δ, can be neglected,
we have:

u (t, x) =
α + βe

−
(β−α)(x−ct)

2γ

1+ e
−
(β−α)(x−ct)

2γ

(38)

where α and β are constants of integration.
The three-dimensional shock-wave plots for Equation (38)

are illustrated in Figures 1B,C, in the section Rarefaction-Waves
(or Expansion-Waves), above. The first of these Figures 1B,
represents a shock-discontinuity for a very acute and vanishingly
small diffusivity coefficient, γ ≪ 1, in other words, when γ ∼=

0, and the second (Figure 1C), represents a more moderate
discontinuity when 0 ≪ γ < 1. The latter of these two graphs
also indicates the type of smoother solution that is normally to be
expected when the smoothing term itself, γuxx, is applied to the
right-hand-side of Equation (17), being part of its purpose. This
mathematical feature of Burgers’ equation is partially responsible
for the earlier suggestion that one could potentially apply it upon
the battle-field, assuming suitable technology is developed to be
utilized effectively.

Addendum 1
It is important to note here that we define u(t, x) in the form of:

u (t, x) = v
(x

c
− t

)

since we are particularly interested in determining the nature of
a shock-wave, u (t, x), propagating with respect to the temporal
axis, t, where x

c is measured in units of time (usually in seconds),
rather than the spatial axis defined by:

u (t, x) = v (x− ct)

which is measured in meters.
Hence the difference in these Galilean relativistic

transformations of the respective coordinates.

Decreasing Sinusoidal Function, Obeying
Boundary Conditions of the Propagating
Shock, as Well as the Resulting
Pressure-Wave
From the collection of graphs of pressure vs. time, in Figure
9 of the paper written by Moore et al. [2], it is evident that a
given sinusoidal function, or at least an appropriate decreasing
sinusoidal function representing a negatively damped system,
may be applicable to model the propagating shock–wave. This
theoretical assumption was outlined in the section Preliminary
Mathematical Exposition: Effect of the Directional Nature
of Shock-waves on Reflection and Transmission Coefficients,
Resulting Pressure-wave and Energies, Related to Conservation
Laws and the Rankine-Hugoniot Jump Condition above, and
after referral to the literature, for example [15].

In many of the plotted graphs that were produced within the
above-cited literature, it appears they bear a striking similarity
to oscillatory motion and, therefore, periodic, wave-like motion
of the form of exponentially-decaying sinusoids, such as basic
trigonometric functions, sin (ωx) and cos (ωx), each combined
with the exponential functions e−ωxand e−x.

Appropriate Use of Various Forms of
Decreasing Sinusoidal Boundary
Conditions
In order to model many of the observational experiments of
neurological shock-waves, such as those conducted by Mediavilla
et al. [1], there is a good case for applying exponentially decaying
sinusoidal pressure-waves in the form of e−ωx sin (ωx) and
e−x sin (ωx), each obeying the Cauchy Problem in the section
Use of the Cauchy Problem to Determine More Appropriate
Spatial Boundary Conditions for Shock-wave Solution. Either of
these functions can be used to model the observed physics, but
the literature itself initially indicated that it was not clear why
both negative and positive pressure-gradients, including over- and
under- pressures, seemed to occur on separate occasions and
under differing experimental conditions.

The above fact can be explained by the phase angle at which
the shock-wave enters the brain, a factor determined by the
underlying physics—such as the initial conditions. “In such
cases whereby an angular phase–difference is apparent, so one
also obtains either a negative or positive pressure-gradient. For
example, in different physical situations, it is necessary to deduce
that one or the other of the above functions will be more
appropriate, or possibly both.”

In the case of a complementary phase difference, the sinusoidal
function sin

(

π
2 − ωx

)

is equated to cos (ωx), in the simplest case,
and vice versa for cos

(

π
2 − ωx

)

. This is a little more complex
for non-complementary phase differences, such as cos (φ − ωx),
in which case other trigonometrical identities, such as the
double angle formulae, are required when φ 6= π�2. The
current Mathematica models used for this analysis have either
assumed complementary identities for initial simplicity or, by
using the initial conditions, a different angular value, ω, has been
determined for both sin (ωx) and cos (ωx), respectively, with
further modifications.
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Thus, depending upon the physical situation in hand, either
one or the other of the above decaying functions will more
appropriately model the observed result in many cases, but one’s
preference about which is more applicable, and as to which
of them also models the situation more accurately, is largely
determined by the underlying physics, the initial conditions, and
one’s own educated guesswork!

Elementary Model for Pressure-Wave With
Simple Undamped Sinusoidal Function,
Obeying Cosine Boundary Conditions
In the first instance of graphing an appropriate shock–wave
solution, where vI > vF , along with its particular-solution, as
in Figure 1 above, an initial boundary condition can be written
as:

u (x) = vIcos (ωx) (39)

in which vI represents the initial incident shock–wave velocity,
and x is the fixed–variable spatial–coordinate (in one–dimension,
for simplicity), indicating the diameter of the brain. The constant
of proportionality, ω radians, is the frequency of the propagating
wave over the brain’s diameter. It is possible to vary ω, according
to the concept of the fundamental frequency, to determine a
sinusoidal function more accurately describing any shock–wave’s
unique physical characteristics—dependent upon all the given
parameters involved. The final, outgoing velocity of the shock-
wave is taken to be u (t, L) = vF , and the above expression in
Equation (34) must satisfy each of the two boundary conditions
dictating that u (t, 0) = u (0) = u0 = vI , and u (t, L) = u (L) =
uL = vF , respectively—otherwise Equation (36) would fail to
model the situation appropriately or accurately.

Borrowing the observed numerical data from Mediavilla et al.
[1], during one part of their experiment, in which vI = 3, 415m/s
and vF = 1461.794m/s, one now inserts each of these values into
Equation (39), thus yielding:

3415 cos (ωx) = 1461.794 (40)

Since x = 0.176 = 176
1,000 m, and ω is a currently unknown

parameter, we are able to conclude, via elementary calculation,
that ω ∼= 6.412 radians. Therefore, one possible boundary
condition is:

u (x) = 3415 cos (6.412x) (41)

Since the fundamental frequency, f = nω, also allows
the function to obey the boundary conditions, where n =

0, 1, 2, 3 . . ., we may write Equation (41) in the modified form:

u (x) = 3415 cos (nωx) (42)

or,

u (x) = 3415 cos (6.412nx) (43)

for= 0, 1, 2, 3 . . ..
In order to determine and plot the particular-solution for the

given shock–wave over the given range of 0 ≤ x ≤ 0.176, one

is required to substitute some expression satisfying the initial
boundary conditions into Equation (33).

We note that in Equation (33), the quasi-constant, A
(

k
)

, is
present, and we now need to express this as an appropriate
function in terms of both x and t, by first deducing the currently
unknown characteristic equation, k. Since we are aware, from
Equation (33), that:

u = A
(

k
)

then, using Equations (39)–(43) for a first solution, we may write:

A
(

k
)

= 3415 cos
(

ωk
)

(44)

On substituting the more general form of Equation (44), for
simplicity and generality, into Equation (36), we then obtain:

x = vI cos
(

ωk
)

t + k (45)

The procedure, now, is to make k the subject of Equation (45),
but this is somewhat problematic, since k is implicit. However,
if the appropriate analytical procedures are applied to the cosine
term, which can be expressed as an infinite sequence of terms,
one deduces that, for the required small values of ωk, we have:

lim
k→0

{

cos
(

ωk
)}

= 1

such that:

x = at + k (46)

in which powers greater than or equal to terms in k2 have been
neglected.

Equation (46) can be rearranged to yield:

k = x− at (47)

On substituting Equation (47) into Equation (44), we therefore
obtain one possible approximate particular-solution, written as:

u (t, x) = vI cosω (x− at) (48)

whereby, in this case, vI = 3415m/s and ω ∼= 6.412. Since
Equation (48) is now expressed in terms of both spatio-temporal
coordinates, x and t, one may be able to observe more easily that
it has been necessary to replace A

(

k
)

with u (t, x) in Equation
(36), above, to obtain Equation (48). A Mathematica plot of the
shock–wave solution, using Equation (48), is shown below in
Figures 3A,B. Also, plots of the same solution, using boundary
conditions as defined by Equation (39), are shown more fittingly
in Figures 4, 5.

Note that in in Figures 4, 5, the shock–wave solution bears
some resemblance to the more idealized graphical plot of
Figure 1, except that, due to the nature of the initial boundary
condition used in this section, along with the resulting particular-
solution, the sharpness of the discontinuity that would otherwise
be observed has been smoothed out, due to the cosine term.

Unlike the solution illustrated in Figures 1A–C, where there
is an apparently instantaneous drop in velocity from u (t, x) = vI
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FIGURE 3 | (A) Sinusoidal shock-wave solution for Equation (34), for the

appropriate frequency ω ∼= 6.412, satisfying the required boundary conditions

of the shock-wave of velocity, u (t, x), over the fixed spatial-interval

0 ≤ x ≤ 0.176m up to a time period of 1 s. (B) Sinusoidal solution of Equation

(42), with ω ∼= 6.412, of a shock-wave solution curve, with velocity u (t, x), over

the fixed spatial interval 0 ≤ x ≤ 0.176m up to a time period of 1 s. Note that

the transitory shock-wave’s minimum velocity within this model is 1461.794

m/s, and does not actually reduce to zero, nor becomes negative in value, as

this oscillatory graphical-plot appears to suggest for a larger spatial-range.

This solution indicates the sinusoidal nature of the type of function chosen,

resulting in two shock-discontinuities at x = 0 and x = 0.176m over the given

spatial-range, described perhaps more clearly in (A) (Figures 4, 5).

to the lower value of u (t, x) = vF at around x = 0 (the latter
of which then continues on its journey, indefinitely, at this latter
value), the apparent velocity reversal in Figure 5, can still be
suitably explained, by way of applying the relevant mechanics
to the nature of the oscillating variation in pressure, again with
respect to both spatio–temporal variables, x and t.

As mentioned earlier, and based upon cited literature, the
reflection of the pressure within the skull-brain cavity—as
described by Figure 5—results in positive and negative values of
u (t, x), largely due to the pressure’s oscillatory behavior, and as
indicated by the sinusoidal functions adopted as explanations for
these occurrences.

The alternative Mathematica plot of velocity, u (t, x), vs.
time, t–as calculated by Mathematica, and with fixed spatial

FIGURE 4 | A similar sinusoidal solution to that illustrated in Figure 3A, again

with frequency ω ∼= 6.412, of the shock-wave of velocity, u (t, x), this time

shown to propagate with respect to the indexed time-step values up to 1 s at

the 100th position (or the 100th point on the graph). A sharper graph may be

obtained by reducing not only the time-period, but also the time-step and the

count for this scenario.

FIGURE 5 | Another exemplary sinusoidal solution, this time with increased

frequency increased to ω ∼= 32.06, of the shock-wave of velocity, u (t, x),

again shown propagating with respect to the indexed time-step values up to

1 s at the 100th position (or the 100th point on the graph). A sharper graph

may be obtained by reducing not only the time-period, but also the time-step

and the count for this scenario.

coordinate, x, also suppressed—is shown in the discrete-curves
plot, Figure 5, below.

On analysis of Figure 5, one notices that it is not quite as
characteristic of the typical shock-wave propagating through
the brain, as previously illustrated in Figures 1A–C,3A,4. This
is largely due to the sinusoidal nature of the plotted curves,
involving an artificially induced frequency of ω ∼= 32.06, passing
through zero velocity and then becoming negative—which seems
to indicate u (t, x) reversing direction in such a case.
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CONCLUSION

Within this paper, essentially modeling the physics of
neurological shock-waves in the human brain due to IEDs,
the groundwork has been laid out in preparation for more
involved development of the material in any future work.

In particular, it has been established, via initial analysis of
both conservation laws and reflection coefficients in the section
Preliminary Mathematical Exposition: Effect of the Directional
Nature of Shock-waves on Reflection and Transmission
Coefficients, Resulting Pressure-wave and Energies, Related to
Conservation Laws and the Rankine-Hugoniot Jump Condition,
that the incident shock-wave results in damped, oscillatory,
motion of the resulting shock- and pressure- wave profiles.
Each of these single factors, taken together, therefore support
the application of the Burgers’ equation model, together with
exponentially-decaying sinusoidal boundary conditions, in
order to describe the initial shock-wave—otherwise known as a
compression-wave—and the resulting physics that takes place
within the human head, both during and after immediate impact.

Due to the asymmetry of the human head, and consistent
with historic and existing shock-tube experiments, only a one-
dimensional model has been adopted here to simplify calculation.

As stated earlier, from analysis of the reflection coefficients, it
is also realized that the ensuing physics within the system yields
rebounding waves continually illustrating velocities oscillating
back and forth—as illustrated in the above plots. The subsequent

negatively-valued velocity reversals in the diagrams lend to
the additional notion of the existence of rarefaction—meaning
that the gases (or at least the media) within the brain then
(similarly) violently expand—shortly after the initial shock-wave
has occurred. This factor is believed to yield a number of
neurological conditions, including damage to the brain’s DNA,
particularly resulting from cavitation [7], due to the ensuing
lower than normal neurological pressure, when the cerebral fluids
begin to boil more freely due to neurological pressure dropping
below its normal base-level.

That significant velocity reversals and cavitation [7], are both
witnessed indicate the occurrence of a significant difference in
pressure between the point of impact and at some point in the
future. It is reasonable to assume that one is able to apply the
same Burgers’ equation to model the resulting pressure-profile,
post-shock. As described above, this is achieved by applying
exponential-decaying sinusoidal boundary coefficients, resulting
in very interesting graphical plots, each bearing a significant
likeness to the Friedlander curve [16–19], together with under-
pressures describing the presence of cavitation.

It is intended that this part of the analysis will be dealt with
in future work.
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