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Piecewise growth curvemodel (PGCM) is often usedwhen the underlying growth process

is not linear and is hypothesized to consist of phasic developments connected by turning

points (or knots or change points). When fitting a PGCM, the conventional practice is to

specify turning points a priori. However, the true turning points are often unknown and

misspecifications of turning points may occur. The study examined the consequences

of turning point misspecifications on growth parameter estimates and evaluated the

performance of commonly used fit indices in detecting model misspecification due

to mis-specified locations of turning points. In addition, this study introduced and

evaluated a newly developed PGCM which allows unknown turning points to be

freely estimated. The study found that there are severe consequences of turning point

misspecification. Commonly used model fit indices have low power in detecting turning

point misspecification. On the other hand, the newly developed PGCM with freely

estimated unknown turning point performs well in general.

Keywords: latent growth curve model, piecewise, turning point, model fit indices, MI

INTRODUCTION

Longitudinal studies have been widely applied in many research areas to examine individual
differences in growth over time. One commonly used method to study individual change over
time is the latent growth modeling in the Structural Equation Modeling (SEM) framework [1, 2].
Up to date, the majority of applications of the latent growth models in longitudinal data analyses
have been limited to the assumption that the change follows a simple linear trend. However, when
longitudinal data are collected over an adequately long period of time, the features of individual
change do not always follow a linear trend.

A more flexible approach to model the nonlinear form of growth is the piecewise growth
curve model (PGCM). This approach breaks up the curvilinear growth trend into separate linear
segments or pieces of different slopes, which are tied together by turning points (or knots or
change points). The flexibility of PGCM allows the formulation of different functional forms for
the different phases of growth such that each phase does not have to conform to the same function
[3–6]. The approach is particularly appealing when researchers are interested in comparing growth
rates for two or more periods, such as the effect of schooling on children’s scholastic attainments
before and after secondary school [7, 8].

The major difficulty in applying PGCMs concerns the specification of the turning point.
Researchers tend to rely on theories or designs (e.g., the start point of an intervention) to choose
the location of the turning point (see e.g., [9, 10]). Yet, such considerations may not always
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be reasonable. For example, the turning point may occur after
the intervention due to delay in response to intervention. The
misspecification of a turning point may render a suboptimal
functional representation of the observed data patterns, leading
to incorrect inferences of growth traits.

Alternative approaches were developed to search for the
optimal location of the turning point based on data [6, 11, 12].
For example, Kwok et al. [6] proposed using modification index
to detect the turning point in the linear latent growth modeling
framework. Harring et al. [3] extended PGCM to treat the
turning point as an unknown parameter to be estimated in the
SEM framework. Compared to the conventional PGCM with
turning points specified a priori, such an extension is appealing
because researchers do not have to have a priori knowledge of the
turning points. Moreover, allowing for free estimation of turning
points and time specific factor loadings can lead to a more
optimal functional form of each growth phase, giving a more
adequate description of the growth pattern in the data [6, 13].
The appealing advantages of the newly proposed PGCM with
unknown turning points have attracted an increasing amount of
interest in empirical studies (see e.g., [5, 14, 15]).

Comparing and contrasting the conventional and the new
PGCM, this study aims to investigate the three research
questions. First, under what conditions and to what extent does
the misspecification of turning point in conventional PGCMs
have a substantial impact on the growth trait estimation? Second,
in conventional PGCMs, can the commonly used fit indices
correctly identify model misspecification due to the mislocation
of turning points? Lastly, can the new procedure of PGCM with
an unknown turning point accurately estimate the turning point
and growth parameters?

The remaining of the paper is organized in the following
sections. We first reviewed the model specification for the
new PGCM with an unknown turning point, followed by
a brief description of commonly used fit indexes under the
SEM framework. Then we introduced the methods for data
generation, analysis procedure, and presented the findings from
the simulation study. Finally, we discussed the findings in relation
to previous studies, implications, and limitations.

PGCM WITH ONE UNKNOWN TURNING
POINT

Suppose that the sample data consist of j equal spaced repeated
measures of Y for individual i. A two-piece growth model with
one unknown turning point can be specified in the form of two-
level models. The Level 1 (repeated measures) model is specified
as

yij =

{

l1(t) : a1i + b1i(tij)+ εij tij 6 γ

l2(t) : a2i + b2i(tij)+ εij tij > γ
(1)

where yij is the response at the jth measurement for the ith
individual. a1i and b1i are the intercept and the slope growth
factors before the occurrence of the turning point, and a2i and
b2i denote the corresponding growth factors after the turning
point. γ is the location of the turning point marking the shift

from one growth phase to the other. εij is the level-1 residual for
individual i at measurement j [εij ∼ N(0, σ 2

ε )]. It is assumed that
the location of the turning point is fixed to be the same for all
individuals. Hence the model is appropriate when homogeneous
turning points are assumed. For example, studies have found that
almost all the average children have been able to establish their
numerical and arithmetic foundation in 3rd grade, which could
be assumed to be a common turning point in the development of
child numerical cognition (see e.g., [16]).

The trajectory is assumed to be continuous and has no gap
between the two pieces, such that the two pieces for l1(t) and
l2(t) are connected at the turning point. That is, when tij =

γ, a1i+b1i(γ) = a2i+b2i(γ), which gives a2i = a1i+γ(b1i−b2i).
Thus Model (Equation 1) that has five parameters is reduced to a
four-parameter model

yij =

{

l1(t) : a1i + b1i(tij)+ εij tij 6 γ

l2(t) : a1i + b1iγ + b2i(tij − γ)+ εij tij > γ
(2)

The Level-2 (between-subject) model is specified as











a1i = µa1 + ζa1i

b1i = µb1 + ζb1i

b2i = µb2 + ζb2i

(3)

with





ζa1i
ζb1i
ζb2i



 ∼ MVN









0
0
0



 ,





τπ00 τπ01 τπ02

τπ10 τπ11 τπ12

τπ20 τπ21 τπ22







 , (4)

whereµa1,µb1, andµb2 are growth factormeans and ζa1, ζb1, and
ζb2 are random disturbances in their respective growth factors.
The Level 1 residuals and the Level 2 disturbances are also
assumed to be uncorrelated with each other and with the latent
growth factors.

The parameterization of Model (Equation 2) cannot be
specified and estimated directly in conventional Structural
Equation Modeling (SEM) programs. Harring et al. [3] suggested
a re-parameterization of Model (Equation 2) to make the
estimation in SEM programs possible. They proposed to combine
the two linear trajectories in Model (Equation 2) into one

equation yij = λ1i + λ2itij + λ3i

√

(tij − γ)2 + εij, where λ1i =

(a1i+ a2i)/2, λ2i = (b1i+ b2i)/2, and λ3i = (b2i− b1i)/2. Readers
are referred to Harring et al. [3] and Kohli and Harring [5] for
details of the model re-parameterization.

SEM-BASED FIT INDICES

The commonly used fit indices available in standard SEM
software for applied researchers to determine the adequacy of
their SEM models includes but not limited to root-mean-square
error of approximation (RMSEA; [17]), standardized root-mean-
square residual (SRMR; [18]), the Comparative Fit Index (CFI;
[19]), and the Tucker-Lewis Index (TLI; [20]). Following the
recommendation of Hu and Bentler [21, 22], the cutoff criteria
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for the commonly used fit indices (e.g., RMSEA ≤ 0.06; CFI ≥
0.95; TLI ≥ 0.95; SRMR ≤ 0.08) have been generally used to
assess model fit/misfit in SEM analysis. However, there has been
controversy regarding the advocacy for the proposed fixed cutoff
criteria. Applied researchers were warned against a complete
reliance on fixed cutoff criteria in assessing model fit (see e.g.,
[23–25]). Simulation studies have been done in the context
of confirmatory factor analysis (CFA) models, evaluating the
performance of the fit indices in identifying misspecification in
covariance structures (see e.g., [21, 23, 24]).

More relevant to the present research interest were the
studies that addressed the sensitivity of fit indices in identifying
misspecifications of growth shape. Wu et al. [26] derived
theoretically that the SEM-based fit indices such as the Chi-
Square, RMSEA, CFI and TLI were able to “directly detect”
mis-specified functional form for the mean growth trajectory.
Wu and West [27] evaluated the theoretical derivation using a
simulation study to further understand the performance of the
above mentioned fit indices in detecting model misspecification
in covariance structures and marginal mean structure. In their
study, the mean growth trajectory in the population model was
quadratic GCM, but was mis-specified as linear GCM. Their
findings with regards to the capabilities of fit indices in detecting
mis-specified mean functional forms showed that RMSEA, CFI,
and TLI were more sensitive to misspecification in marginal
mean structure than Chi-square test statistic or SRMR, while the
latter two were affected by sample size. Leite and Stapleton [28]
found that comparatively speaking, the Chi-square test statistic
performed the best, followed by RMSEA, relative to CFI, TLI,
and SRMR in detecting model misfit in GCM, accounting for
sample size, misspecification severity, number of time points, and
population growth shapes, when the population data generated
using quadratic, plateau, and piecewise GCMs were fitted using
a (mis-specified) linear model. It is noteworthy that the baseline
model used to calculate CFI and TLI for growth curve model is
not appropriate in standard SEM software packages including the
Mplus software. The appropriate baseline model is an intercept-
only model in which only the intercept mean and residual
variances are freely estimated [27, 29].

Another important piece of information that applied
researchers tend to rely on for model fit improvement is
modification index (MI) or Lagrange multiplier. What MI
captures is an estimate of the expected change in the specified
model’s overall chi-square (χ2) value if a previously constrained
parameter were allowed to be freely estimated. A large MI value
suggests an appreciable improvement in model fit if the model
were modified to freely estimate that particular parameter,
given that the post hoc modification is theoretically justifiable.
While MI provides the significance of the misspecification,
EPC (expected parameter change) is an estimate of the impact
of the misspecification on parameter estimates. EPC has been
suggested to be used in conjunction with MI to detect model
misspecification (see e.g., [30]). Several variations of EPC have
been proposed: the unstandardized expected parameter change
(EPC; [31]), which provides the estimated value that a given fixed
parameter would have if it were freely estimated in the model; the
partially standardized EPC [32], and the fully standardized EPC

(SEPC; [33]), referred to as “Std YX E.P.C.” in the Mplus package
(2007–2016). Interested readers are referred to Whittaker [34]
for the differences between the variations of EPC.

Saris et al. [31] argued against the reliance on χ
2 test

statistics and fit indices for model evaluation because they are
not only affected by the degree of misspecification but also by
the incidental characteristics of the model. Alternatively, they
proposed to use MI along with EPCs. However, the decision on
the presence of model misspecification can only be made when a
large, significantMI is associated with a large EPC. Saris et al. [35]
further suggested taking into account of the information on the
power of the MI test when using the SEPC in combination with
MI to make decision regarding model misspecification errors.
They also suggested that a SEPC of 0.2 or larger is a large
value, indicative of possible misspecification error. To evaluate
whether a SEPC of 0.2 or larger can be implemented as a
cutoff criterion of the SEPC in applied research, Whittaker [34]
conducted a simulation study to examine the performance of
the MI and SEPC in detecting misspecification errors when a
correlated two-factor population model was mis-specified as an
uncorrelated two-factor model. Her findings revealed that the
SEPC cutoff criterion can identify misspecification 70% of the
overall replications in 80% of all the manipulated conditions in
her study and it performed more accurately than the MI even
when sample sizes and factor loading sizes were both small.
Overall, there have been no consistent findings regarding the
accuracy and stability of MI and/or EPC in detecting model
misspecification; some studies revealed promising performance
of MI and/or EPC [6, 36], but a preponderance of research found
the performance less than acceptable [30, 32, 37, 38].

In summary, the majority of previous research only
investigated misspecification in covariance structure and
the findings are inconsistent. Hence, it is necessary to evaluate
the effectiveness of using fit indices, MIs, and SEPC to detect
misspecifications on the growth shape due to mislocations of
turning points.

METHODS

Data Generation
A simulation study was conducted to address the above research
questions. The population model used for data generation is a
piece-to-piece linear growth model consisting of 7 equidistance
time points and connected by one turning point. For simplicity,
no covariates are included in the population model.

Based on the model defined by Equations (2–4), a total of 11
parameters are specified: four fixed effect coefficients (i.e., µa1,
µb1, µb2, and γ ) and seven variances and covariance of random
effects (i.e., σ 2, τπ00, τπ10, τπ20, τπ11, τπ21, τπ22).Table 1 presents
the population parameter values specified based on previous
studies (see e.g., [39]).

Design Factors
Based on previous findings regarding PGCM [5, 6, 27, 28], four
design factors are considered, including (a) sample size, (b) the
magnitude of change in the growth rate, (c) degree of severity in
turning point misspecification, and (d) levels of non-normality.
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TABLE 1 | Population parameters for the piecewise growth trajectory.

Mean piecewise trajectory

a 2.5

b1 0.6

b2 0.54a

γ 3b

σ
2 1.0

8

Tπ =









τπ00

τπ10 τπ11

τπ20 τπ21 τπ22









=









0.200

0.050 0.100

0 0.035 0.100









aTwo levels of change in growth rate respectively at 0.54 and 0.44.
bFour levels of turning point are specified at 3, 3.5, 4, and 5.

Sample Size
The sample size was decided based on the empirical studies
using piecewise latent growth curve modeling obtained from a
literature search in PsycINFO (from 2010 to 2016). We chose
three sample size conditions (75, 200, or 500 cases), representing
approximately the minimum, 25th, and 50th percentiles of the
sample size distribution.

Magnitude of Change in the Growth Rate
Based on Kwok et al.’s [6] study, we considered two levels in
the magnitude change in growth rate: small change vs. medium
change. Given that the growth rate in the first piece is 0.6,
following Raudenbush and Liu’s [39] effect size equation, the
growth rate of the second piece is set to be 0.44 for the medium
change condition and 0.54 for the small change condition.

Levels of Severity in Turning Point Misspecification
We generated data with four locations of turning point: 3, 3.5, 4,
and 5 respectively. In the analysis model, the conventional PGCM
specifies the turning point to be at time point 3. This is to mirror
the two scenarios in reality: (1) the treatment began at time point
3, and was followed with an immediate change in growth rate
(i.e., no misspecification); (2) the treatment effect was delayed
(i.e., misspecification of 0.5, 1, or 2 time points).

Normality of Distributions
In longitudinal data, it is common to encounter non-normal
data. To mimic real world data, we considered two conditions:
normal and moderately skewed. For the moderately skewed
distributions, the random effects were generated to have skewness
of 1.5 and kurtosis of 6 respectively using Vale and Maurelli’s
[40] algorithm for simulating multivariate non-normal data.
Such values are considered to be within the range of skewed
distribution encountered in applied psychological research
[41, 42].

In summary, the simulation used a 3 (number of sample size:
75 or 200 or 500)× 2 (magnitude of change in growth rate: small
[B2 = 0.54] or medium [B2 =: 0.44]) × 4 (levels of severity
of misspecification: 0, 0.5, 1, or 2 time points) × 2 (levels of
distribution: normal or moderately skewed) factorial design to

generate the data. A total of 500 replications were generated for
each condition using SAS 9.4 Proc IML procedure [43], yielding
24,000 total data sets. Each replication was then fit with two
different model specifications respectively: (1) the conventional
PGCM with the turning point specified to be at the 3rd time
point, and (2) the newly proposed PGCM with the turning point
as an unknown parameter to be freely estimated. Both models
were fit using Mplus version 7.4 [44] with Estimator = MLR.
The Mplus code for the newly proposed PGCM is provided in
the Appendix as a reference.

Analysis
Proper replications that reached convergence and had no
improper solutions (e.g., negative variances) were retained for
further analysis. The means and standard deviations of each fit
index were presented along with their respective hit rates, which
is a measure of the proportion of replications that successfully
identified the correct or mis-specified models based on the
recommended cutoff criteria (RMSEA≤ 0.06; SRMR≤ 0.08; TLI
≥ 0.95; FCI ≥ 0.95) recommended by Hu and Bentler [22].

For Modification Indexes (MI), because the purpose is to
detect growth shape misspecification due to the incorrectly
located turning point, we restricted the search of MIs among the
loadings of time points 3 to 7 associated with the 1st piece and
the 2nd piece growth factors. To maintain the family-wise Type
I error at the 0.05 level, we adjusted the alpha level to be at 0.005
because there are a total number of 10 potential fixed loadings to
be modified. Therefore, the threshold of a MI to be considered
significant was 7.88 (df = 1 and α = 0.005). For SEPCs (the fully
standardized Expected Parameter Changes), we used the cutoff
value of 0.2 as recommended by Saris et al. [35].

Estimates of the turning point, growth parameters, their
corresponding standard errors and the random effects were
summarized across all proper replications for each condition.
The standardized biases of the estimates [i.e., B(θ̂) = (θ̂ −

θ)/S(θ̂)]1 were calculated. The mean of the standardized bias
is equivalent to a Cohen’s d, which measures the standardized
distance between the estimate and the parameter. Based on the
guidelines for Cohen’s d, the value of less than 0.14 is considered
acceptable. For turning point estimates, the unstandardized
biases [i.e., B(θ̂) = θ̂ − θ] were also calculated to show the bias
in the original metric of time.

Analysis of variance (ANOVA) was then used to examine
the impact of the design factors on the bias of the parameter
estimates. The eta-squared (η2 = SSEffect/SSTotal) effect size was
computed and reported as a measure of practical significance.
Effects were considered substantial with the eta-squared greater
than 0.1.

RESULTS

Model convergence was explicitly examined to ensure a clear
and appropriate analysis of the results. All 500 replications in
each of the designed conditions, estimated using the conventional

1Where θ̂ is the parameter estimate, θ the population parameter value, and S(θ̂)

the standard deviation of the estimates across 500 replications.
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PGCM with the turning point determined a priori, converged
successfully with no improper solutions. For the PGCM with
an unknown turning point, the average convergence rate was
around 80%. Non-convergence or improper solutions occurred
more often with smaller sample size. The average convergence
rate with no improper solutions for replications estimated using
the PGCMwith unknown turning points is 68% (n= 75), 81% (n
= 200), and 88% (n= 500) across all other designed conditions.

Performance of Fit Indices under the True
Models
The means and standard deviations (SDs) of the examined fit
indices (i.e., Chi-square test statistics, CFI, TLI, SRMR, and
RMSEA) for the conventional PGCM and the newly proposed
PGCM were summarized across all proper replications under
data distributions (seeTable 2). For the conventional PGCMwith
the turning point correctly specified a priori, when distributions
were normal, the mean of χ

2
(df = 19) was 19.59 and the SD was

6.35. The values were similar to themean ofχ2 (19.78) and the SD
(6.42) for the same model specification when data distributions
were moderately skewed. For the newly proposed PGCM, the
mean of χ

2
(df = 18) was 19.16 and the SD was 12.64 for normal

distributions, and was 22.35 and 18.14 for moderately skewed
data distributions. Type I error rates associated with the Chi-
square test for the conventional PGCM (i.e., the rate of rejecting a
correctly specified model) were almost identical for normal (i.e.,
6.83%) and skewed distributions (i.e., 6.60%).

For the newly proposed PGCM, the Type I error rate was
7.27% when distributions were normal, which was lower than
that for the skewed distributions (Type I error rate = 10.67%).
This suggests that the newly proposed PGCM could be sensitive
to data distributions, and deviation from normality could result
in higher rejection rate even when the model was appropriately
specified.

Table 2 also presented the means and SDs of RMSEA,
CFI, TLI, and SRMR, as well as their hit rates, which are

the percentages of replications that correctly identified the
true models. The means of RMSEA were below 0.06 across
the conditions. The hit rates of the indexes were 94.6 and
92% respectively in both model specifications for normal
distributions, and dropped to 90 and 85% when distributions
were moderately skewed. Contrarily, the hit rates of SRMR were
86.4 and 90.2% in both models for normal distributions but
increased substantially to almost 100% for conventional PGCM
and 98.2% for newly proposed PGCM when data distributions
were moderately skewed. CFI and TLI had means of 1.0 and
almost 100% in hit rates across all the conditions in the correctly
specified model.

The means and SDs of the modification indices2 (MI) as well
as the percentage of the replications that had significant MI value
associated with the targeted fixed parameters were presented in
Table 3. Additional information summarized in Table 3 includes
the range of SEPCs (the fully standardized Expected Parameter
Changes) and the percentage of SEPCs larger than 0.2. The mean
of MI ranged from 5.34 to 5.89 and the percentage of significant
MI (≥7.88) ranged from 2.4 to 3.4% across the design factors.
The range of SEPCs became narrower with the increase of sample
size regardless of distributions and the change in growth rate. The
percentages of SEPCs larger than 0.2 ranged from 0 to 4%.

Performance of Fit Indexes in PGCMs with
Mis-Specified Turning Points
Table 4 summarized the descriptive information for the χ

2

test statistic, RMSEA, SRMR, CFI, and TLI across all proper
replications in conventional PGCMs when the turning point is
mis-specified.

When distributions were normal, the means and SDs of
the χ

2 test statistic increased from 20.56 and 6.79 to 27.00
and 10.10 as the degree of turning point misspecification

2MI is not available in Mplus for the PGCM with unknown turning points due to

nonlinear constraints in fitting the model.

TABLE 2 | Descriptive statistics of fit indices when the true turning point was at time point 3.

Fit indices Conventional PGCM with turning point correctly specified at 3 PGCM with unknown turning point estimated based on data

Normal longitudinal data Skewed longitudinal data Normal longitudinal data Skewed longitudinal data

Mean SD Mean SD Mean SD Mean SD

Chi-square 19.59 6.35 19.78 6.42 19.16 12.64 22.35 18.14

(Type I error rate = 6.83%) (Type I error rate = 6.60%) (Type I error rate =7.27%) (Type I error rate =10.67%)

RMSEA 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.04

(Hit rate = 94.6%) (Hit rate = 90%) (Hit rate = 92%) (Hit rate = 85%)

CFI 1.00 0.01 1.00 0.00 1.00 0.03 1.00 0.01

(Hit rate = 100%) (Hit rate = 100%) (Hit rate = 100%) (Hit rate = 100%)

TLI 1.00 0.02 1.00 0.01 1.00 0.04 1.00 0.01

(Hit rate = 98.4%) (Hit rate = 100%) (Hit rate = 100%) (Hit rate = 98%)

SRMR 0.05 0.03 0.02 0.01 0.05 0.02 0.03 0.02

(Hit rate = 86.4%) (Hit rate = 99.8%) (Hit rate = 90.2%) (Hit rate = 98.2%)

Degrees of freedom for the conventional PGCM was 19. Degrees of freedom for PGCM with unknown turning points was 18.
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TABLE 3 | Descriptive statistics of modification indices (MI) for the conventional PGCM with the turning point correctly specified to be at 3.

Impact factors Normal distribution Skewed distribution

Change

rate

Sample

size

MI SEPC MI SEPC

Mean SD Percent of (Min, Max) Percent of Mean SD Percent of (Min, Max) Percent of

MI (≥7.88) SEPC (≥0.2) MI (≥7.88) SEPC (≥0.2)

Small 75 5.47 1.67 2.4 (−0.31, 0.24) 4 5.31 1.66 2.2 (−0.18, 0.30) 1

200 5.89 2.04 2.2 (−0.16, 0.16) 0 5.80 2.49 2.2 (−0.15, 0.13) 0

500 5.34 1.40 1.4 (−0.08, 0.09) 0 5.60 1.95 2.4 (−0.07, 0.102) 0

Medium 75 5.70 1.81 2.6 (−0.28, 0.31) 4 5.53 1.65 2.4 (−0.13, 0.11) 0

200 5.55 1.52 2.0 (−0.14, 0.15) 0 5.55 1.81 3.4 (−0.18, 0.26) 0

500 5.58 1.63 2.0 (−0.10, 0.09) 0 5.67 1.79 2.6 (−0.07, 0.07) 0

TABLE 4 | Descriptive statistics of the chi-square test statistic and fit indices of the conventional PGCM with the turning point mis-specified to be at 3.

Distribution True turning point Chi-square RMSEA CFI TLI SRMR

Mean SD Mean SD Mean SD Mean SD Mean SD

Normal 3.5 20.56 6.79 0.02 0.03 1.00 0.01 1.00 0.01 0.05 0.02

(Power = 0.08) (Hit rate = 9.4%) (Hit rate = 0.00%) (Hit rate = 1.26%) (Hit rate = 12.6%)

4 23.67 8.13 0.03 0.03 1.00 0.01 1.00 0.02 0.05 0.02

(Power = 0.19) (Hit rate = 13.6%) (Hit rate = 0.01%) (Hit rate = 1.50%) (Hit rate = 13.7%)

5 27.00 10.10 0.03 0.03 0.99 0.01 0.99 0.01 0.05 0.02

(Power = 0.33) (Hit rate = 17.5%) (Hit rate = 0.04%) (Hit rate = 1.56%) (Hit rate = 15.0%)

Skewed 3.5 37.39 15.96 0.06 0.03 0.99 0.01 0.99 0.01 0.03 0.01

(Power = 0.60) (Hit rate = 48.5%) (Hit rate = 0.05%) (Hit rate = 0.67%) (Hit rate = 0.27%)

4 81.46 45.60 0.11 0.03 0.98 0.01 0.97 0.01 0.04 0.01

(Power = 0.92) (Hit rate = 96.9%) (Hit rate = 1.63%) (Hit rate = 5.57%) (Hit rate = 1.07%)

5 92.39 53.68 0.12 0.03 0.98 0.01 0.97 0.01 0.05 0.01

(Power = 0.94) (Hit rate = 98%) (Hit rate = 2.00%) (Hit rate = 6.00%) (Hit rate = 2.00%)

increased from 0.5 to 2 time points. With skewed distributions,
the changes were much greater, from 37.39 and 15.96 in
mean and SD to 92.39 and 53.68 as the degree of turning
point misspecification increased from 0.5 to 2 time points.
The empirical power to detect turning point misspecification
for normally distributed data was low (power = 0.33 with
2 time points misspecification). However, when distributions
were moderately skewed, the empirical power to detect model
misspecification reached 0.92 with 1 time point misspecification
and 0.94 with 2 time point misspecification. It is suggestive
that the misspecification of turning point was confounded with
deviations from multivariate normality. The χ

2 test statistic
detects the non-normality in the distribution, not necessarily the
turning point misspecification.

As shown in Table 4, when distributions were normal, the
means of RMSEA were below 0.06 (the cutoff criteria). The hit
rates were small, ranging from 9.4, 13.6, to 17.5%, showing low
sensitivity to turning point misspecification. However, when it
came to skewed distributions, the means of RMSEA increased
from 0.06 to 0.12 as the severity of misspecification increased

from 0.5 to 2 time points. The same increase trend was
observed for hit rates, increasing from 48.5% with 0.5 time point
misspecification to 96.9 and 98% when the misspecification was
by 1 or 2 time points respectively.

The means of CFI and TLI showed almost no deviation
from 1.0 with very small SDs across all conditions. The hit
rates of both CFI and TLI were close to 0 when distributions
were normal and increased to about 6.00% when distributions
are skewed, regardless of the increased severity in turning
point misspecification. The performance of CFI and TLI was
the least desirable in capturing the misspecification in turning
point.

The means and SDs of SRMR remained the same (0.05,
smaller than the cutoff value 0.08) across the different levels
of severity in turning point misspecification with normal
distributions. An increasing trend was observed in the hit rates
with the increase of misspecification severity, but not to the
extent of being effective in detecting the model misspecification.
The hit rates in skewed data conditions were much smaller in size
than the values in the conditions of normal distributions.
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Table 5 summarized the performance of MI and SEPC in
identifying the misspecification in conventional PGCMwhen the
a priori turning point was mis-specified. Holding the severity
of misspecification constant, the means of MI were found to
increase with the increase of the sample size and with the change
from normal distributions to skewed distributions. With normal
distributions, the percentage of replications with MI exceeding
the threshold of 7.88 ranged between 2.7% (0.5 time point
misspecification with a sample size of 75) and 40.0% (2 time
points misspecification with a sample size of 500). The percentage
increased substantially when the distributions were moderately
skewed.

SEPC showed a pattern of increasingly narrower range with
the increase of sample size after keeping the levels of severity
in turning point misspecification constant. The percentages of
replications with SEPC exceeding the threshold of 0.2 were below
5% across all conditions. Overall, SEPC based on MI was a
poor indicator in detecting the mis-specified locations of turning
points.

Standardized Bias of Fixed Effect
Estimates
Table 6 presents the means of the standardized bias of fixed
effect estimates for the correctly specified conventional PGCMs
(i.e., the turning point was specified correctly a priori) and

PGCMs with an unknown turning point estimated based on
data when the true turning point is 3 in the population. On
average, with conventional PGCMs, the standardized bias of
fixed effect estimates of the Intercept (a), 1st Slope (b1) and 2nd
Slope (b2) ranged from 0 to 0.08, negligibly small across the
design factors. For PGCMs with unknown turning points, the
standardized bias of fixed effect estimates a, b1, and b2 ranged
from 0.00 to 0.32. Larger standardized biases were found under
the normal distribution condition than the skewed distribution.
This is counterintuitive; however, a closer examination revealed
that the unstandardized biases were larger under the skewed
distribution condition. The standardized biases looked smaller,
because the standard deviations of the estimates were inflated
under the skewed distribution.

The interaction between data distributions and change in
growth rate explained a substantial amount of variation in the
biases of the estimate of a (η2 = 0.15) (see Figure 1A) and of b1
(η2 = 0.16) (see Figure 1B). The interaction effects between data
distributions and sample size (η2 = 0.13) (see Figure 2A) and
between sample size and change rate (η2 = 0.12) (see Figure 2B)
were found to account significantly for the variations of the biases
of the estimates of b2.

As summarized in Table 7, when the conventional PGCM
was mis-specified due to the mislocation of the turning point,
with normal distributions and a small change in growth rate,
the biases of the estimate of a were acceptable regardless

TABLE 5 | Descriptive statistics of modification indices (MI) for the conventional PGCM with the turning point mis-specified to be at 3.

Impact factors Normal distribution Skewed distribution

True turning

point

Sample

size

MI SEPC MI SEPC

Mean SD Percent of (Min, Max) Percent of Mean SD Percent of (Min, Max) Percent of

MI (≥7.88) SEPC (≥0.2) MI (≥7.88) SEPC (≥0.2)

3.5 75 5.66 1.76 2.7 (−0.33, 0.22) 3 5.99 2.35 6.8 (−0.37, 0.26) 1.60

200 5.85 2.32 3.1 (−0.24, 0.18) 0 6.52 2.89 15.1 (−0.18, 0.17) 0.00

500 6.11 2.21 4.4 (−0.12, 0.09) 0 7.42 3.58 34.8 (−0.12, 0.12) 0.00

4 75 5.78 1.92 3.0 (−0.37, 0.24) 4 7.36 3.88 20.4 (−0.32, 0.35) 4.40

200 6.25 2.49 5.9 (−0.23, 0.18) 0 9.07 5.47 46.7 (−0.26, 0.16) 0.37

500 7.31 3.43 15.3 (−0.13, 0.12) 0 14.00 9.45 90.7 (−0.19, 0.14) 0.00

5 75 6.07 3.13 4.7 (−0.28, 0.18) 2 8.29 4.17 33.3 (−0.29, 0.22) 2.22

200 6.87 3.02 15.2 (−0.21, 0.14) 0 11.92 7.26 72.5 (−0.24, 0.14) 0.13

500 9.17 5.01 40.0 (−0.15, 0.09) 0 20.91 14.35 99.2 (−0.18, 0.12) 0.00

TABLE 6 | Mean standardized biases of fixed effects when the true turning point was at time point 3.

Impact factors Conventional PGCM PGCM with an unknown turning point

Distribution Growth rate change Correct specification of true turning point at 3 Estimated based on data

Intercept (a) 1st Slope (b1) 2nd Slope (b2) Intercept (a) 1st Slope (b1) 2nd Slope (b2)

Normal 0.54 (Small) 0.08 −0.03 −0.03 0.00 0.18 −0.16

0.44 (Medium) −0.02 0.02 0.02 −0.2 0.32 −0.12

Skewed 0.54 (Small) 0.03 0.03 −0.03 0.03 0.01 −0.06

0.44 (Medium) 0.02 −0.04 0.00 0.01 −0.07 −0.06
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FIGURE 1 | (A) Interaction effect between change in growth rate and data distributions on the standardized bias of the intercept (a) estimate and (B) Interaction effect

between change in growth rate and data distributions on the bias of b1 estimate.

FIGURE 2 | (A) Interaction effect between sample size and data distributions and (B) Interaction effect between sample size and change in growth rate on the

standardized bias of b2 estimate.

TABLE 7 | Mean standardized biases of fixed effects when the true turning point was at 3.5, 4, or 5.

Impact factors Conventional PGCM PGCM with an unknown turning point

Estimated based on data

Distribution Growth rate change Intercept 1st Slope 2nd Slope Intercept 1st Slope 2nd Slope

(a) (b1) (b2) (a) (b1) (b2)

Mis-specified the true turning point at 3.5 to be 3 The true turning point at 3.5

Normal 0.54 (Small) −0.03 0.15 0.23 −0.05 0.14 −0.08

0.44 (Medium) −0.05 0.31 0.66 0 0.1 −0.14

Skewed 0.54 (Small) 0.01 0.08 0.14 0.02 −0.06 −0.04

0.44 (Medium) −0.08 0.16 0.33 −0.01 −0.06 −0.07

Mis-specified the true turning point at 4 to be 3 The true turning point at 4

Normal 0.54 (Small) −0.06 0.22 0.48 −0.03 0.12 −0.07

0.44 (Medium) −0.16 0.64 1.3 −0.11 0.24 −0.2

Skewed 0.54 (Small) −0.03 0.12 0.3 0.02 0.08 −0.01

0.44 (Medium) −0.02 0.21 0.67 0.03 −0.04 −0.16

Mis-specified the true turning point at 5 to be 3 The true turning point at 5

Normal 0.54 (Small) −0.03 0.22 1.19 −0.01 0.09 −0.09

0.44 (Medium) −0.19 0.74 3.16 −0.1 0.19 −0.27

Skewed 0.54 (Small) −0.03 0.07 0.6 0.02 0 −0.01

0.44 (Medium) −0.03 0.28 1.59 0.05 0.06 −0.05
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of the misspecification severity. However, the increase in
misspecification severity from 0.5 to 2 time points led to an
increase from 0.15 to 0.22 in the mean standardized bias for
b1 and from 0.23 to 1.19 for b2. The biases were larger when
the change in growth rate was medium, resulting in an increase
in the bias from 0.31 to 0.77 for b1 and from 0.66 to 3.16 for
b2, with increase in misspecification severity from 0.5 to 2 time
points.

When distributions were skewed, the corresponding bias was
mitigated to some degree but was still considered unacceptable
particularly when the change in growth rate was medium. For
example, the mean bias for b2 increased from 0.33 to 1.59 with
increase in misspecification severity from 0.5 to 2 time points.
However, when using PGCM with unknown turning points,
biases were considered small (about 0.20) for almost all fix effect
estimates across almost all conditions in spite of the different
distributions in the data.

ANOVA was used to partition the total variance in the
standardized biases associated with the effects of the six design
factors. Table 8 presented the eta-squared and the statistical
significance of the main effects and interactions of the design
factors on standardized bias. Statistically significant effects

(p < 0.05) were marked with asterisks and were bolded if they
were found to be practically significant (η2 > 0.1). The design
factors of data distributions (η2 = 0.17) and change rate in
growth (η2 = 0.10) had substantial main effects on the bias
of the mean of intercept (α). Data distribution was found to
have substantial main effect (η2 = 0.20), model specification
and the level of severity in turning point misspecification were
found to have significant interaction effects respectively on the
bias associated with the estimates of b1 (η

2 = 0.13) and with the
mean of b2 (η

2 = 0.17), as Figure 3A shows.

Standardized Bias of Variance-Covariance
Estimates
Table 9 shows the means of the standardized bias of variance
components estimates broken down by model specification,
distributions and sample size, the factors consistently found to
be systematically related to the observed bias of the estimates of
the variance components. When the fitting model was PGCM
with unknown turning points, for normal data distributions,
the mean biases of the estimated variance components were
negligibly small, ranging from −0.03 to 0.15. On the other
hand, when the fitted model was the conventional PGCM

TABLE 8 | Effect sizes of the impacts of the design factors on the standardized bias of estimated model parameters.

Impact factors Fixed effect estimates Estimates of standard Estimates of variance components

error of fixed effects

a b1 b2 γ a b1 b2 γ Variance Covariance

τ
π00 τ

π11 τ
π22 τ

π10 τ
π20 τ

π21

Model specification 0.01 0.07* 0.26* 0.02 0.05* 0.02 0.00* 0.00* 0.01* 0.00 0.28* 0.11*

Data distribution 0.17* 0.20* 0.01* 0.52* 0.00 0.04* 0.10* 0.72* 0.77* 0.75* 0.63* 0.72* 0.07* 0.53*

Turning point 0.04 0.09* 0.17* 0.23* 0.01 0.06 0.14* 0.09* 0.00 0.01* 0.01* 0.02* 0.12* 0.01*

Change rate 0.10* 0.07* 0.03* 0.00 0.01 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00

Sample size 0.01 0.03* 0.03* 0.00 0.02 0.03 0.01 0.03* 0.00* 0.12* 0.08* 0.12* 0.04* 0.11*

Model specification ×

Data distribution

0.02 0.00 0.03* 0.07* 0.09* 0.04* 0.00* 0.00 0.11* 0.00 0.16* 0.08*

Model specification ×

Turning point

0.08* 0.13* 0.17* 0.01 0.06 0.04 0.00 0.00* 0.00* 0.00* 0.11* 0.02*

Model specification ×

Change rate

0.00 0.03* 0.05* 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Model specification ×

Sample size

0.01 0.04* 0.03* 0.02 0.00 0.05* 0.00* 0.00* 0.00 0.00 0.02* 0.01*

Data distribution ×

Turning point

0.03 0.00 0.02 0.05* 0.05 0.07* 0.00 0.14* 0.00* 0.00* 0.00 0.02* 0.08* 0.00

Data distribution ×

Change rate

0.05* 0.04* 0.00 0.00 0.00 0.00 0.01 0.00 0.00* 0.00 0.00 0.00 0.00 0.00

Data distribution ×

Sample size

0.00 0.00 0.00 0.03* 0.12* 0.03 0.05* 0.00 0.11 0.10* 0.13* 0.10* 0.02* 0.10*

Turning point ×

Change rate

0.02 0.03* 0.03* 0.01 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Turning point × Sample

size

0.08* 0.03 0.02 0.12* 0.06 0.06 0.07 0.00 0.00 0.00 0.00 0.01* 0.01 0.00

Change rate× Sample

size

0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Factors with a statistically significant effect (p < 0.05) were marked with an asterisk and was bolded if they were found to have practically significant effect (eta squared > 0.1).
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FIGURE 3 | (A) Interaction effect between the locations of true turning point and model specification (Model Specification × Turning point) on the standardized bias of

fixed effect estimate of b1 and b2. (B) Interaction effect between sample size and the locations of true turning point (Turning point × Sample size) on the standardized

bias of turning point (γ) estimate in PGCM with unknown turning points.

TABLE 9 | Mean standardized biases of variance components estimates.

Impact factors Standardized bias of variance and covariance of growth factors

Model specification Distribution Sample size τ
π00 τ

π11 τ
π22 τ

π10 τ
π20 τ

π21

PGCM_c Normal 75 −0.04 0.14 −0.65 0.01 0.05 0.04

200 −0.05 0.31 −0.96 0.02 0.09 0.05

500 −0.03 0.51 −1.52 0.07 0.14 0.09

Skew 75 1.67 2.60 2.73 1.15 0.37 0.90

200 2.77 4.25 4.58 1.88 0.61 1.49

500 4.42 6.63 7.20 3.03 1.00 2.31

PGCM_u Normal 75 −0.01 0.06 0.11 −0.04 −0.03 −0.02

200 −0.06 0.11 0.14 0.01 −0.02 −0.03

500 −0.06 0.11 0.15 0.08 −0.02 −0.03

Skew 75 1.73 2.42 1.03 1.13 −0.16 0.25

200 2.94 3.92 1.99 1.84 −0.19 0.52

500 4.59 6.10 4.69 3.03 −0.09 1.18

PGCM_c is conventional PGCM with turning point specified a priori; PGCM_u is PGCM with unknown turning points.

with mis-specified turning points, large biases were observed
in the variance components estimates. The biases increased
as sample size increased. For example, an increase of sample
size from 75 to 500 led to an increase in the mean biases
from 0.14 to 0.51 for τπ11 and from −0.65 to −1.52 for
τπ22. In addition, when the data distributions were skewed,
the variance components were highly biased for both models
and in general the biases increased with the increase of sample
size.

Bias of the Turning Point Estimates
The accuracy of the turning point estimates was examined using
both the standardized and the unstandardized bias due to the
practical meaning of the metric of time points. As summarized in
Table 10, the maximum mean unstandardized bias was around
0.25 when sample size is 75, growth rate change is small, and
distribution is normal, indicating that the estimated turning

point is 0.25 time point away from the true turning point under
those conditions. The minimum mean unstandardized bias was
around 0.01 when sample size is 500, growth rate change is
medium, and distribution is normal. Regardless of the locations
of the true turning point, the mean unstandardized biases
decreased with the increase in sample size and the increase in the
change of growth rate (from small to medium). Though similar
trends were observed with skewed distributions, the values of the
unstandardized biases were much larger.

On the other hand, taking the variation in the turning point
estimates into consideration, the standardized bias was much
smaller under the normal distribution condition (η2 = 0.52). An
interaction effect was found between the location of the turning
point and sample size (η2 = 0.12). As shown in Figure 3B, the
standardized biases were the smallest when the turning point was
located at time point 4 and when the sample size was moderately
large (N = 500).
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TABLE 10 | Mean unstandardized and standardized biases of turning point (γ) estimates.

Impact factors The location of the turning point

Distribution Growth rate change Sample size t = 3 t = 3.5 t = 4 t = 5

Normal 0.54 (Small) 75 0.25 (0.29) 0.04 (0.05) 0.07 (0.09) −0.26 (−0.32)

200 0.00 (0.00) 0.14 (0.19) −0.02 (−0.04) −0.12 (−0.18)

500 0.02 (0.04) 0.02 (0.04) −0.05 (−0.10) −0.03 (−0.07)

0.44 (Medium) 75 0.04 (0.06) 0.07 (0.09) 0.01 (0.02) −0.20 (−0.26)

200 −0.03 (−0.06) 0.03 (0.05) 0.03 (0.04) −0.02 (−0.04)

500 −0.04 (−0.09) 0.06 (0.17) −0.00 (−0.01) 0.03 (0.07)

Skewed 0.54 (Small) 75 0.23 (0.33) 0.40 (0.56) 0.24 (0.44) −0.04 (−0.10)

200 0.15 (0.24) 0.28 (0.42) 0.16 (0.37) 0.02 (0.08)

500 0.04 (0.13) 0.12 (0.28) 0.06(0.26) 0.02 (0.12)

0.44 (Medium) 75 0.27 (0.36) 0.38 (0.52) 0.22 (0.41) −0.02 (−0.07)

200 0.16 (0.28) 0.28 (0.44) 0.19 (0.42) 0.00 (0.01)

500 0.03 (0.12) 0.08 (0.22) 0.10 (0.33) 0.01 (0.10)

The values outside the parentheses are unstandardized bias. The values within the parentheses are standardized bias.

Standardized Bias of Standard Errors of
Fixed Effects and Turning Point Estimates
for PGCM with Unknown Turning Point
Table 11 showed the means of the standardized bias of the
SEs of fixed effect and turning point estimates for PGCM with
unknown turning point. The mean standardized bias of SEs of
a, b1 and b2 were negligibly small, ranging from 0.00 to 0.07
in absolute values. However, large biases were found in the SEs
associated with the estimates of the turning point (γ). When the
distributions were normal, the observed bias of the SEs of γ were
acceptable, ranging from −0.03 to 0.26; when the distributions
were skewed, the estimates of the SEs of γ were highly biased and
underestimated with exception to the condition when the turning
point was located at the 5th time point.

As observed in Table 8, data distributions and sample size had
statistically and practically significant interaction effect (η2 =

0.12) on the observed bias of SEs of a. The SEs of b2 were found
to be substantially affected by data distribution (η2 = 0.10) and
the severity of turning point misspecification (η2 = 0.14). Data
distribution and the locations of the true turning point exhibited
a significant interaction effect (η2 = 0.14) on the bias of the SEs
of the turning point (γ). The earlier the turning point is located
at the time series, the larger the biases are associated with the
estimates of the SEs of the turning point (γ), and such biases are
even larger with moderately skewed data distributions.

DISCUSSION

The study investigated the impacts of mis-specified turning
point on growth trait estimation in conventional PGCMs that
require turning points to be specified a priori. We examined the
sensitivity of generally used model fit diagnostics [i.e., χ

2 test
statistic, RMSEA, CFI, TLI, SRMR, modification index (MI), and
SEPC] in detecting specification errors in conventional PGCMs
due to turning points mislocation. In addition, the performance

of an alternative procedure, PGCMs with unknown turning
points (i.e., the turning point is treated as a parameter to be
estimated based on data) was evaluated. The design factors
considered in the simulation study were locations of true turning
point (respectively at time point 3, 3.5, 4, or 5), sample size (75
or 200 or 500), and data distributions (normal vs. moderately
skewed). This section summarized and discussed the results of
the study.

Impact of Turning Point Misspecification
Misspecification of the turning point in conventional PGCMwas
found to have a substantial impact on the fixed effects estimates
of 1st Slope (b1) and 2nd Slope (b2). The biases were considered
acceptable only when the turning point was mis-specified by 0.5
time point with a small change in growth rate between the 1st
and 2nd piece. Misspecification of a turning point earlier than its
true location would result in overestimation of the growth rates
in b1 and b2. Overall, the more severe the misspecification of the
turning point is, the greater the impact is on the estimates, and
the more misrepresented the growth trait estimates are for the
population data. Such consequences are exacerbated when the
change in growth rate is medium.

As expected, misspecification of the turning point also
gives rise to unacceptably large biases with respect to the
estimated variance components. The variances of the slopes of
the 1st and 2nd piece are underestimated, with the latter being
more severely underestimated. Since the variance of the slope
factors reflects inter-individual differences in growth rates, the
underestimation results may lead to the wrong conclusion that
individuals have similar growth process. For applied researchers
who are interested in using individual level predictors to
predict the variation in growth rates, the deflated variance
component estimates may attenuate the relationship between the
predictors and growth rates, leading to misleading inferential
conclusions.
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TABLE 11 | Mean standardized biases of standard errors of fixed effects and turning point estimates.

Impact factors Normal distribution Skewed distribution

Location of turning point Sample size Intercept (a) 1st Slope (b1) 2nd Slope (b2) γ Intercept (a) 1st Slope (b1) 2nd Slope (b2) γ

3 75 0.01 −0.02 0.03 0.18 0.00 −0.03 −0.05 −0.60

200 0.01 0.11 0.02 0.26 −0.03 −0.01 0.00 −0.72

500 0.01 0.04 −0.02 0.05 0.02 0.00 −0.03 −0.65

3.5 75 0.01 −0.02 0.07 0.19 −0.02 −0.01 0.03 −0.57

200 0.02 0.00 0.02 0.05 −0.04 −0.03 −0.02 −0.72

500 −0.01 −0.02 0.05 0.06 0.00 0.00 0.01 −0.77

4 75 0.03 0.02 0.00 0.22 −0.02 −0.01 −0.04 −0.47

200 −0.01 0.03 0.02 0.04 0.03 0.00 0.00 −0.63

500 −0.04 −0.02 −0.02 0.00 0.02 0.00 −0.02 −0.65

5 75 0.02 0.00 0.06 0.17 0.00 0.02 −0.01 −0.06

200 −0.02 0.01 0.06 0.04 −0.02 0.03 0.02 −0.12

500 −0.02 0.04 0.01 −0.03 0.03 0.01 0.03 −0.11

Sensitivity of Model Fit Index Diagnostics
An optimal identification of the location of a turning point a
priori is important for conventional PGCMs. When the location
of a turning point was mis-specified in conventional PGCMs, our
simulation results indicated that the model fit indices [i.e., χ

2

test statistic, RMSEA, CFI, TLI, SRMR, modification index (MI),
and SEPC], generally did not perform effectively in detecting the
misspecification errors. The performance of the overall model
χ
2 test was not only affected by the severity of misspecification

in turning point but also by the incidental characteristics of the
data (e.g., data distributions, sample size). The magnitude of χ

2

test statistic increased as the distribution changes from normal to
skewed and with the increase in sample size. Such undesirable
characteristics of χ

2 test statistic were already confirmed in
many studies (see e.g., [35, 45–47]). Additionally, χ2 test statistic
showed a lack of adequate power to detect model misspecification
in almost all conditions with exception to conditions where
the data distributions were moderately skewed and severity in
misspecification was by 1 time point or more.

As a function of χ
2, RMSEA performed similarly as χ

2

test statistic. RMSEA was not sensitive to the degree of
misspecification in turning point when distributions were
normal. Similar to χ

2 test statistic, it was found to be relatively
more effective only when distributions were moderately skewed
and the turning point was mis-specified by 1 or more time
points. However, such seemingly high power of RMSEA in non-
normal distributions should be taken with caution, as warned
by Nevitt and Hancock [48], the apparent advantage of high
power of RMSEA is a result of the inflated χ

2 test statistic when
multivariate normality is violated. Nor were CFI, TLI, and SRMR
effective in capturing the misspecifications under any of the
design conditions. Although previous studies showed that the
three fit indices are effective in detecting the specification error
when a piecewise growth trajectory is mis-specified as linear (see
[27, 28]), our study shows that the three fit indices do not work

well when the misspecification is on the location of the turning
point rather than the linearity of the trajectory.

The findings with regards to the performance of the MI and
the SEPC showed that MI tended to be more accurate in skewed
distributions particularly in conditions where the severity in
turning point misspecification was by at least 1 time point and the
sample size was moderately large (N = 500). It is not surprising
that the performance of modification indices are also influenced
by data distributions; modification index is a function of χ

2

test, basically a univariate delta χ
2 tests computed on each fixed

parameter if freely estimated. Contrary to the recommendation
of Saris et al. [35] that an SEPC ≥ 0.2 indicates a substantial
misspecification, we found that SEPC was a poor indicator of
turning point misspecification in PGCM.

Performance of PGCM with Unknown
Turning Points
Overall, the PGCM with unknown turning points was found to
perform very well in recovering the fixed effects and the random
effects when the longitudinal responses follow a multivariate
normal distribution. However, when data distributions deviate
from normality, relatively large biases were found to be associated
with the standard error estimates of the turning point and the
random effects of growth factors. The biases of the turning
point estimates are small to moderate in general. It is interesting
that when the location of the turning point is at time point
4, the estimation of the turning point becomes highly accurate
regardless of data distribution types. This finding to some degree
corresponds to the results in Kohli and Harring’s [5] study
which showed that the locations of the turning point were
systematically related to the relative bias of growth parameters,
particularly with the estimation of the mean of the slope of the
2nd piece. Specifically, the earlier the turning point is located
in the time series, the larger the bias is. However, their study
differed from ours in two major aspects: their population model
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was a second-order piecewise latent growth curve model; though
they evaluated the model performance in the recovery of growth
parameters with regards to the estimation of the intercept, slopes
of the 1st and 2nd piece, the focus was not on the estimation of the
turning point and therefore, no relevant findings were discussed
in their study.

Recommendations
In longitudinal data analysis, if a turning point is hypothesized
at a specific time point, applied researchers tend to specify an
a priori piecewise linear model to capture the turning point
and examine whether the model fits the data. The simplest
approach to evaluate model fit is through the use of model
fit indices and MIs, however, the present findings showed that
those generally used model fit diagnostics are not accurate or
effective in detecting specification errors related to the turning
point location. Unless the misspecification is severe (i.e., by at
least 1 time point) and the longitudinal data follow a multivariate
moderately skewed distribution, the generally used fit indices are
not able to identify the specification errors.

If a turning point is hypothesized but its location is unknown,
the MI-based procedure proposed by Kwok et al. [6] can be
used to fit a linear growth curve model in the data and then
identify largest MI for factor loadings of the linear growth
factor; however, the procedure requires moderately large sample
size (400 and above) and more measurement waves (minimally
8 waves in the study) to have adequate statistical power to
detect the turning point. A more powerful alternative to the
MI-procedure is the piecewise linear model with unknown
turning points estimated based on data. The present findings
regarding the performance of the procedure in recovering the
mean growth trajectory showed the estimation is highly accurate
even if themultivariate normality assumption is violated. Applied
researchers are recommended to take advantage of the procedure
to correctly identify the turning point in specifying a piecewise
linear growth model. Yet, for applied researchers who are
interested in the significance test of the turning point and/or the
interindividual difference, it is cautioned that the departure from
multivariate normality assumption in longitudinal responses
tend to inflate the standard error estimates of the turning point
and deflate the random effect estimates associated with the
growth factors.

Limitations and Future Research Directions
The findings of the study should be considered in light of the
limitations and may not be generalized to models and data
scenarios that are very different from the ones considered in

this study. A limitation to be considered in generalizing the
findings of the study is with respect to the level of change in
growth rate. As a matter of fact, the change in growth rate can
be much larger than what has been considered in our study
(e.g., in Kohli and Harring’s [5] study, the resulted effect size
from the change in growth rate is 5). Another limitation to
be considered is that we only examined the impact of a mis-
specified turning point on growth trait estimation in a priori
piecewise linear model, assuming all other parts of the latent
growth model were correctly specified. Yet, in real data scenarios,

the misspecification of turning point can happen simultaneously
with misspecifications in the other parts of the latent growth
model (e.g., the misspecification of residual variances across the
measurement waves often happens). How the misspecifications
in both the turning point and other parts of the latent growth
model interact with the design factors considered in present
study particularly when the normal distributions were violated
is another question that merits research attention.

Finally, the study only considered two-piece linear growth
curves connected by one fixed turning point. In reality,
developmental trajectories may have a zigzag shape with multiple
turning points. In addition, there might be individual differences
in the location of the turning points. Hence, further development
of the PGCM is needed to model trajectories with multiple
unknown turning points and random effects associated with the
turning points.
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APPENDIX

Mplus Code for Fitting Newly Proposed PGCM with an
Unknown Turning Point

Title: Newly Proposed PGCM;

Data:
File is “C:\tpoint_4\data.txt”;

Variable:
Names are ID t1-t7;
Usevariables are t1-t7;

Analysis: Estimator=MLR;

MODEL:
w1 BY t1-t7@1;
w2 BY t1@0 t2@1 t3@2 t4@3 t5@4 t6@5 t7@6;
w3 BY t1∗0 (p1);
w3 BY t2-t7 (p2-p7);

w1; w2; w3;
w1 WITH w2∗0;
w1 WITH w3∗0;
w2 WITH w3∗0;

[t1-t7@0];
t1-t7∗1;

[w1](mw11);
[w2](mw21);
[w3](mw31);

MODEL CONSTRAINT:

NEW(gam1∗2.5 b11∗2.0 b21∗0.5 b41∗0.3); ! The starting
values set to be around the true values;

p1= (sqrt((0-gam1)∧2));
p2= (sqrt((1-gam1)∧2));
p3= (sqrt((2-gam1)∧2));
p4= (sqrt((3-gam1)∧2));
p5= (sqrt((4-gam1)∧2));
p6= (sqrt((5-gam1)∧2));
p7= (sqrt((6-gam1)∧2));
b11=mw11+mw31∗gam1;
b21=mw21−mw31;
b41=mw21+mw31;

OUTPUT:
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