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Let I = (a, b) and L be a nowhere dense perfect set containing the ends of the interval I and let φ : I → ℝ be a non-increasing continuous surjection constant on the components of I \ L and the closures of these components be the maximal intervals of constancy of φ. The family {Ft, t ∈ ℝ} of the interval-valued functions Ft(x): = φ−1[t + φ(x)], x ∈ I forms a set-valued iteration group. We determine a maximal dense subgroup T [image: image] ℝ such that the set-valued subgroup {Ft, t ∈ T} has some regular properties. In particular, the mappings T [image: image] t → Ft(x) for t ∈ T possess selections ft(x) ∈ Ft(x), which are disjoint group of continuous functions.
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1. INTRODUCTION

A family of functions {ft : I → I, t ∈ ℝ} such that ft ○ fs = ft+s, t, s ∈ ℝ is said to be an iteration group, however a family of set-valued functions {Ft : I → 2I, t ∈ ℝ} such that Ft ○ Fs = Ft+s, t, s ∈ ℝ is said to be a set-valued iteration group (abbreviated to s-v iteration group). The notion of an iteration semigroup of set-valued functions was introduced and studied by Smajdor [1] and then studied in some classes of set-valued functions (see e.g., [2], [3], [4], [5]). The fundamental problem in the theory of multivalued iteration semigroups is the problem of existence and regularity properties of continuous selections. In this note we considered particular set-valued iteration groups whose values are the intervals or singletons. The presented results complete and generalize some of the topics from Zdun [6]. The considered s-v iteration groups have the very irregular properties. For every such s-v iteration group {Ft : I → 2I, t ∈ ℝ} we find a special maximal additive subgroup T ⊂ ℝ such that group {Ft : I → 2I, t ∈ T} has several “regular” properties.

2. MATERIALS AND METHODS

Let I = (a, b) and φ : I → ℝ be a surjection. Define the set-valued functions
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The surjection φ is said to be the generating function of the family {Ft}.

THEOREM 1

The family {Ft : I → 2I} is a set-valued iteration group, i.e.,
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where
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Moreover, x ∉ Ft(x) for t ≠ 0.

Proof. Fix an x ∈ I. Let z ∈ Ft ○ Fs(x). Then there exists a y ∈ Fs(x) such that z ∈ Ft(y). This means that φ(y) = φ(x) + s and φ(z) = φ(y) + t, which gives that φ(z) = φ(x) + t + s. Hence z ∈ Ft+s(x). Similarly we prove the converse inclusion.                   □

If φ is a homeomorphism then Equation (1) defines the general form of continuous iteration groups such that F1(x) ≠ x for x ∈ I.

If φ is non-injective then s-v iteration group generated by φ has very irregular properties and we will call this group singular. The purpose of this paper is the study of these “singularities.”

Obviously the set-valued functions Ft, t ∈ ℝ pairwise commute. This property is not transferible on the continuous selections of these set-valued mappings.

Let us assume that there exist Fu, Fv with [image: image] which possess homeomorphic commuting selections f and g, that is f(x) ∈ Fu(x) and g(x) ∈ Fv(x) for x ∈ (a, b) and f ○ g = g ○ f. Then the generating function φ satisfies the equations φ(f(x)) = φ(x) + u and φ(g(x)) = φ(x) + v. Note that then f, g are iteratively incommensurable, i.e.,

[image: image]

where fn denotes the n-th iterate of function f and f0 = id. Define
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The set Lf, g does not depend on x and either this set is the interval cl I or Lf, g is a nowhere dense perfect set in I (see Zdun [7]). If the generating function φ is continuous at least at one point of Lf, g then it is continuous and it is monotonic (see [8]).

We have more

THEOREM 2

If f and g are commuting iteratively incommensurable homeomorphisms, then there exist infinitely many s-v iteration groups {Ft, t ∈ ℝ} of type (1) such that f(x) ∈ F1(x) and g(x) ∈ Fs(x) for an s ∉ ℚ, but the only one of them has a monotonic generating function φ. Then the generating function φ is continuous and φ[Lf,g] = ℝ.

The proof is a simple consequence of Theorem 2 and Corollary 1 in Zdun [8].

The family {Ft, t ∈ ℝ} is a single-valued iteration group if and only if Lf, g = [a, b]. Then φ is strictly monotonic (see Zdun [8]).

In this paper we consider the case where Lf, g ≠ [a, b], that is {Ft : t ∈ ℝ} is a proper set-valued iteration group.

In the next section we will consider the more general case.

3. RESULTS

Assume the following general hypothesis:
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Then the function φ is continuous and the values of Ft are closed intervals or singletons. Denote by {Iα, α ∈ A} a family of the intervals of constancy of φ. These intervals are closed. Put
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and
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Note that [image: image] is strictly increasing, φ[Iα] are singletons and if Iα < Iβ then φ[Iα] < φ[Iβ].

It is easy to verify that the s-v iteration group {Ft : I → cc[I], t ∈ ℝ} generated by φ has the following properties.

PROPOSITION 1

(i) For every x ∈ I Ft(x) either is a closed proper interval Iα or a singleton belonging to L*;

(ii) for every x ∈ I the s-v function t → Ft(x) is strictly decreasing, i.e., if s < t then for every u ∈ Fs(x) and v ∈ Ft(x), u < v;

(iii) for every x ∈ I [image: image]

(iv) every s-v function Ft is constant on the intervals Iα;

(v) if s ≠ t then Ft(x) ∩ Fs(x) = Ø for x ∈ I, that is the group {Ft, t ∈ ℝ} is disjoint.

The conditions (i), (ii), (iii) characterize the interval-valued iteration groups. We have the following.

PROPOSITION 2

If an s-v iteration group {Ft, t ∈ ℝ} satisfies conditions (i), (ii), and (iii), where {Iα, α ∈ A} is a given family of closed disjoint proper intervals, then there exists a function φ satisfying (H) such that Ft are given by the formula (1).

Proof. Define
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Let x0 ∈ I and put [image: image]. Note that h is a bijection from ℝ onto [image: image]. Define φ by the following way: if x ∈ Iα for an α ∈ A then [image: image], if x ∈ L* then φ(x): = h({x}). It is easy to see that φ is a non-decreasing surjection of I onto ℝ constant on the intervals Iα and
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Since [image: image] we have
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Hence
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Let x ∈ I. Then, by (iii), there exists an s ∈ ℝ such that x ∈ h(s). Hence φ(x) ∈ φ[h(s)] = s, thus φ(x) = s. This gives that φ[Ft(x)] ⊂ φ[Ft(h(s)] = φ(x) + t, so

[image: image]

Since Ft(x) ⊂ φ−1[φ[Ft(x)]] we have Ft(x) ⊂ φ−1[φ(x) + t]. Note that φ−1[φ(x) + t] is a singleton or equals to one of the intervals Iα. If Ft(x) is a singleton then, by (i), [image: image] for any α ∈ A. Thus φ−1[φ(x) + t] is not any of the intervals Iα, so it is a singleton. If Ft(x) is an interval Iα, then φ−1[φ(x + t)] must be also the same interval. This gives equality Ft(x) = φ−1[φ(x + t)].                   □

PROPOSITION 3

Let a family of set-valued function Ft be given by (1), where φ satisfies (H). Define
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for t ∈ ℝ, x ∈ I. Then

(i) the families [image: image] and [image: image] are iteration groups;

(ii) [image: image] and [image: image] for t ∈ ℝ are non-decreasing discontinuous functions constant on the intervals of constancy of φ;

(iii) the mappings [image: image] are strictly decreasing;

(iv) [image: image], [image: image], t ∈ ℝ;

(v) [image: image], t ∈ ℝ.

Proof. (i) Fix an x ∈ I. Note that [image: image] since the sets Ft(x) are closed. Hence, by Equation (1),

[image: image]

so [image: image]. This implies that

[image: image]

for an α ∈ A or both belong to L*, since Iα for α ∈ A are the intervals of constancy of φ. Obviously, in the second case, both values are equal. However, at the first case, [image: image] and [image: image]. On the other hand, putting [image: image] we have that [image: image] and [image: image]. Hence [image: image] and [image: image]. This gives that

[image: image]

Similarly we prove that

[image: image]

(iv) Proving (i) we have shown that [image: image] either belong to L* or equals to one of the ends of the interval Iα which belong to L. Both cases give that [image: image].

The remaining assertions are the simple consequences of formula (Equation 1).               □

Let φ be non-decreasing and non-injective surjection. Define the following family of functions

[image: image]

The index cf is uniquely determined. This allows us to define

[image: image]

As a particular case of Proposition 2.2 in Farzadfard and Zdun [9] we get the following

LEMMA 1

If f ∈ Realm(φ) then the following conditions are equivalent:

(i) φ[L*] = φ[L*] + ind f;

(ii) φ[I \ L*] = φ[I \ L*] + ind f;

(iii) f[L*] = L*;

(iv) f maps each Iα into another one; moreover for every Iβ there exists Iα such that f[Iα] ⊂ Iβ.

Let φ satisfy (H) and define

[image: image]

If T ≠ {0}, then T is a countable Abelian subgroup of group (ℝ, +).

In fact, since φ is constant in the intervals Iα, we have [image: image]. It is easy to see that this set is unbounded above and below thus it is infinite and, consequently, countable since the intervals {Iα, α ∈ A} are pairwise disjoint.

DEFINITION 1

A subgroup T given by Equation (5) is said to be a supporting group of the s-v iteration group {Ft : t ∈ ℝ}.

THEOREM 3

Let T ≠ {0} be a supporting group of s-v iteration group {Ft : t ∈ ℝ} generated by a function φ satisfying (H). Then

(i) if t ∈ T then for every x ∈ L* Ft(x) is a single point and Ft(x) ∈ L*;

(ii) if t ∈ T then for every α ∈ A there exists β ∈ A such that [image: image] for x ∈ Iα;

(iii) if t ∈ T then for every β ∈ A there exists α ∈ A such that [image: image] for x ∈ Iα;

(iv) if Ft[L*] = L* then t ∈ T.

Proof. (i) By Equation (2) [image: image], [image: image] for t ∈ ℝ and [image: image]. By Lemma 1 [image: image] for x ∈ L*. Since φ|Iα is injective [image: image] for x ∈ L*. Thus, by Proposition 3 (v), Ft(x) is a singleton belonging to L*.

(ii) Let x ∈ Iα. By Lemma 1 [image: image] for a β ∈ A. Thus [image: image]. If Ft(x) is a singleton then, by Proposition 1 (i), Ft(x) belongs to L*, so [image: image], but this is a contradiction. Thus Ft(x) is a proper interval, so [image: image].

(iii) Fix a β ∈ A. Since φ[Iβ] is a singleton and φ is a surjection from I onto ℝ there exists an x ∈ I such that φ[Iβ] = t+φ(x), that is [image: image]. Suppose x ∈ L*. Then, by Lemma 1, [image: image], but this is a contradiction since [image: image], so there exists an α ∈ A such that x ∈ Iα.

(iv) Since φ satisfies relation Equation (3) we have φ[L*] = φ[Ft[L*]] = φ[L*] + t, so, by Lemma 1, t ∈ T.           □

Directly by Theorem 3 we get the following

COROLLARY 1

Let T ≠ {0} be the supporting group of the s-v group {Ft : t ∈ ℝ} with generating function satisfying (H). Then

(i) [image: image]

(ii) [image: image]

(iii) T = {t ∈ ℝ:Ft[L*] = L*}.

DEFINITION 2

A family of continuous mappings {ft : I → I, t ∈ T} such that ft ○ fs = ft + s for t, s ∈ T is said to be a T-iteration group.

Now we consider the problems connected with continuous selections of s-v iteration groups. The iteration groups [image: image] and [image: image] are the monotonic selections of s-v group {Ft, t ∈ ℝ} that is [image: image], but they are discontinuous.

Let φ satisfies (H) and Iα = :[aα, bα] for α ∈ A be the intervals of constancy of φ. For t ∈ T define the affine mappings qt, α : [aα, bα] → I such that

[image: image]

For every t ∈ T define the following mapping

[image: image]

LEMMA 2

If T ≠ {0} is the supporting group of s-v group {Ft : t ∈ ℝ} generated by a function satisfying condition (H), then {qt : I → I, t ∈ T} is a T-iteration group of continuous functions. Moreover, qt(x) ∈ Ft(x) for t ∈ T and x ∈ I.

Proof. Note that [image: image] and [image: image] if Iα1 < Iα2. Hence, by Theorem 3, it follows that the mappings qt are strictly increasing surjections and, consequently, they are continuous.

It follows that for every t, s ∈ T, [image: image]. Since the composition of affine functions is an affine function and there exists a unique increasing affine function mapping Iα onto the interval [image: image] we get that qt ○ qs = qt + s on Iα. Now it is easy to see that Proposition 3 implies our assertion.               □

THEOREM 4

If s-v group {Ft : t ∈ ℝ} generated by a function satisfying condition (H) has a non trivial supporting group T, then there exists infinitely many disjoint T-iteration groups {ft, t ∈ T} of continuous functions such that ft(x) ∈ Ft(x) for t ∈ T and x ∈ I. T is a maximal additive group with this property.

Proof. Let γ : I → I be a homeomorphism such that γ(x) = x for x ∈ L and for every α ∈ A γ[Iα] = Iα. Put

[image: image]

It follows, by Lemma 2, that {ft, t ∈ T} is a T-iteration group and ft(x) ∈ Ft(x).

Let Ft have a continuous and strictly increasing selection f. Since for every α ∈ A, f[Iα] is a proper interval, [image: image] is also an interval. Thus, by Corollary 1, t ∈ T.                         □

Let us make the following assumptions.

(i) Let L be a Cantor set in I, that is L is a nowhere dense perfect set in I = (a, b) and a, b ∈ L.

(ii) Let Iω, ω ∈ ℚ be open pairwise disjoint intervals such that

[image: image]

(iii) Let φ:I → ℝ be a Lebesgue function which lives on a set L that is φ is a continuous non-increasing surjection constant on cl Iω and, let cl Iω be the maximal intervals of constancy of φ.

The conditions (i), (ii), and (iii) imply that φ is continuous and

[image: image]

THEOREM 5

Let T be the supporting group of s-v group {Ft : t ∈ ℝ} generated by a function φ satisfying condition (H). If the group T is acyclic then the set L defined by (2) is a Cantor set and φ is a Lebesgue function which lives on L.

Proof. By Lemma 2 the family of mappings {qt, t ∈ T} defined by Equation (6) is a disjoint T-iteration group. Denote by LT the set of limit points of the orbits O(x) = {qt(x) : t ∈ T}, i.e., [image: image]. In Zdun [10] (see Th.1) it is proved that the set LT does not depend on x and LT is either a Cantor set in I or LT = [a, b] or LT = {a, b}. Moreover, LT = {a, b} if and only if {qt, t ∈ T} is a cyclic group (see [10] Theorem 2).

Since qt(x) ∈ Ft(x) we have φ(qt(x)) = φ(x) + t for x ∈ I. LT ≠ [a, b]. In fact, suppose that LT = [a, b]. Fix an x ∈ I and an interval Iα. By the density of the orbit O(x) there exist u, v ∈ ℝ such that u ≠ v and [image: image]. Hence φ(x) + u = φ(qu(x)) = φ(qv(x)) = φ(x) + v what is a contradiction.

By Proposition 1 (ii) and Lemma 2 the mapping Φ(t): = qt is an isomorphism of T onto the group {qt, t ∈ T}. Thus T is cyclic if and only if {qt, t ∈ T} is cyclic, so T is cyclic if and only if LT = {a, b}. Hence T is acyclic if and only if LT is a Cantor set.

If T is acyclic then φ lives on LT. Let x ∈ LT and t ∈ T. Then [image: image]. Thus O(x) ⊂ L and, consequently, LT ⊂ L, so L is also a Cantor set. By the assumption φ lives on L, however by the definition of qt φ lives on LF. Thus we get LF = L.               □

THEOREM 6

If f, g are commuting, iteratively incommensurable homeomorphisms and Lf, g ≠ cl I, then f and g are embeddable in a non-extensible disjoint T-iteration group {ft, t ∈ T}, where T is a dense, countable subgroup of ℝ.

Proof. By Theorem 2 there exists an s-v iteration group {Ft : t ∈ ℝ} with continuous non-decreasing generating function φ such that f(x) ∈ F1(x) and g(x) ∈ Fs(x) for an s ∉ ℚ and φ[Lf, g] = ℝ. Since Lf, g ≠ cl I, φ is a Lebesgue function which lives on Lf, g. Define T by Equation (5). By Theorem 5 f and g are embeddable in a T-iteration group {ft, t ∈ T}. Since 1, s ∈ T the group T is dense.               □

4. DISCUSSION

In this note we consider the relation between the iteration groups of monotonic functions and the interval-valued iteration groups. These groups are still poorly investigated.

In Section 2 we indicate a desirability of the generalization of classical iteration groups in the real case. It is known that not all commutable iteratively incommensurable homeomorphisms are embeddable in an iteration group. However, Theorem 2 shows that the embeddabilty is always possible for s-v iteration groups.

Propositions 1 and 2 characterize s-v iteration groups of the form Equation (1). It is shown that, in our investigations, the form Equation (1) of s-v iteration groups are quite natural. Proposition 3 shows how s-v iteration groups of the form Equation (1) determine iterations groups of non-decreasing functions which are not injective.

A key concept of the paper is the supporting group T defined by Equation (5). If T is non-trivial additive group then it is countable and the set of all intervals of constancy of the generating function φ is also countable. Theorem 3 and Corollary 1 explain the meaning of the supporting group T. The restricted s-v group {Ft : t ∈ T} has a property that s-v functions Ft transform the intervals of constancy of the generating function φ onto itself and the points from its complement, that is the set L*, onto singletons in L*. Moreover, Theorem 4 and Corollary 1 show that each s-v function Ft for t ∈ T has continuous selection ft such that family {ft : t ∈ T} forms a group. Moreover, any Ft for t ∉ T has no continuous selection.

We have also proved that supporting group T is acyclic if and only if the generating function φ is a Lebesgue function which lives in a Cantor set.

The presented results may be helpful in the constructions of different iteration groups of non-decreasing functions.
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