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The subject of deep learning has recently attracted users of machine learning from various

disciplines, including: medical diagnosis and bioinformatics, financial market analysis and

online advertisement, speech and handwriting recognition, computer vision and natural

language processing, time series forecasting, and search engines. However, theoretical

development of deep learning is still at its infancy. The objective of this paper is to

introduce a deep neural network (also called deep-net) approach to localized manifold

learning, with each hidden layer endowed with a specific learning task. For the purpose

of illustrations, we only focus on deep-nets with three hidden layers, with the first layer

for dimensionality reduction, the second layer for bias reduction, and the third layer for

variance reduction. A feedback component is also designed to deal with outliers. The

main theoretical result in this paper is the order O
(
m−2s/(2s+d)

)
of approximation of the

regression function with regularity s, in terms of the numberm of sample points, where the

(unknown) manifold dimension d replaces the dimension D of the sampling (Euclidean)

space for shallow nets.

Keywords: deep nets, learning theory, deep learning, manifold learning, feedback

1. INTRODUCTION

The continually rapid growth in data acquisition and data updating has recently posed crucial
challenges to the machine learning community on developing learning schemes to match or
outperform human learning capability. Fortunately, the introduction of deep learning (see for
example [1]) has led to the feasibility of getting around the bottleneck of classical learning strategies,
such as the support vector machine and boosting algorithms, based on classical neural networks
(see for example [2–5]), by demonstrating remarkable successes in many applications, particularly
computer vision [6] and speech recognition [7], and more recently in other areas, including:
natural language processing, medical diagnosis and bioinformatics, financial market analysis and
online advertisement, time series forecasting and search engines. Furthermore, the exciting recent
advances of deep learning schemes for such applications have motivated the current interest
in re-visiting the development of classical neural networks (to be called ”shallow nets” in later
discussions), by allowing multiple hidden layers between the input and output layers. Such neural
networks are called “deep” neural nets, or simply, deep nets. Indeed, the advantages of deep
nets over shallow nets, at least in applications, have led to various popular research directions
in the academic communities of Approximation Theory and Learning Theory. Explicit results
on the existence of functions, that are expressible by deep nets but cannot be approximated by
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shallow nets with comparable number of parameters, are
generally regarded as powerful features of the advantage of
deep nets in Approximation Theory. The first theoretical
understanding of such results dates back to our early work
[8], where by using the Heaviside activation function, it was
shown that deep nets with two hidden layers already provide
localized approximation, while shallow nets fail. Explicit results
on neural network approximation derived in Eldan and Shamir
[9], Mhaskar and Poggio [10], Poggio et al. [11], Raghu et al.
[12], Shaham et al. [13], and Telgarsky [14] further reveal various
advantages of deep nets over shallow nets. For example, the
power of depth of neural network in approximating hierarchical
functions was shown in Mhaskar and Poggio [10] and Poggio
et al. [11], and that deep nets can improve the approximation
capability of shallow nets when the data are located on amanifold
was demonstrated in Shaham et al. [13].

From approximation to learning, the tug of war between
bias and variance [15] indicates that explicit derivation of deep
nets is insufficient to show its success in machine learning, in
that besides bias, the capacity of deep nets should possess the
expressivity of embodying variance. In this direction, the capacity
of deep nets, as measured by the Betti number, number of
linear regions and neuron transitions were studied in Bianchini
and Scarselli [16], Montúfar et al. [17], and Raghu et al. [12]
respectively, in showing that deep nets allow for many more
functionalities than shallow nets. Although these results certainly
show the benefits of deep nets, yet they pose more difficulties
in analyzing the deep learning performance, since large capacity
usually implies large variance and requires more elaborate
learning algorithms. One of the main difficulties is development
of satisfactory learning rate analysis for deep net learning, that
has been well studied for shallow nets (see for example [18]). In
this paper, we present an analysis of the advantages of deep nets
in the framework of learning theory [15], taking into account the
trade-off between bias and variance.

Our starting point is to assume that the samples are located
approximately on some unknown manifold in the sample (D-
dimensional Euclidean) space. For simplicity, consider the set
of sample inputs: x1, . . . , xm ∈ X ⊆ [−1, 1]D, with a
corresponding set of outputs: y1, · · · , ym ∈ Y ⊆ [−M,M]
for some positive number M, where X is an unknown d-
dimensional connected C∞ Riemannian manifold (without
boundary). We will call Sm = {(xi, yi)}mi= 1 the sample set, and
construct a deep net with three hidden layers, with the first
for the dimensionality-reduction, the second for bias-reduction,
and the third for variance-reduction. The main tools for our
construction are the “local manifold learning” for deep nets
in Chui and Mhaskar [19], “localized approximation” for deep
nets in Chui et al. [8], and “local average” in Györfy et al.
[20]. We will also introduce a feedback procedure to eliminate
outliers during the learning process. Our constructions justify
the common consensus that deep nets are intuitively capable
of capturing data features via their architectural structures
[21]. In addition, we will prove that the constructed deep net
can well approximate the so-called regression function [15]

within the accuracy of O
(
m−2s/(2s+d)

)
in expectation, where s

denotes the order of smoothness (or regularity) of the regression
function. Noting that the best existing learning rates of the

shallow nets are O

(
m−2s/(2s+D) log2m

)
in Maiorov [18] and

O

(
m−s/(8s+4d)(logm)s/(4s+2d)

)
in Ye and Zhou [22], we observe

the power of deep nets over shallow nets, at least theoretically, in
the framework of Learning Theory.

The organization of this paper is as follows. In the next section,
we present a detailed construction of the proposed deep net.
The main results of the paper will be stated in section 3, where
tight learning rates of the constructed deep net are also deduced.
Discussions of our contributions along with comparison with
some related work and proofs of the main results will be
presented in sections 4 and 5, respectively.

2. CONSTRUCTION OF DEEP NETS

In this section, we present a construction of deep neural
networks with three hidden layers to realize certain deep learning
algorithms, by applying the mathematical tools of localized
approximation in Chui et al. [8], local manifold learning in Chui
and Mhaskar [19], and local average arguments in Györfy et al.
[20]. Throughout this paper, we will consider only two activation
functions: the Heaviside function σ0 and the square-rectifier σ2,
where the standard notation t+ = max{0, t} is used to define
σn(t) = tn+ = (t+)n, for any non-negative integer n.

2.1. Localized Approximation and

Localized Manifold Learning
Performance comparison between deep nets and shallow nets
is a classical topic in Approximation Theory. It is well-known
from numerous publications (see for example [8, 9, 12, 14]) that
various functions can be well approximated by deep nets but
not by any shallow net with the same order of magnitude in the
numbers of neurons. In particular, it was proved in Chui et al.
[8] that deep nets can provide localized approximation, while
shallow nets fail.

For r, q ∈ N and an arbitrary j = (j(ℓ))rℓ= 1 ∈ Nr
2q, where

Nr
2q = {1, 2, . . . , 2q}r , let

ζj = ζj,q = (ζ
(ℓ)
j )rℓ= 1 with ζ

(ℓ)
j = −1+

2j(ℓ) − 1

2q
∈ (−1, 1).

For a > 0 and ζ ∈ Rr , let us denote by Ar,a,ζ = ζ +
[
− a

2 ,
a
2

]r
,

the cube in Rr with center ζ and width a. Furthermore, we define
N1,r,q,ζj : R

r → R by

N1,r,q,ζj (ξ ) = σ0

{
r∑

ℓ = 1

σ0

[
1

2q
+ ξ (ℓ) − ζ

(ℓ)
j

]

+
r∑

ℓ = 1

σ0

[
1

2q
− ξ (ℓ) + ζ

(ℓ)
j

]
− 2r +

1

2

}
. (1)
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In what follows, the standard notion IA of the indicator function
of a set (or an event) A will be used. For x ∈ R, since

σ0

[
1

2q
+ x

]
+ σ0

[
1

2q
− x

]
− 2

= I[−1/(2q),∞)(x)+ I(−∞,1/(2q)](x)− 2

=
{
0, if x ∈ [−1/(2q), 1/(2q)],
−1, otherwise,

we observe that

r∑

ℓ = 1

σ0

[
1

2q
+ ξ (ℓ)

]
+

r∑

ℓ = 1

σ0

[
1

2q
− ξ (ℓ)

]
− 2r

+
1

2

{
= 1

2 , for ξ ∈ [−1/(2q), 1/(2q)]r ,

≤ − 1
2 , otherwise.

This implies that N1,r,q,ζj as introduced in (1) is the indicator
function of the cube ζj + [−1/(2q), 1/(2q)]r = Ar,1/q,ζj .
Thus, the following proposition which describes the localized
approximation property of N1,r,q,ζj , can be easily deduced by
applying Theorem 2.3 in Chui et al. [8].

Proposition 1. Let r, q ∈ N be arbitrarily given. Then N1,r,q,ζj =
IAr,1/q,ζj

for all j ∈ Nr
2q.

On the other hand, it was proposed in Basri and Jacobs
[23] and DiCarlo and Cox [24] with practical arguments, that
deep nets can tackle data in highly-curved manifolds, while any
shallow nets fail. These arguments were theoretically verified
in Chui and Mhaskar [19] and Shaham et al. [13], with the
implication that adding hidden layers to shallow nets should
enable the neural networks to have the capability of processing
massive data in a high-dimensional space from samples in lower
dimensional manifolds. More precisely, it follows from do Carmo
[25] and Shaham et al. [13] that for a lower d-dimensional
connected and compact C∞ Riemannian submanifold X ⊆
[−1, 1]D (without boundary), isometrically embedded in RD and
endowed with the geodesic distance dG, there exists some δ > 0,
such that for any x, x′ ∈ X , with dG(x, x

′) < δ,

1

2
dG(x, x

′) ≤ ‖x− x′‖D ≤ 2dG(x, x
′), (2)

where for any r > 0, ‖·‖r denotes, as usual, the Euclidean norm of
Rr . In the following, let BG(ξ0, τ ), BD(ξ0, τ ), and Bd(ξ0, τ ) denote
the closed geodesic ball, the D-dimensional Euclidean ball, and
the d-dimensional Euclidean ball, with center at ξ0, respectively,
and with radius τ > 0. Noting that t2 = σ2(t) − σ2(−t), the
following proposition then is a brief summary of Theorem 2.2
and Remark 2.1 in Chui and Mhaskar [19], with the implication
that neural networks can be used as a dimensionality-reduction
tool.

Proposition 2. For each ξ ∈ X , there exist a positive number δξ

and a neural network

8ξ = (8
(ℓ)
ξ )dℓ= 1 :X → Rd

with

8
(ℓ)
ξ (x) =

(D+2)(D+1)∑

k = 1

ak,ξ ,ℓσ2(wk,ξ ,ℓ · x+ bk,ξ ,ℓ),

wk,ξ ,ℓ ∈ RD, ak,ξ ,ℓ, bk,ξ ,ℓ ∈ R, (3)

that maps BG(ξ , δξ ) diffeomorphically onto [−1, 1]d and satisfies

αξdG(x, x
′) ≤ ‖8ξ (x)− 8ξ (x

′)‖d ≤ βξdG(x, x
′),

∀ x, x′ ∈ BG(ξ , δξ ) (4)

for some αξ ,βξ > 0.

2.2. Learning via Deep Nets
Our construction of deep nets depends on the localized
approximation and dimensionality-reduction technique, as
presented in Propositions 1 and 2. To describe the learning
process, firstly select a suitable q∗, so that for every j ∈ ND

2q∗ , there

exists some point ξ∗j in a finite set {ξ∗i }
FX
i= 1 ⊂ X that satisfies

AD,1/q∗,ζj,q∗ ∩ X ⊂ BG(ξ
∗
j , δξ∗j

). (5)

To this end, we need a constant C0 ≥ 1, such that

dG(x, x
′) ≤ C0‖x− x′‖D, ∀ x, x′ ∈ X . (6)

The existence of such a constant is proved in the literature (see
for example [22]). Also, in view of the compactness of X , since⋃

ξ∈X {x ∈ X :BG(x, ξ ) < δξ/2} is an open covering of X ,

there exists a finite set of points {ξ∗i }
FX
i= 1 ⊂ X , such that X ⊂⋃FX

i= 1 BG(ξ
∗
i , δξ∗i

/2). Hence, q∗ ∈ N may be chosen to satisfy

q∗ ≥
2C0

√
D

min1≤i≤FX
δξ∗i

. (7)

With this choice, we claim that (5) holds. Indeed, if AD,1/q∗ ,ζj,q∗ ∩
X = ∅, then (5) obviously holds for any choice of ξ ∈ X . On
the other hand, if AD,1/q∗ ,ζj,q∗ ∩ X 6= ∅, then from the inclusion

property X ⊂
⋃FX

i= 1 BG(ξ
∗
i , δξ∗i

/2), it follows that there is some

i∗ ∈ {1, . . . , FX }, depending on j ∈ Nd
2q∗ , such that

AD,1/q∗,ζj,q∗ ∩ BG(ξ
∗
i∗ , δξ∗

i∗
/2) 6= ∅. (8)

Next, let η∗ ∈ AD,1/q∗,ζj,q∗ ∩ BG(ξ
∗
i∗ , δξ∗

i∗
/2). By (6), we have, for

any x ∈ AD,1/q∗,ζj,q∗ ∩ X ,

dG(x, η
∗) ≤ C0‖x− η∗‖D ≤ C0

√
D

1

q∗
.

Therefore, it follows from (7) that

dG(x, ξ
∗
i∗ ) ≤ dG(x, η

∗)+ dG(η
∗, ξ∗i∗ ) ≤ C0

√
D

1

q∗
+

δξ∗
i∗

2
≤ δξ∗

i∗
.
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This implies that AD,1/q∗ ,ζj,q∗ ∩ X ⊂ BG(ξ
∗
i∗ , δξ∗

i∗
) and verifies our

claim (5) with the choice of ξ∗j = ξ∗i∗ .

Observe that for every j ∈ ND
2q∗ we may choose the point

ξ∗j ∈ X to define N2,j = (N
(ℓ)
2,j )

d
ℓ= 1

:X → Rd by setting

N
(ℓ)
2,j (x) := 8

(ℓ)
ξ∗j
(x) =

(D+2)(D+1)∑

k = 1

ak,ξ∗j ,ℓσ2

(
wk,ξ∗j ,ℓ

· x+ bk,ξ∗j ,ℓ

)
,

ℓ = 1, . . . , d (9)

and apply (5) and (3) to obtain the following.

Proposition 3. For each j ∈ ND
2q∗ , N2,j maps AD,1/q∗ ,ζj,q∗ ∩ X

diffeomorphically into [−1, 1]d and

αdG(x, x
′) ≤ ‖N2,j(x)− N2,j(x

′)‖d ≤ βdG(x, x
′),

∀ x, x′ ∈ AD,1/q∗,ζj,q∗ ∩ X , (10)

where α : = min1≤i≤FX αξ∗i
and β : = max1≤i≤FX βξ∗i

.

As a result of Propositions 1 and 3, we now present the
construction of the deep nets for the proposed learning purpose.
Start with selecting (2n)d points tk = tk,n ∈ (−1, 1)d, k ∈
Nd
2n and n ∈ N, with tk = (t1k, · · · , t

d
k), where t

(ℓ)
k = −1 +

2k(ℓ)−1
2n in (−1, 1)d. Denote Ck = Ad,1/n,tk and Hk,j = {x ∈

X ∩ AD,1/q∗ ,ζj,q∗ :N2,j(x) ∈ Ck}. In view of Proposition 3, it
follows that Hk,j is well defined, X ⊆ ∪j∈N

D
2q∗

AD,1/q∗ ,ζj,q∗ , and⋃
k∈N

d
2n
Hk,j = X ∩ AD,1/q∗,ζj,q∗ . We also define N3,k,j :X → R

by

N3,k,j(x) = N1,d,n,tk ◦ N2,j(x) (11)

= σ0





d∑

ℓ= 1

σ0

[
1

2n
+ N

(ℓ)
2,j (x)− t

(ℓ)
k

]

+
d∑

ℓ= 1

σ0

[
1

2n
− N

(ℓ)
2,j (x)+ t

(ℓ)
k

]
− 2d +

1

2



 .

Then the desired deep net estimator with three hidden layers may
be defined by

N3(x) =

∑
j∈N

D
2q∗

∑
k∈N

d
2n

∑m
i = 1 N1,D,q∗ ,ζj (xi)N3,k,j(xi)yiN3,k,j(x)

∑
j∈N

D
2q∗

∑
k∈N

d
2n

∑m
i = 1 N1,D,q∗ ,ζj (xi)N3,k,j(xi)

,

(12)
where we set N3(x) = 0 if the denominator is zero.

For a d-dimensional submanifold X and an x in AD,1/q∗,ζj,q∗ , it
is clear from (9) that the task of the first hidden layer N2,j(x) is to

map X into [−1, 1]d. On the other hand, the second hidden layer
is intended to searching for the location of N2,j(x) in [−1, 1]d.
Indeed, it follows from (11) that large values of the parameter
n narrow down certain small region that contains x, thereby
reducing the bias. Furthermore, observe that N3(x) in (12) is
some kind of local average, based on N3,k,j(x) and the small
region that contains x. This is a standard local averaging strategy

for reducing variance in statistics [20]. In summary, there is
a totality of three hidden layers in the above construction for
performing three separate tasks, namely: the first hidden layer is
for reducing the dimension of the input space, while by applying
local averaging [20], the second and third hidden layers are for
reducing bias and data variance, respectively.

2.3. Fine-Tuning
For each x ∈ X , it follows from X =

⋃
j∈N

D
2q∗

AD,1/q∗ ,ζj,q∗ that

there is some j ∈ ND
2q∗ , such that x ∈ AD,1/q∗ ,ζj,q∗ , which implies

that N2,j(x) ∈ [−1, 1]d. For each j ∈ N∗
2q, since AD,1/q∗ ,ζj,q∗ is

a cube in RD, the cardinality of the set {j : x ∈ AD,1/q∗ ,ζj,q∗ } is
at most 2D. Also, because [−1, 1]d =

⋃
k∈N

d
2n
Ad,1/n,tk for each

j ∈ N∗
2q, there exists some k ∈ Nd

2n, such that N2,j(x) ∈ Ad,1/n,tk ,

implying that N3,k,j(x) = N1,d,n,tk ◦ N2,j(x) = 1 and that the

number of such integers k is bounded by 2d. For each x ∈ X ,
we consider a non-empty subset

3x =
{
(j, k) ∈ ND

2q∗ × Nd
2n : x ∈ AD,1/q∗,ζj,q∗ ,N3,k,j(x) = 1

}
.

(13)
of ND

2q∗ × Nd
2n, with cardinality

|3x| ≤ 2D+d, ∀ x ∈ X . (14)

Also, for each x ∈ X , we further define S3x = ∪(j,k)∈3x
Hk,j ∩

{xi}mi= 1, as well as

3x,S =
{
(j, k) ∈ ND

2q∗ × Nd
2n :N1,D,q∗ ,ζj (xi)N3,k,j(xi) = 1, xi ∈ S3x

}
,

(15)
and

3′
x,S =

{
(j, k) ∈ ND

2q∗ × Nd
2n :N1,D,q∗ ,ζj (xi)N3,k,j(xi)N3,k,j(x)

= 1, xi ∈ S3x

}
. (16)

Then it follows from (15) and (16) that |3′
x,S| ≤ |3x,S|, and it

is easy to see that if each xi ∈ S3x is an interior point of some
Hk,j, then |3x,S| = |3′

x,S|. In this way, N3 is some local average
estimator. However, if |3x,S| 6= |3′

x,S|, (and this is possible when

some xi lies on the boundary ofHk,j for some (j, k) ∈ ND
2q∗×Nd

2n),

then the estimator N3 in (12) might perform badly, and this
happens even for training data. Note that to predict for some
xj ∈ Sm, which is an interior point of Hk0 ,j0 , we have

N3(xj) =
∑m

i = 1 N1,D,q∗ ,ζj0
(xi)N3,k0 ,j0 (xi)yi

|3′
xj ,S

|
,

which might be far away from yj when |3′
x,S| < |3x,S|. The

reason is that there are |3x,S| summations in the numerator.
Noting that the Riemannian measure of the boundary of
∪(j,k)∈N

D
2q∗×N

d
2n
Hk,j is zero, we consider the above phenomenon

as outliers.
Fine-tuning, often referred to as feedback in the literature

of deep learning [21], can essentially improve the learning
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performance of deep nets [26]. We observe that fine-tuning can
also be applied to handle outliers for our constructed deep net
in (12), by counting the cardinalities of 3x,S and 3′

x,S. In the
training process, besides computing N3(x) for some query point
x, we may also record |3x,S| and |3′

x,S|. If the estimator is not

big enough, we propose to add the factor
|3′

x,S|
|3x,S| to N3(x). In this

way, the deep net estimator with feedback can be mathematically
represented by

NF
3 (x) =

|3′
x,S|

|3x,S|
N3(x) =

∑
j∈N

D
2q∗

∑
k∈N

d
2n

∑m
i = 1 yi8k,j(x, xi)

∑
j∈N

D
2q∗

∑
k∈N

d
2n

∑m
i = 1 8k,j(x, xi)

,

(17)
where 8k,j = 8k,j,D,q∗ ,n :X × X → R is defined by

8k,j(x, u) = N1,D,q∗ ,ζj (u)N3,k,j(u)N3,k,j(x);

and as before, we set NF
3 (x) = 0 if the denominator∑

j∈N
D
2q∗

∑
k∈N

d
2n

∑m
i = 1 8k,j(x, xi) vanishes.

3. LEARNING RATE ANALYSIS

We consider a standard least squares regression setting in
learning theory [15] and assume that the sample set S = Sm =
{(xi, yi)}mi= 1 of size m is drawn independently according to some
Borel probability measure ρ on Z = X × Y . The regression
function is then defined by

fρ(x) =
∫

Y

ydρ(y|x), x ∈ X ,

where ρ(y|x) denotes the conditional distribution at x induced by
ρ. Let ρX be the marginal distribution of ρ on X and (L2ρX

, ‖ · ‖ρ)

be the Hilbert space of square-integrable functions with respect
to ρX on X . Our goal is to estimate the distance between the
output function N3 and the regression function fρ measured by
‖N3 − fρ‖ρ , as well as the distance between NF

3 and fρ .
We say that a function f on X is (s, c0)-Lipschitz (continuous)

with positive exponent s ≤ 1 and constant c0 > 0, if

|f (x)− f (x′)| ≤ c0(dG(x, x
′))s, ∀x, x′ ∈ X ; (18)

and denote by Lip(s,c0) = Lip(s,c0)(X ), the family of all (s, c0)-
Lipschitz functions that satisfy (18). Our error analysis of N3 will
be carried out based on the following two assumptions.

Assumption 1. There exist an s ∈ (0, 1] and a constant c0 ∈ R+
such that fρ ∈ Lip(s,c0).

This smoothness assumption is standard in learning theory for
regression functions (see for example [15, 18, 20, 27–35]).

Assumption 2. ρX is continuous with respect to the geodesic
distance dG of the Riemannian manifold.

Note that Assumption 2, which is about the geometrical
structure of ρX , is slightly weaker than the distortion assumption

in Shi [36] and Zhou and Jetter [37] but similar to the assumption
considered in Meister and Steinwart [38]. The objective of this
assumption is for describing the functionality of fine-tuning.

We are now ready to state the main results of this paper. In the
first theorem below, we obtain a learning rate for the constructed
deep nets N3.

Theorem 1. Let m be the number of samples and set n =
⌈m1/(2s+d)⌉, where 1/(2n) is the uniform spacing of the points
tk = tk,n ∈ (−1, 1)d in the definition of N3 in (11). Then under
Assumptions 1 and 2,

E
[
‖N3 − fρ‖2ρ

]
≤ C1m

− 2s
2s+d (19)

for some positive constant C1 independent of m.

Observe that Theorem 1 provides a fast learning rate for the
constructed deep net which depends on the manifold dimension
d instead of the sample space dimension D. In the second
theorem below, we show the necessity of the fine-tuning process
as presented in (17), when Assumption 2 is removed.

Theorem 2. Let m be the number of samples and set n =
⌈m1/(2s+d)⌉, where 1/(2n) is the uniform spacing of the points
tk = tk,n ∈ (−1, 1)d in the definition of N3 in (11), which is used
to define NF

3 in (17). Then under Assumption 1,

E
[
‖NF

3 − fρ‖2ρ
]
≤ C2m

− 2s
2s+d . (20)

for some positive constant C2 independent of m.

Observe that while Assumption 2 is needed in Theorem 1, it is
not necessary for the validity of Theorem 2, which theoretically
shows the significance of fine-tuning in our construction. The
proofs of these two theorems will be presented in the final section
of this paper.

4. RELATED WORK AND DISCUSSIONS

The success in practical applications, especially in the fields
of computer vision [6] and speech recognition [7], has
triggered enormous research activities on deep learning. Several
other encouraging results, such as object recognition [24],
unsupervised training [39], and artificial intelligence architecture
[21], have been obtained to demonstrate further the significance
of deep learning. We refer the interested readers to the 2016 MIT
monograph, “Deep Learning” [40], by Goodfellow, Bengjio and
Courville, for further study of this exciting subject, which is only
at the infancy of its development.

Indeed, deep learning has already created several challenges to
the machine learning community. Among the main challenges
are to show the necessity of the usage of deep nets and to
theoretically justify the advantages of deep nets over shallow nets.
This is essentially a classical topic in Approximation Theory.
In particular, dating back to the early 1990’s, it was already
proved that deep nets can provide localized approximation but
shallow nets fail (see for example [8]). Furthermore, it was also
shown that deep nets provide high approximation orders, that are
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certainly not restricted by the lower error bounds for shallow nets
(see [41, 42]). More recently, stimulated by the avid enthusiasm
of deep learning, numerous advantages of deep nets were also
revealed from the point of view of function approximation. In
particular, certain functions discussed in Eldan and Shamir [9]
can be represented by deep nets but cannot be approximated
by shallow nets with polynomially increasing orders of neurons;
it was shown in Mhaskar and Poggio [10] that deep nets, but
not shallow nets, can approximate efficiently functions composed
by bivariate ones; it was exhibited in Poggio et al. [11] that
deep nets can avoid the curse of dimension of shallow nets; a
probability argument was given in Lin [43] to show that deep
nets have better approximation performance than shallow nets
with high confidence; it was demonstrated in Chui and Mhaskar
[19] and Shaham et al. [13] that deep nets can improve the
approximation capability of shallow nets when the data are
located on data-dependent manifolds; and so on. All of these
results give theoretical explanations of the significance of deep
nets from the Approximation Theory point of view.

As a departure from the work mentioned above, our present
paper is devoted to explore better performance of deep nets
over shallow nets in the framework of Leaning Theory. In
particular, we are concerned not only with the approximation
accuracy but also with the cost to attain such accuracy. In this
regard, learning rates of certain deep nets have been analyzed
in Kohler and Krzyżak [32], where near-optimal learning rates
are provided for a fairly complex regularization scheme, with
the hypothesis space being the family of deep nets with two
hidden layers proposed in Mhaskar [44]. More precisely, they
derived a learning rate of order O(m−2s/(2s+D)(logm)4s/(2s+D))
for functions fρ ∈ Lip(s,c0). This is close to the optimal
learning rate of shallow nets in Maiorov [18], different only by
a logarithmic factor. Hence, the study in Kohler and Krzyżak
[32] theoretically shows that deep nets at least do not downgrade
the learning performance of shallow nets. In comparison with
Kohler and Krzyżak [32], our study is focussed on answering
the question: ”What is to be gained by deep learning?” The
deep net constructed in our paper possesses a learning rate of
order O(m−2s/(2s+d)), when X is an unknown d-dimensional
connected C∞ Riemannian manifold (without boundary). This
rate is the same as the optimal learning rate [20, Chapter 3] for
special case of the cube X = [−1, 1]d under a similar condition,
and it is better than the optimal learning rates for shallow nets
[18]. Another line of related work is Ye and Zhou [22, 45],
where Ye and Zhou deduced learning rates for regularized least-
squares over shallow nets for the same setting of our paper.

They derived a learning rate of O
(
m−s/(8s+4d)(logm)s/(4s+2d)

)
,

which is worse than the rate established in our paper. It
should be mentioned that in a more recent work Kohler and
Krzyzak [46], some advantages of deep nets are revealed from
the learning theory viewpoint. However, the results in Kohler
and Krzyzak [46] require a hierarchical interaction structure,
which is totally different from what is presented in our present
paper.

Due to the high degree of freedom for deep nets, the number
and type of parameters for deep nets are much more than those

of shallow nets. Thus, it should be of great interest to develop
scalable algorithms to reduce the computational burdens of deep
learning. Distributed learning based on a divide-and-conquer
strategy [47, 48] could be a fruitful approach for this purpose.
It is also of interest to establish results similar to Theorem 2 and
Theorem 1 for deep nets, but with rectifier neurons, by using the
rectifier (or ramp) function, σ1(t) = t+, as activation. The reason
is that the rectifier is one of the most widely used activations in
the literature on deep learning. Our research in these directions
is postponed to a later work.

5. PROOFS OF THE MAIN RESULTS

To facilitate our proofs of the theorems stated in section 3, we
first establish the following two lemmas.

Observe from Proposition 1 and the definition (11) of the
function N3,k,j that

N1,D,q∗ ,ζj (x)N3,k,j(x) = IAD,1/q∗ ,ζj
(x)IAd,1/n,tk

(N2,j(x)) = IHk,j (x).

(21)
For j ∈ ND

2q∗ , k ∈ Nd
2n, define a random function Tk,j :Z

m → R

in term of the random sample S = {(xi, yi)}mi = 1 by

Tk,j(S) =
m∑

i= 1

N1,D,q∗ ,ζj (xi)N3,k,j(xi), (22)

so that

Tk,j(S) =
m∑

i= 1

IHk,j (xi). (23)

Lemma 1. Let3∗ ⊆ ND
2q∗ ×Nd

2n be a non-empty subset, (j×k) ∈
3∗ and Tk,j(S) be defined as in (22). Then

ES

[
I{z∈Zm

:

∑
(j,k)∈3∗ Tk,j(z)>0}(S)∑

(j,k)∈3∗ Tk,j(S)

]
≤

2

(m+ 1)ρX(∪(j,k)∈3∗Hk,j)
,

(24)
where if

∑
(j,k)∈3∗ Tk,j(S) = 0, we set

I{z∈Zm
:

∑
(j,k)∈3∗ Tk,j(z)>0}(S)∑

j,k∈3∗ Tk,j(S)
= 0.

Proof. Observe from (23) that Tk,j(S) ∈ {0, 1, . . . ,m} and

ES

[
I{z∈Zm

:

∑
(j,k)∈3∗ Tk,j(z)>0}(S)∑

(j,k)∈3∗ Tk,j(S)

]

=
m∑

ℓ = 0

ES



I{z∈Zm

:

∑
(j,k)∈3∗ Tk,j(z)>0}(S)∑

(j,k)∈3∗ Tk,j(S)

∣∣ ∑

(j,k)∈3∗

Tk,j(S) = ℓ




Pr


 ∑

(j,k)∈3∗

Tk,j(S) = ℓ


 .
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By the definition of the fraction
I{z∈Zm

:

∑
(j,k)∈3∗ Tk,j(z)>0}(S)∑

(j,k)∈3∗ Tk,j(S)
, the

term with ℓ = 0 above vanishes, so

ES

[
I{z∈Zm

:

∑
(j,k)∈3∗ Tk,j(z)>0}(S)∑

(j,k)∈3∗ Tk,j(S)

]
=

m∑

ℓ = 1

E


1

ℓ

∣∣ ∑

(j,k)∈3∗

Tk,j(S) = ℓ




Pr


 ∑

(j,k)∈3∗

Tk,j(S) = ℓ




=
m∑

ℓ = 1

1

ℓ
Pr


 ∑

(j,k)∈3∗

Tk,j(S) = ℓ


 .

On the other hand, note from (23) that
∑

(j,k)∈3∗ Tk,j(S) = ℓ is
equivalent to xi ∈ ∪(j,k)∈3∗Hk,j for ℓ indices i from {1, · · · ,m},
which in turn implies that

Pr


 ∑

(j,k)∈3∗

Tk,j(S) = ℓ


 =

(
m
ℓ

)
[ρX(∪(j,k)∈3∗Hk,j)]

ℓ

[1− ρX(∪(j,k)∈3∗Hk,j)]
m−ℓ.

Thus, we obtain

ES

[
I{z∈Zm

:

∑
(j,k)∈3∗ Tk,j(z)>0}(S)∑

(j,k)∈3∗ Tk,j(S)

]

=
m∑

ℓ= 1

1

ℓ

(
m

ℓ

)
[ρX(∪(j,k)∈3∗Hk,j)]

ℓ[1− ρX(∪(j,k)∈3∗Hk,j)]
m−ℓ

≤
m∑

ℓ= 1

2

ℓ + 1

(
m

ℓ

)
[ρX(∪(j,k)∈3∗Hk,j)]

ℓ[1− ρX(∪(j,k)∈3∗Hk,j)]
m−ℓ

=
2

(m+ 1)ρX(∪(j,k)∈3∗Hk,j)

m∑

ℓ = 1

(
m+ 1

ℓ + 1

)
[ρX(∪(j,k)∈3∗Hk,j)]

ℓ+1

[1− ρX(∪(j,k)∈3∗Hk,j)]
m−ℓ.

Therefore, the desired inequality (24) follows. This completes the
proof of Lemma 1. 2

Lemma 2. Let S = {(xi, yi)}mi= 1 be a sample set drawn
independently according to ρ. If fS(x) =

∑m
i= 1 yihx(x, xi) with

a measurable function hx :X × X → R that depends on x : =
{xi}mi= 1, then

E
[
‖fS − fρ‖2µ|x

]
= E



∥∥∥∥∥fS −

m∑

i = 1

fρ(xi)hx(·, xi)

∥∥∥∥∥

2

µ

|x




+

∥∥∥∥∥

m∑

i = 1

fρ(xi)hx(·, xi)− fρ

∥∥∥∥∥

2

µ

(25)

for any Borel probability measure µ on X .

Proof. Since fρ(x) is the conditional mean of y given x ∈
X , we have from fS(x) =

∑m
i= 1 yihx(x, xi) that E[fS|x] =∑m

i= 1 fρ(xi)hx(·, xi). Hence,

E



〈
fS −

m∑

i = 1

fρ(xi)hx(·, xi),
m∑

i = 1

fρ(xi)hx(·, xi)− fρ

〉

µ

|x




=
〈
E
[
fS|x

]
−

m∑

i = 1

fρ(xi)hx(·, xi),
m∑

i = 1

fρ(xi)hx(·, xi)− fρ

〉

µ

= 0.

Thus, along with the inner-product expression

‖fS − fρ‖2µ =

∥∥∥∥∥fS −
m∑

i = 1

fρ(xi)hx(·, xi)

∥∥∥∥∥

2

µ

+

∥∥∥∥∥

m∑

i = 1

fρ(xi)hx(·, xi)− fρ

∥∥∥∥∥

2

µ

+ 2

〈
fS −

m∑

i = 1

fρ(xi)hx(·, xi),
m∑

i = 1

fρ(xi)hx(·, xi)− fρ

〉

µ

the above equality yields the desired result (25). This completes
the proof of Lemma 2. 2

We are now ready to prove the two main results of the paper.
Proof of Theorem 1. We divide the proof into four

steps, namely: error decomposition, sampling error estimation,
approximation error estimation, and learning rate deduction.

Step 1: Error decomposition. Let Ḣk,j be the set of interior
points of Hk,j. For arbitrarily fixed k′, j′ and x ∈ Ḣk′ ,j′ , it follows
from (21) that

∑

j∈N
D
2q∗

∑

k∈N
d
2n

m∑

i = 1

N1,D,q∗ ,ζj (xi)N3,k,j(xi)yiN3,k,j(x)

=
m∑

i = 1

yiN1,D,q∗ ,ζj′ (xi)N3,k′,j′ (xi)

=
m∑

i = 1

yiIHk′ ,j′ (xi).

If, in addition, for each i ∈ {1, . . . ,m}, xi ∈ Ḣk,j for some

k, j ∈ ND
2q∗ × Nd

2n, then from (12) we have

N3(x) =
∑m

i = 1 yiIHk′ ,j′ (xi)∑m
i = 1 IHk′ ,j′ (xi)

=
∑m

i = 1 yiIHk′ ,j′ (xi)

Tk′ ,j′ (S)
. (26)

In view of Assumption 2, for an arbitrary subset A ⊂ RD,
λG(A) = 0 implies ρX(A) = 0, where λG(A) denotes the
Riemannian measure of A. In particular, for A = Hk,j\Ḣk,j in the
above analysis, we have ρX(Hk,j\Ḣk,j) = 0, which implies that
(26) almost surely holds. Next, set

Ñ3 = E [N3|x] . (27)

Then it follows from Lemma 2, with µ = ρX , that

E
[
‖N3 − fρ‖2ρ

]
= E

[
‖N3 − Ñ3‖2ρ

]
+ E

[
‖Ñ3 − fρ‖2ρ

]
. (28)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 May 2018 | Volume 4 | Article 14

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Chui et al. Localized Deep Learning

In what follows, the two terms on the right-hand side of (28) will
be called sampling error and approximation error, respectively.

Step 2: Sampling error estimation. Due to Assumption 2, we
have

E[‖N3 − Ñ3‖2ρ] =
∑

(j,k)∈N
D
2q∗×N

d
2n

∫

Ḣk,j

E
[
(N3(x)− Ñ3(x))

2
]
dρX .

(29)

On the other hand, (26) and (27) together imply that

N3(x)− Ñ3(x) =
∑m

i = 1(yi − fρ(xi))IHk,j (xi)

Tk,j(S)

almost surely for x ∈ Ḣk,j, and that

E
[
(N3(x)− Ñ3(x))

2|x
]
=

∑m
i = 1

∫
Y
(y− fρ(xi))

2dρ(y|xi)I2Hk,j
(xi)

[Tk,j(S)]2

≤ 4M2
I{z :Tk,j(z)>0}(S)

Tk,j(S)
,

whereE[yi|xi] = fρ(xi) in the second equality, I
2
Hk,j

(xi) = IHk,j (xi)

and |yi| ≤ M holds almost surely in the inequality. It then follows
from Lemma 1 and Assumption 2 that

E
[
(N3(x)− Ñ3(x))

2
]
≤

8M2

(m+ 1)ρX(Hk,j)
.

This, together with (29), implies that

E[‖N3 − Ñ3‖2ρ] ≤
∑

(j,k)∈N
D
2q∗×N

d
2n

∫

Ḣk,j

8M2

(m+ 1)ρX(Hk,j)
dρX

≤
8(2q∗)D(2n)dM2

m+ 1
. (30)

Step 3: Approximation error estimation. According to
Assumption 2, we have

E[‖fρ − Ñ3‖2ρ] =
∑

(j,k)∈N
D
2q∗×N

d
2n

∫

Ḣk,j

E
[
(fρ(x)− Ñ3(x))

2
]
dρX .

(31)

For x ∈ Ḣk,j, it follows from Assumption 1, (26) and (27) that

∣∣fρ(x)− Ñ3(x)
∣∣ ≤

∑m
i = 1 |fρ(x)− fρ(xi)|IHk,j (xi)

Tk,j(S)

≤ c0( max
x,x′∈Hk,j

dG(x, x
′))s

almost surely holds. We then have, from (10) and
N2,j(x),N2,j(x

′) ∈ Ad,1/n,tk , that

max
x,x′∈Hk,j

dG(x, x
′) ≤ max

x,x′∈Hk,j

α−1‖N2,j(x)− N2,j(x
′)‖d.

Now, since maxt,t′∈Ad,1/n,tk
‖t − t′‖d ≤ 2

√
d

n , we obtain

max
x,x′∈Hk,j

dG(x, x
′) ≤

2d1/2

α
n−1,

so that

∣∣fρ(x)− Ñ3(x)
∣∣ ≤ c0

2sds/2

αs
n−s.

holds almost surely. Inserting the above estimate into (31), we
obtain

E[‖fρ − Ñ3‖2ρ] ≤
∑

(j,k)∈N
D
2q∗×N

d
2n

ρX(Ḣk,j)
c204

sds

α2s
n−2s ≤

c204
sds

α2s
n−2s.

(32)

Step 4: Learning rate deduction. Inserting (32) and (30) into (28),
we obtain

E
[
‖N3 − fρ‖2ρ

]
≤

8(2q∗)D(2n)dM2

m+ 1
+

c204
sds

α2s
n−2s.

Since n = ⌈m1/(2s+d)⌉, we have

E
[
‖NF

3 − fρ‖2ρ
]
≤ C1m

− 2s
2s+d

with

C1 : = 8(2q∗)D2dM2 +
c204

sds

α2s
.

As q∗ depends only on X , C1 is independent of m or n. This
completes the proof of Theorem 1. 2

Proof of Theorem 2. As in the proof of Theorem 1, we divide
this proof into four steps.

Step 1: Error decomposition. From (17), we have

NF
3 (x) =

m∑

i= 1

yihx(x, xi), (33)

where hx :X × X → R is a function defined for x, u ∈ X by

hx(x, u) =

∑
j∈N

D
2q∗

∑
k∈N

d
2n

8k,j(x, u)
∑

j∈N
D
2q∗

∑
k∈N

d
2n

∑m
i= 1 8k,j(x, xi)

, (34)

and hx(x, u) = 0 when the denominator vanishes. Define

ÑF
3 :X → R by

ÑF
3 (x) = E

[
NF
3 (x)|x

]
=

m∑

i= 1

fρ(xi)hx(x, xi). (35)

Then it follows from Lemma 2 with µ = ρX , that

E
[
‖NF

3 − fρ‖2ρ
]
= E

[
‖NF

3 − ÑF
3 ‖

2
ρ

]
+ E

[
‖ÑF

3 − fρ‖2ρ
]
. (36)
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In what follows, the terms on the right-hand side of (36) will be
called sampling error and approximation error, respectively. By
(21), for each x ∈ X and i ∈ {1, · · · ,m}, we have 8k,j(x, xi) =
IHk,j (xi)N3,k,j(x) = IHk,j (xi) for (j, k) ∈ 3x and 8k,j(x, xi) = 0 for
(j, k) /∈ 3x, where 3x is defined by (13). This, together with (35),
(33), and (34), yields

NF
3 (x)−ÑF

3 (x) =
m∑

i= 1

(
yi − fρ(xi)

)
∑

(j,k)∈3x
IHk,j (xi)∑

(j,k)∈3x
Tk,j(S)

, ∀x ∈ X

(37)
and

ÑF
3 (x)−fρ(x) =

m∑

i= 1

[fρ(xi)−fρ(x)]

∑
(j,k)∈3x

IHk,j (xi)∑
(j,k)∈3x

Tk,j(S)
, ∀x ∈ X ,

(38)
where Tk,j(S) =

∑m
i= 1 IHk,j (xi).

Step 2: Sampling error estimation. First consider

E
[
‖NF

3 − ÑF
3 ‖

2
ρ

]
≤

∑

(j,k)∈N
D
2q∗×N

d
2n

∫

Hk,j

E

[(
NF
3 (x)− ÑF

3 (x)
)2]

dρX .

(39)
For each x ∈ Hk,j, since E[y|x] = fρ(x), it follows from (37) and
|y| ≤ M that

E

[(
NF
3 (x)− ÑF

3 (x)
)2

|x
]

= E



(

m∑

i = 1

(
yi − fρ(xi)

)
∑

(j,k)∈3x
IHk,j (xi)∑

(j,k)∈3x
Tk,j(S)

)2 ∣∣x




= E




m∑

i = 1

(
yi − fρ(xi)

)2
(∑

(j,k)∈3x
IHk,j (xi)∑

(j,k)∈3x
Tk,j(S)

)2 ∣∣x




≤ 4M2
m∑

i = 1

(∑
(j,k)∈3x

IHk,j (xi)∑
(j,k)∈3x

Tk,j(S)

)2

holds almost surely. Since
∑m

i= 1 IHk,j (xi) = Tk,j(S), we apply the
Schwarz inequality to

∑
(j,k)∈3x

IHk,j (xi) to obtain

E

[(
NF
3 (x)− ÑF

3 (x)
)2

|x
]
≤

4M2|3x|
∑

(j,k)∈3x

∑m
i = 1 I

2
Hk,j

(xi)
(∑

(j,k)∈3x
Tk,j(S)

)2

=
4M2|3x|I{z∈Zm

:

∑
(j,k)∈3x

Tk,j>0}(S)∑
(j,k)∈3x

Tk,j(S)
.

Thus, from Lemma 1 and (14) we have

E

[(
NF
3 (x)− ÑF

3 (x)
)2]

= E

[
E

[(
NF
3 (x)− ÑF

3 (x)
)2

|x
]]

≤
8M22D+d

(m+ 1)ρX(∪(j,k)∈3x
Hk,j)

.

This, along with (39), implies that

E
[
‖NF

3 − ÑF
3 ‖

2
ρ

]
≤

2D+d+3M2

(m+ 1)

∑

(j,k)∈N
D
2q∗×N

d
2n

∫

Hk,j

1

ρX(∪(j,k)∈3x
Hk,j)

dρX ≤
2D+d+3M2

(m+ 1)

∑

(j,k)∈N
D
2q∗×N

d
2n

∫

Hk,j

1

ρX(Hk,j)
dρX ≤

2D+d+3(2q∗)DM2(2n)d

(m+ 1)
. (40)

Step 3 Approximation error estimation. For each x ∈ X , set

A1(x) = E


(ÑF

3 (x)− fρ(x))
2|

∑

(j,k)∈3x

Tk,j(S) = 0




Pr


 ∑

(j,k)∈3x

Tk,j(S) = 0




and

A2(x) = E


(ÑF

3 (x)− fρ(x))
2|

∑

(j,k)∈3x

Tk,j(S) ≥ 1




Pr


 ∑

(j,k)∈3x

Tk,j(S) ≥ 1


 ;

and observe that

E
[
‖ÑF

3 − fρ‖2ρ
]
=
∫

X

E

[(
ÑF
3 (x)− fρ(x)

)2]
dρX

=
∫

X

A1(x)dρX +
∫

X

A2(x)dρX . (41)

Let us first consider
∫
X
A1(x)dρX as follows. Since ÑF

3 (x) = 0 for∑
(j,k)∈3x

Tk,j(S) = 0, we have, from |fρ(x)| ≤ M, that

E


(ÑF

3 (x)− fρ(x))
2|

∑

(j,k)∈3x

Tk,j(S) = 0


 ≤ M2.

On the other hand, since

Pr


 ∑

(j,k)∈3x

Tk,j(S) = 0


 = [1− ρX(∪(j,k)∈3x

Hk,j)]
m,

it follows from the elementary inequality

v(1− v)m ≤ ve−mv ≤
1

em
, ∀0 ≤ v ≤ 1

that
∫

X

A1(x)dρX ≤
∫

X

M2[1− ρX(∪(j,k)∈3x
Hk,j)]

mdρX
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≤ M2
∑

(j′,k′)∈N
D
2q∗×N

d
2n

∫

Hk′ ,j′
[1− ρX(∪(j,k)∈3x

Hk,j)]
mdρX

≤ M2
∑

(j,k)∈N
D
2q∗×N

d
2n

∫

Hk,j

[1− ρX(Hk,j)]
mdρX ≤ M2

∑

(j,k)∈N
D
2q∗×N

d
2n

[1− ρX(Hk,j)]
mρX(Hk,j) ≤

(2n)d(2q∗)DM2

em
. (42)

We next consider
∫
X
A2(x)dρX . Let x ∈ X satisfy∑

(j,k)∈3x
Tk,j(S) ≥ 1. Then xi ∈ Hx : = ∪(j,k)∈3x

Hk,j at
least for some i ∈ {1, 2, . . . ,m}. For those xi /∈ Hx, we have∑

(j,k)∈3x
IHk,j (xi) = 0, so that

∣∣∣ÑF
3 (x)− fρ(x)

∣∣∣ =
∑

i : xi∈Hx

|fρ(xi)− fρ(x)|
∑

(j,k)∈3x
IHk,j (xi)∑

(j,k)∈3x
Tk,j(S)

.

For xi ∈ Hx, we have xi ∈ Hk,j for some (j, k) ∈ 3x. But x ∈ Hk,j,
so that

|ÑF
3 (x)− fρ(x)| ≤ max

u,u′∈Hk,j

|fρ(u)− fρ(u
′) ≤ c0 max

u,u′∈Hk,j

[dG(u, u
′)]s,

x ∈ X .

But (10) implies that

max
u,u′∈Hk,j

[dG(u, u
′)]s ≤ max

u,u′∈Hk,j

α−s‖N2,jx (u)− N2,jx (u
′)‖sd

≤ α−s max
t,t′∈Ad,1/n,tk

‖t − t′‖sd ≤
2sds/2

αs
n−s.

Hence, for x ∈ X with
∑

(j,k)∈3x
Tk,j(S) ≥ 1, we have

|ÑF
3 (x)−fρ(x)| ≤

c02
sds/2

αs
n−s

∑
i : xi∈Hx

∑
(j,k)∈3x∑

(j,k)∈3x
Tk,j(S)

≤
c02

sds/2

αs
n−s,

and threby

∫

X

A2(x)dρX ≤
∫

X

E


(ÑF

3 (x)− fρ(x))
2|

∑

(j,k)∈3x

Tk,j(S) ≥ 1




dρX ≤
c204

sds

α2s
n−2s. (43)

Therefore, putting (42) and (43) into (41), we have

E
[
‖ÑF

3 − fρ‖2ρ
]
≤

c204
sds

α2s
n−2s +

M2(2n)d(2q∗)D

em
. (44)

Step 4: Learning rate deduction. By inserting (40) and (44) into
(36), we obtain

E
[
‖NF

3 − fρ‖2ρ
]
≤

2D+d+3(2q∗)DM2(2n)d

m + 1
+

c204
sds

α2s
n−2s

+
M2(2n)d(2q∗)D

em
.

Hence, in view of n = ⌈m1/(2s+d)⌉, we have

E
[
‖NF

3 − fρ‖2ρ
]
≤ C2m

− 2s
2s+d

with

C2 := 2D+d+4(2q∗)DM2(2n)d +
c204

sds

α2s
.

This completes the proof of Theorem 2, since q∗ depends only on
X , so that C2 is independent ofm or n. 2
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