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We consider minimization of functions that are compositions of functions having

closed-form proximity operators with linear transforms. A wide range of image processing

problems including image deblurring can be formulated in this way. We develop proximity

algorithms based on the fixed point characterization of the solution to the minimization

problems . We further refine the proposed algorithms when the outer functions of the

composed objective functions are separable. The convergence analysis of the developed

algorithms is established. Numerical experiments in comparison with the well-known

Chambolle-Pock algorithm and Zhang-Burger-Osher scheme for image deblurring are

given to demonstrate that the proposed algorithms are efficient and robust.

Keywords: proximity operator, deblurring, primal-dual algorithm, ADMM, Gauss-Seidel method

1. INTRODUCTION

In this paper, we study minimization problems of the form

min{f1(A1x)+ f2(A2x) : x ∈ R
n}, (1)

where Ai are mi × n matrices and the functions fi : R
mi → (−∞,+∞] are proper, lower semi-

continuous and convex , for i = 1 and 2. We assume that the proximity operators of fi, i = 1, 2
have closed-form or can be efficiently computed numerically. The formulation (1) admits a wide
variety of applications including image deblurring, machine learning, and compressive sensing.
A large family of instances of Equation (1) arises in the area of regularized minimization, where
f1(A1x) serves as a fidelity term while f2(A2x) serves as a regularization term. Concrete examples of
Equation (1) in the context of image processing will be given later. Hence, it is practically important
to develop efficient numerical algorithms for solving model (1).

The formulation (1), which can be noticed after reformulation, is intrinsically a composite
minimization problem. Setm = m1+m2. Indeed, by defining amappingA:R

n → R
m at x ∈ R

n by
Ax = (A1x,A2x) ∈ R

m1 ×R
m2 and a function f :R

m → (−∞,+∞] atw = (u, v) ∈ R
m1 ×R

m2 by

f (w) = f1(u)+ f2(v), (2)

we are able to rewrite the formulation (1) as the following composite minimization problem

min{f (Ax) : x ∈ R
n}. (3)
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We say a function f : R
m → (−∞,+∞] is block separable if

this function f takes a form of Equation (2).
An efficient scheme proposed in Zhang et al. [1] can be applied

to solve Equation (3) by introducing an auxiliary variable and
converting it into a linearly constrained minimization problem.
Introducing variable w = Ax yields an equivalent problem of
Equation (3):

min{f (w) : Ax− w = 0, x ∈ R
n,w ∈ R

m}. (4)

In general, the aforementioned scheme in Zhang et al. [1] solves

min{f (w)+ g(x) : Ax− w = 0, x ∈ R
n,w ∈ R

m}. (5)

via




wk+ 1 = argmin

{
f (w)− 〈λk,Axk − w〉 + β

2 ‖Axk − w‖22
+ 1

2‖w− wk‖2Q1
: w ∈ R

m

}

xk+ 1 = argmin

{
g(x)− 〈λk,Ax− wk+ 1〉 + β

2 ‖Ax
− wk+ 1‖22 12‖x− xk‖2Q2

}

λk+ 1 = λk − γ (Axk+ 1 − wk+ 1)

,(6)

where Q1 is positive definite, Q2 is semi-positive definite and
β, γ > 0. The scheme (6) has explicit form if the Q1, Q2

are chosen appropriately and the proximity operators of f , g
have closed form. This feature of scheme (6) makes it efficiently
implemented. Recently, some similar algorithms are reported in
Chen et al. [2] and Deng and Yin [3].

However, applying Equation (6) directly to solve Equation (4)
and therefore solve Equation (1) still have drawbacks. As a matter
of fact, the variable w embeds two parts, say w = (u; v), with
A1x−u = 0, A2x−v = 0. Under the choice ofQ1 such thatw

k+ 1

in the first step of Equation (6) has explicit form, it yields two
mutually independent, parallel steps in the computation of uk+ 1

and vk+ 1. In another word, the new results of uk+ 1 has not been
used in the computation of vk+ 1 if uk+ 1 is computed ahead of
vk+ 1. A relatively strict condition is imposed on the parameters
brought into in the matrices Q1, Q2. These drawbacks prevents
the scheme (6) from converging fast.

The composition of the objective function of Equation (3) is
decoupled in its dual formulation. Indeed, the dual formulation
of model (3) has a form of

min{f ∗(w) : A⊤w = 0,w ∈ R
m}. (7)

where f ∗ represents the Fenchel conjugate of f whose definition
will be given in the next section. A solution of Equation (3)
and a solution of Equation (7) can be derived from a stationary
point of the Lagrangian function of Equation (7). Augmented
Lagrangian methods [4–8] are commonly adopted for searching
stationary points of the Lagrangian function of Equation (7). The
convergence of an augmented Lagrangian method is guaranteed
as long as the subproblem, which is usually involved in the
augmented Lagrangian method, is solved to an increasingly
highly accuracy at every iteration [8]. Therefore, solving the
subproblem may become costly.

Correspondingly, the dual formulation of model (1) has a
form of

min{f ∗1 (u)+ f ∗2 (v) : A⊤
1 u+ A⊤

2 v = 0, u ∈ R
m1 , v ∈ R

m2}, (8)

From the notation point of view, the formulation (8) generalizes
the formulation (5) without considering the conjugate, matrix
transpose. To find a stationary point of the Lagrangian function
of Equation (8) and therefore find solutions of Equations (1)
and (8), the well-known ADMM (alternating direction method
of multiplier) can be applied. The ADMM allows block-wise
Gauss-Seidel acceleration among the variables u, v in solving
the subproblems involved in the iterations. This illustrates some
advantage of ADMM over the scheme (6) since no Gauss-Seidel
acceleration occurs among the variable u , v when scheme (6)
is applied to solve Equation (1). But as in Augmented Lagrange
Method, solving the subproblems could be costly in ADMM.

Both the advantage and disadvantage of ADMM and scheme
(6) motivates us to develop efficient and fast algorithms to
solve the problems (1) and (3). Firstly of all, we provides a
characterization of solutions of general problem (3) and its dual
formulation (7) from the sub-differential point of view and
develop proximal type algorithms from the characterization. We
shall show the proposed algorithms have explicit form under the
assumption that the proximity operators of f has closed form.
Further, if the function f exhibits some appealing structures,
we are able to derive an accelerated variant algorithm. Indeed,
we show that if the function f is separable and problem (3)
becomes (1), we are able to relax the parameters introduced in
the algorithm and use block-wise Gaussian-Seidel acceleration.
We shall show that this variant algorithm is a type of alternating
direction method but exhibits some advantage over the classical
ADMM (alternating direction method of multiplier).

This paper is organized in the following manner. In Section
2, we provide a characterization of solutions of the primal
problem (3) and show that a stationary point of the Lagrangian
function of Equation (7) yields a solution of Equation (3). We
further develop a proximity operator based algorithm based on
the characterization of solutions. In Section 3, we propose an
accelerated variant algorithm if the function f is well-structured
(i.e., f is separable). A unified convergence analysis of both
algorithms is provided in this section. In Section 4, we discuss
the connection of the proposed algorithms to CP (Chambolle
and Pock’s primal-dual) method, Augmented Lagrangianmethod
and Alternating Direction Method of Multipliers. In Section
5, We identify the L2-TV and L1-TV models as special
cases of the general problem (3) and demonstrate that the
proximity operators of the corresponding functions can be
efficiently computed in the proposed algorithms. in section
6, we apply the proposed algorithms to solve L2-TV and
L1-TV image deblurring problems. The performance of the
proposed algorithms is shown and comparison of proposed
algorithms with CP [9] and scheme (6) is fulfilled. The
conclusions on the proposed algorithms are given in the last
section.

2. DUAL FORMULATION: ALGORITHM

In this section, we shall see that a saddle point of the Lagrangian
function of Equation (7) will yield a solution of Equation (3) and
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a solution of Equation (7). We identify the saddle point of the
Lagrangian function of Equation (7) as a solution of a fixed-point
equation in terms of proximity operator and propose an iterative
scheme to solve this fixed-point equation. A connection of the
resulting iterative scheme with the one given in Zhang et al. [1] is
pointed out.

We begin with introducing our notation and recalling some
background from convex analysis. For a vector x in the d-
dimensional Euclidean space R

d, we use xi to denote the ith
component of a vector x ∈ R

d for i = 1, 2, . . . , d. We define

〈x, y〉: =
∑d

i= 1 xiyi, for x, y ∈ R
d the standard inner product in

R
d. The ℓ2-norm induced by the inner product in R

d is defined
as ‖ · ‖2: =

√
〈·, ·〉. For the Hilbert space R

d, the class of all lower
semicontinuous convex functions ψ : R

d → R: = (−∞,+∞]
such that dom ψ : = {x ∈ R

d
: ψ(x) < +∞} 6= ∅ is denoted

by Ŵ0(R
d). In this paper, we always assume that f1 ∈ Ŵ0(R

m1 ),
f2 ∈ Ŵ0(Rm2 ), and f ∈ Ŵ0(Rm), where the functions f1 and f2 are
in Equation (1) and f in Equation (3).

We shall provide necessary and sufficient conditions for a
solution to the model (3). To this end, we first recall the
definition of sub-differential and definition of Fenchel conjugate.
The subdifferential of ψ ∈ Ŵ0(R

d) is defined as the set-valued
operator ∂ψ : x ∈ R

d 7→ {y ∈ R
d

: ψ(z) ≥ ψ(x) + 〈y, z −
x〉 for all z ∈ R

d}. For a function ψ : R
d → [−∞,+∞], the

Fenchel conjugate of ψ at x ∈ R
d is ψ∗(x): = sup{〈y, x〉 −ψ(y) :

y ∈ R
d}.

The characterization of a solution to the model (3) in terms of
sub-differential is given in the following.

Proposition 2.1. x̂ ∈ R
n is a solution to the model (3) iff there

exists a ŵ ∈ R
m such that the following hold

A⊤ŵ = 0, Âx ∈ ∂f ∗(ŵ). (9)

PROOF. Suppose x̂ is a solution to Equation (3). By Fermat’s
rule, 0 ∈ A⊤∂f (Ax̂). There exists a ŵ ∈ ∂f (Ax̂) such that
0 = A⊤ŵ. Since f ∈ Ŵ0(Rm), ŵ ∈ ∂f (Âx) implies Âx ∈ ∂f ∗(ŵ) by
Proposition 11.3 in [10]. The Equation (9) follows.

The above reasoning is reversible. That is, if there is a ŵ ∈
∂f (Ax̂) such that Equation (9) holds, then x̂ is a solution to
model (3).

In the meantime, Equation (9) also characterizes the KKT
conditions for the linear constraint minimization problem

min{f ∗(w) : A⊤w = 0,w ∈ R
m}

in a way that x̂ acts as the Lagrange multipliers of the Lagrangian
function f ∗(w)− 〈x, A⊤w〉.

The Equation (9) in Proposition 2.1 provides a necessary and
sufficient condition characterization for a solution to model (3).
Based on this Proposition, we shall provide a fixed point equation
characterization of a solution to model (3) based on proximity
operator. The proximity operator of ψ is defined by proxψ (x): =
argmin

{
1
2‖u− x‖2 + ψ(u) : u ∈ R

d
}
. The sub-differential and

the proximity operator are closely related. Indeed, if ψ ∈ Ŵ0(Rd)
and λ > 0, then

y ∈ ∂ψ(x) ⇔ x = proxλψ (x+ λy). (10)

Proposition 2.2. x̂ ∈ R
n is a solution to the model (3) iff for any

positive numbers α > 0, β > 0, γ > 0, there exists an ŵ ∈ R
m

such that the following hold

{
ŵ = proxαf ∗

(
ŵ+ αAx̂

)
.

x̂ = x̂− γA⊤ŵ
, (11)

or equivalently,

{
ŵ = proxαf ∗

(
ŵ+ αA

(
x̂− βA⊤ŵ

))
.

x̂ = x̂− γA⊤ŵ
. (12)

PROOF. It follows from proposition 2.1 and Equation (10).

Intuitively, the fixed-point Equation (11) yield the following
simple iteration scheme

{
wk+ 1 = proxαf ∗

(
wk + αAxk

)
,

xk+ 1 = xk − γA⊤wk+ 1.
(13)

which is in nature the classical Arrow-Hurwicz algorithm
[11] for a stationary point of Lagrange function L(w, x) =
f ∗(w) − 〈x,A⊤w〉. Although the Arrow-Hurwicz algorithm
exhibits appealing simplicity feature, its convergence is only
established under the assumption that f ∗ is strictly convex
[12]. But the assumption on the strict convexity is usually not
satisfied.

A modification of the Arrow-Hurwitz algorithm based on the
fixed point Equation (12) yields

{
wk+ 1 = proxαf ∗

(
wk + αA

(
xk − βA⊤wk

))
,

xk+ 1 = xk − γA⊤wk+ 1.
(14)

We shall show that this modification allow us to achieve
convergence for general convex function f ∗. Further, we are able
to develop Gauss-Seidel acceleration if the function f is separable.

The key to the iterative scheme (14) is to compute the
proximity operator of the f ∗ in the first step. We point it out
that proxαf ∗ can be easily computed, if necessary, by using the

Moreau’s decomposition [13, 14] I = proxλf ∗ + λprox 1
λ
f ◦

(
1
λ
I
)

as long as the proximity operator of its Fenchel conjugate of f can
be computed easily, and vice-versa.

We adapt the scheme (14) for model (3) to model (1).
Specifically, we have

f (w) = f1(u)+ f2(v) and A =
[
A1

A2

]
, (15)

where w = (u, v) ∈ R
m1 × R

m2 , f1 ∈ Ŵ0(Rm1 ), f2 ∈ Ŵ0(Rm1 ), A1

is anm1×nmatrix, and A2 is anm2×nmatrix. It can be directly
verified that for w = (u, v) ∈ R

m1 × R
m2

f ∗(w) = f ∗1 (u)+ f ∗2 (v) and proxαf ∗ (w) =
[
proxαf ∗1

(u)

proxαf ∗2
(v)

]
.

Hence, an adaptation of the iterative scheme (14) for model (1) is
presented in Algorithm 1.
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Algorithm 1 Dual Algorithm for Model (1)

Initialization: u0 ∈ R
m1 , v0 ∈ R

m2 , x0 ∈ R
n; parameters

α, β, γ satisfying inequalities 0 < γ ≤ 2β and 0 < αβ <

1/

∥∥∥∥
[
A1

A2

]∥∥∥∥
2

.

repeat(k ≥ 0)





uk+ 1 = proxαf ∗1

(
uk + αA1

(
xk − β(A⊤

1 u
k + A⊤

2 v
k)

))

vk+ 1 = proxαf ∗2

(
vk + αA2

(
xk − β(A⊤

1 u
k + A⊤

2 v
k)

))

xk+ 1 = xk − γ (A⊤
1 u

k+ 1 + A⊤
2 v

k+ 1)

(16)

until a given stopping criteria is met

3. PARAMETERS RELAXATION AND
GAUSS-SEIDEL METHOD FOR
ALGORITHM 1 AND ITS CONVERGENCE
ANALYSIS

In this section, Algorithm 1 is modified from two aspects.
First, the parameter α will be relaxed such that it is different
for updating uk+ 1 and vk+ 1. Second, the block Gauss-Seidel
technique is applied in the sense that the updated result uk+ 1

will be immediately used in computing vk+ 1. As a consequence,
we have a new algorithm, as a variant of Algorithm 1, which is
depicted in Algorithm 2.

Algorithm 2 Gauss-Seidel Method for Model (1)

Initialization: u0 ∈ R
m1 , v0 ∈ R

m2 , x0 ∈ R
n;

α1, α2, β, γ > 0.
repeat(k ≥ 0)





uk+ 1 = proxα1f ∗1

(
uk + α1A1

(
xk − β(A⊤

1 u
k + A⊤

2 v
k)

))

vk+ 1 = proxα2f ∗2

(
vk + α2A2

(
xk − β(A⊤

1 u
k+ 1 + A⊤

2 v
k)

))

xk+ 1 = xk − γ (A⊤
1 u

k+ 1 + A⊤
2 v

k+ 1)

(17)

until a given stopping criteria is met

Next, we describe the general forms of the schemes (14) and (17)
based on which the convergence analysis of the two algorithms
will be derived. By the definition of proximity operator, the first
step of iterative scheme (14) can be equivalently rephrased as

wk+ 1 = argmin

{
f ∗(w)+ 1

2α ‖w
− (wk + αA(xk − βA⊤wk))‖22 : w ∈ R

m

}
.

(18)
rearranging the objective function in Equation (18) and ignoring
some constant, the optimization problem of Equation (18) is
equivalent to

wk+ 1 = argmin





f ∗(w)− 〈xk,A⊤w〉 + β
2 ‖A⊤w‖22 + 1

2

〈( 1
α
I − βAA⊤)(w− wk),w− wk〉:

w ∈ R
m



 .

(19)

Under the condition 0 < αβ < 1
‖A‖2 , where ‖A‖ is the largest

singular value of A, the matrix 1
α
I−βAA⊤ is symmetric, positive

definite. As a result, the iterative scheme (14) can be cast into the
following iterative scheme given in Zhang et al. [1]:





wk+ 1 = argmin

{
f ∗(w)− 〈xk,A⊤w〉 + β

2 ‖A⊤w‖22
+ 1

2‖w− wk‖2Q : w ∈ R
m

}

xk+ 1 = xk − γA⊤wk+ 1

,(20)

where the Q−norm ‖ · ‖Q is defined as
√
〈Q·, ·〉 for a positive

definite symmetric matrix Q.
Similarly, the iterative scheme (17) in Algorithm 2 can be cast

as a special case of the following scheme





uk+ 1 = argmin{f ∗1 (u)− 〈xk,A⊤
1 u+ A⊤

2 v
k〉 + β

2 ‖A⊤
1 u

+ A⊤
2 v

k‖22 + 1
2‖u− uk‖2Q1

: u ∈ R
m1}

vk+ 1 = argmin{f ∗2 (v)− 〈xk,A⊤
1 u

k+ 1 + A⊤
2 v〉

+ β
2 ‖A⊤

1 u
k+ 1 + A⊤

2 v‖22 + 1
2‖v− vk‖2Q2

: v ∈ R
m2}

xk+ 1 = xk − γ (A⊤
1 u

k+ 1 + A⊤
2 v

k+ 1)

,(21)

where both Q1 and Q2 are symmetric and positive definite
matrices. Indeed, by choosing Q1 = 1

α1
I − βA1A

⊤
1 , Q2 =

1
α2
I − βA2A

⊤
2 with 0 < α1β <

1
‖A1‖2 and 0 < α2β <

1
‖A2‖2 , the

matricesQ1, Q2 are symmetric, positive definite and scheme (21)
reduces to (17) in Algorithm 2. Recall that the parameters α, β in
Algorithm 1 need satisfy 0 < αβ < 1

‖A‖2 , where A is chosen

as Equation (15). It can be noticed that max{‖A1‖2, ‖A2‖2} ≤
‖A‖2, which implies min{ 1

‖A1‖2 ,
1

‖A2‖2 } ≥ 1
‖A‖2 . Hence, more

flexibility exhibits for the choice of α1, α2, β in Algorithm 2 than
for the choice of α, β in Algorithm 1.

We remark that the iterative scheme (21) generalizes the
iterative scheme (22)





uk+ 1 = argmin{f ∗1 (u)− 〈xk,A⊤
1 u− vk〉 + β

2 ‖A⊤
1 u− vk‖22

+ 1
2‖u− uk‖2Q1

: u ∈ R
m1}

vk+ 1 = argmin{f ∗2 (v)− 〈xk,A⊤
1 u

k+ 1

− v〉 + β
2 ‖A⊤

1 u
k+ 1 − v‖22 + 1

2‖v− vk‖2Q2
: v ∈ R

m2}
xk+ 1 = xk − γ (A⊤

1 u
k+ 1 − vk+ 1)

(22)

whose form is equivalent to Equation (6) by specifying the
variables, functions and matrices appropriately. Indeed, when
A2 is specified as −I, the iterative scheme (21) reduces to
(22). Unlike [1], the iterative scheme (21) is derived from the
dual formulation instead of primal problems. In addition, the
generality of matrix A2 in iterative scheme (21) generalizes the
matrix−I in scheme (6).

The rest of this section is devoted to a unified convergence
analysis of the two iterative schemes (20) and (21), from which
Algorithm 1 and Algorithm 2 can be derived. The convergence
of these two schemes is analyzed in the following manner: we
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first prove the convergence of schemes (21) and obtain the
convergence of scheme (20) as an immediate result.

For convenient exposition, Equation (9) for the special case
Equation (15) is rewritten as

A⊤
1 û+ A⊤

2 v̂ = 0, A1x̂ ∈ ∂f ∗1 (û), and A2x̂ ∈ ∂f ∗2 (v̂). (23)

We will show that for any initial seed (u0, v0, x0) ∈ R
m1 ×R

m2 ×
R
n and a positive parameter γ the sequence ({(uk, vk, xk):k ∈ N})

converges to a triple (û, v̂, x̂) ∈ R
m1 × R

m2 × R
n satisfying

Equation (23).
First of all, we look at the characterization of uk+ 1, vk+ 1

involved in the two subproblems in Equation (21). Using Fermat’s
rule for the two subproblems, we are able to get

{
A1x

k − βA1(A
⊤
1 u

k+ 1 + A⊤
2 v

k)− Q1(u
k+ 1 − uk) ∈ ∂f ∗1 (uk+ 1),

A1x
k − βA1(A

⊤
1 u

k+ 1 + A⊤
2 v

k)− Q2(u
k+ 1 − uk) ∈ ∂f ∗2 (vk+ 1)

.

Let

{
rk+ 1

: = A1x
k − βA1(A

⊤
1 u

k+ 1 + A⊤
2 v

k)− Q1(u
k+ 1 − uk),

tk+ 1
: = A2x

k − βA2(A
⊤
1 u

k+ 1 + A⊤
2 v

k+ 1)− Q2(v
k+ 1 − vk)

.

(24)

Then rk+ 1 ∈ f ∗1 (u
k+ 1), tk+ 1 ∈ f ∗2 (v

k+ 1). If the sequence

({(uk, vk, xk) : k ∈ N}) converges to a triple (û, v̂, x̂) ∈
R
m1 × R

m2 × R
n satisfying Equation (23), we observe rk+ 1 →

A1x̂, tk+ 1 → A2x̂ as k → ∞. For convenience, we also
introduce the following notations

ρ̂: =



û
v̂
ˆ̂x


 , ρk: =



uk

vk

xk


 , P: =



Q1

Q2
1
γ
I


 , r: = A1x̂,

t: = A2x̂

uke : = uk − û, vke : = vk − v̂, xke : = xk − x̂,

rk+ 1
e : = rk+ 1 − r, tk+ 1

e : = tk+ 1 − t, ρke : = ρk − ρ̂.

Next, we shall establish a relationship between a triple (û, v̂, x̂)
and the sequence {(uk, vk, xk) : k ∈ N} generated by the iterative
scheme (21).

Lemma 3.1. Let Q1 and Q2 be two positive definite symmetric
matrices, let the triple (û, v̂, x̂) ∈ R

m1 ×R
m2 ×R

nsatisfy Equation
(23), and let {(uk, vk, xk) : k ∈ N} be the sequence generated by
scheme (21).

Then the following equation holds:

(‖ρk+ 1
e ‖2P + β‖A⊤

2 v
k+ 1
e ‖2)− (‖ρke ‖2P + β‖A⊤

2 v
k
e‖2) = yk, (25)

where

yk = − ‖uk+ 1 − uk‖2Q1
− 2〈rk+ 1

e , uk+ 1
e 〉 − ‖vk+ 1 − vk‖2Q2

− 2〈tk+ 1
e , vk+ 1

e 〉 − (β − γ )‖A⊤
1 u

k+ 1 + A⊤
2 v

k+ 1‖2

− β‖A⊤
1 u

k+ 1 + A⊤
2 v

k‖2.

PROOF. It follows from the definitions of r, rk, t, and tk, the
iteration scheme (21) and the characterization of saddle points
Equation (23) that





rk+ 1
e − A1x

k
e + βA1(A

⊤
1 u

k+ 1
e + A⊤

2 v
k
e )

+ Q1(u
k+ 1 − uk) = 0,

tk+ 1
e − A2x

k
e + βA2(A

⊤
1 u

k+ 1
e + A⊤

2 v
k+ 1
e )

+ Q2(v
k+ 1 − vk) = 0,

xk+ 1
e = xke − γ (A⊤

1 u
k+ 1
e + A⊤

2 v
k+ 1
e ).

(26)

By taking the inner product with 2uk+ 1
e on the both sides of

the first equality of Equation (26) and rearranging the terms and
using the identity ‖uke‖2Q1

= ‖uk+ 1 − uk‖2Q1
+ ‖uk+ 1

e ‖2Q1
−

2〈Q1(u
k+ 1 − uk), uk+ 1

e 〉, we obtain

(‖uk+ 1
e ‖2Q1

− ‖uke‖2Q1
) = − ‖uk+ 1 − uk‖2Q1

− 2〈rk+ 1
e , uk+ 1

e 〉
− 2β〈A⊤

1 u
k+ 1
e ,A⊤

1 u
k+ 1
e + A⊤

2 v
k
e〉

+ 2〈A⊤
1 u

k+ 1
e , xke 〉,

Likewise, by taking the inner product with 2vk+ 1
e and 2xke on the

both sides of the second and third Equations of (26), we obtain

(‖vk+ 1
e ‖2Q2

− ‖vke‖2Q2
) = − ‖vk+ 1 − vk‖2Q2

− 2〈tk+ 1
e , vk+ 1

e 〉
− 2β〈A⊤

2 v
k+ 1
e ,A⊤

1 u
k+ 1
e + A⊤

2 v
k+ 1
e 〉

+ 2〈A⊤
2 v

k+ 1
e , xke 〉,

and

1

γ
(‖xk+ 1

e ‖22 − ‖xke‖22) = γ ‖A⊤
1 u

k+ 1
e + A⊤

2 v
k+ 1
e ‖2

− 2〈xke ,A⊤
1 u

k+ 1
e + A⊤

2 v
k+ 1
e 〉,

respectively. By adding up the above three equations and using
the identity ‖ρk−ρ̂‖2P = ‖uk−û‖2Q1

+‖vk−v̂‖2Q2
+ 1
γ
‖xk−x̂‖22 and

the fact A⊤
1 û + A⊤

2 v̂ = 0, we get Equation (25). This completes
the proof of the result.

To show that the convergence of sequence {(uk, vk, xk):k ∈ N}
generated by the iterative scheme (21), we need two properties
of the subdifferential. The first one is the monotonicity of the
subdifferantial. The subdifferential a function ψ ∈ Ŵ0(R

d) as a
set-valued function is monotone (see [15]) in the sense that for
any u and v in the domain of ψ

〈̃u− ṽ, u− v〉 ≥ 0, for all ũ ∈ ∂ψ(u), ṽ ∈ ∂ψ(v).

Another useful property of the sub-differential is presented in the
following lemma.

Lemma 3.2. Let ψ be in Ŵ0(R
d) and let {(xk, yk) : k ∈ N} be a

sequence with yk ∈ ∂ψ(xk). Suppose that xk → x and yk → y as
k → ∞ . Then y ∈ ∂ψ(x).

PROOF. By the definition of sub-differential, the inequality
ψ(z) ≥ ψ(xk) + 〈yk, z − xk〉 holds all z ∈ R

d and k ∈ N.
By taking limit inferior to both sides of the above inequality, it
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follows that ψ(z) ≥ lim infk→∞(ψ(xk)+ 〈yk, z − xk〉). By virtue
of the lower semi-continuity ofψ , i.e., lim infk→∞ ψ(xk) ≥ ψ(x),
and the fact of 〈yk, z − xk〉 → 〈y, z − x〉, we obtain that ψ(z) ≥
ψ(x)+ 〈y, z − x〉, for all z ∈ R

d. That is, y ∈ ∂ψ(x).

With these preparations, we are ready to prove the
convergence of the sequence {(uk, vk, xk) : k ∈ N} generated by
the iterative scheme (21).

Theorem 3.3. Let Q1 and Q2 be two positive definite symmetric
matrices and let {(uk, vk, xk) : k ∈ N} be the sequence generated by
scheme (21). If 0 < γ ≤ β, then the sequence {(uk, vk, xk) : k ∈ N}
converges to a triple (û, v̂, x̂) satisfying Equation (23).

PROOF. To show {(uk, vk, xk) : k ∈ N} converges to a triple
(û, v̂, x̂) satisfying Equation (23), we first show {(uk, vk, xk) : k ∈
N} is bounded and therefore has a convergent subsequence, then
show that this convergent subsequence converges to a triple
(û, v̂, x̂) satisfying Equation (23) and finally show the entire
sequence {(uk, vk, xk) : k ∈ N} converges to this triple (û, v̂, x̂).

Let the symbols ρ, ρk, ρke , P, r, r
k, rke , t, t

k, tke , and yk be the
same as before. Equations (23) and (24) and the monotonicity of
subdifferential yield

〈rk+ 1
e , uk+ 1

e 〉 ≥ 0 and 〈tk+ 1
e , vk+ 1

e 〉 ≥ 0. (27)

Therefore, when 0 < γ ≤ β , the values of yk are non-positive.
Thus, from Equation (25) we know that the sequence {‖ρke ‖2P +
β‖A⊤

2 v
k
e‖22 :k ∈ N} is decreasing and convergent. This implies the

boundedness of the sequence {‖ρk − ρ‖P : k ∈ N} which further
yield the boundedness of the sequence {(uk, vk, xk) : k ∈ N}.
Therefore, there exists a convergent subsequence {(uki , vki , xki ) :

i ∈ N} such that for some vector (̃u, ṽ, x̃) ∈ R
m1 × R

m2 × R
n

(uki , vki , xki ) → (̃u, ṽ, x̃) (28)

as i goes to infinity.
We shall show that (̃u, ṽ, x̃) satisfies Equation (23), that is,

A⊤
1 ũ + A⊤

2 ṽ = 0, A1̃x ∈ ∂f ∗1 (̃u), and A2̃x ∈ ∂f ∗2 (̃v). Summing
Equation (25) for k from 1 to infinity, we conclude that

∞∑

k= 1

(
‖uk+ 1 − uk‖2Q1

+ ‖vk+ 1 − vk‖2Q2
+ (β − γ )‖A⊤

1 u
k+ 1

+ A⊤
2 v

k+ 1‖22
)
≤ ‖ρ1e ‖2P + β‖A⊤

2 v
1
e‖22. (29)

The convergence of three series in inequality Equation (29) yields
that as k goes to infinity

uk+ 1 − uk → 0, vk+ 1 − vk → 0, A⊤
1 u

k+ 1 + A⊤
2 v

k+ 1 → 0,

which particularly indicate

uki+1 − uki → 0, vki+1 − vki → 0, A⊤
1 u

ki+1 + A⊤
2 v

ki+1 → 0,

(30)

as i goes to infinity. By Equations (28) and (30), we have that

lim
i→∞

uki+1 = ũ, lim
i→∞

vki+1 = ṽ, (31)

and

A⊤
1 ũ+ A⊤

2 ṽ = lim
i→∞

(
A⊤
i u

ki+1 + A⊤
2 v

ki+1
)
= 0. (32)

Equations (28), (30) and (32) together with the definitions of rk

and tk yield

lim
i→∞

rki+1 = A1̃x and lim
i→∞

tki+1 = A2̃x. (33)

Recall that rki+1 ∈ ∂f ∗1 (uki+1), tki+1 ∈ ∂f ∗2 (vki+1) and Equations
(31) and (33). We obtain from Lemma 3.2 that A1̃x ∈ ∂f ∗1 (̃u) and
A2̃x ∈ ∂f ∗2 (̃v). Hence, the vector (̃u, ṽ, x̃) satisfies Equation (23).

Now, let us take (û, v̂, x̂) = (̃u, ṽ, x̃). Then from Equation (28)
we have that

lim
i→∞

(
‖ρki − ρ̂‖2P + β‖A⊤

2 (v
ki − ˆ̂v)‖2

)
= 0.

Themonotonicity and convergence of the sequence {‖ρk−ρ̂‖2P+
β‖A⊤

2 (v
k − v̂)‖22 : k ∈ N} imply that

lim
k→∞

(
‖ρk − ρ̂‖2P + β‖A⊤

2 (v
k − v̂)‖22

)
= 0.

Thus, the sequence {(uk, vk, xk) : k ∈ N} converges to (̃u, ṽ, x̃)
satisfying Equation (23). This completes the proof of this
theorem.

Next, we will show that we can specify scheme (20) as a special
case of scheme (21) and therefore the convergence of scheme (20)
follows automatically. To this end, we consider the two schemes
(20), (21) are mutually independent and functions or matrices in
the two schemes are not related hereafter.

To cast scheme (20) as scheme (21), we let

u = w, f ∗1 = f ∗, f ∗2 = 0, A1 = A, A2 = 0, Q1 = Q (34)

in scheme (21). For such the choice of those quantities, we are
able to rewrite scheme (21) as





wk+ 1 = argmin{f ∗(w)− 〈xk,A⊤w〉 + β
2 ‖A⊤w‖22

+ 1
2‖u− uk‖2Q}

vk+ 1 = argmin{−〈xk,A⊤wk+ 1〉 + β
2 ‖A⊤wk+ 1‖22

+ 1
2‖v− vk‖2Q2

}
xk+ 1 = xk − γ (A⊤wk+ 1)

,

(35)

fromwhich one can notice that sequence {vk :k ∈ N} is a constant
vector sequence. Ignoring the trivial step involving vk+ 1, scheme
(35) becomes scheme (20).

Lemma 3.4. Let Q be a positive definite symmetric matrix, let the
pair (ŵ, x̂) ∈ R

m × R
n satisfy Equation (9), and let {(wk, xk) : k ∈

N} be the sequence generated by scheme (20). Set

s: = Ax̂, sk+ 1
: = Axk − βAA⊤wk+ 1 − Q(wk+ 1 − wk),

ρ̂: =
[
ŵ
x̂

]
, ρk: =

[
wk

xk

]
, and P: =

[
Q

1
γ
I

]
.

Then
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‖ρk+ 1 − ρ̂‖2P − ‖ρk − ρ̂‖2P = −‖wk+ 1 − wk‖Q
− 2〈sk+ 1 − s,wk+ 1 − ŵ〉
− (2β − γ )‖A⊤(wk+ 1 − ŵ)‖22.

(36)

PROOF. This is an immediate result of Lemma 3.1 by specifying
corresponding quantities as in Equation (34) and noticing that
vk+ 1 = vk for such the choice of those quantities.

With Lemma 3.4, we can prove our result on the convergence
of the sequence {(wk, xk) : k ∈ N} generated by scheme (20).

Theorem 3.5. Let Q be a positive definite symmetric matrix and
let {(wk, xk) : k ∈ N} be the sequence generated by scheme (20). If
0 < γ ≤ 2β then the sequence {(wk, xk) : k ∈ N} converges to a
pair (ŵ, x̂) satisfying Equation (9).

PROOF. It follows the proof of Theorem 3.3 by specifying
corresponding quantities in scheme (21) as in (34) and using
Lemma 3.4.

We remark that authors in Zhang et al. [1] only shown
convergent subsequence of {(wk, xk) : k ∈ N} converges to a pair
(ŵ, x̂) satisfying Equation (9). But as shown by Theorem 3.5, the
entire sequence {(wk, xk) : k ∈ N} converges to the same point,
which strengthens the result in Zhang et al. [1].

4. CONNECTIONS TO EXISTING
ALGORITHMS

In this section, we point out the connections of our proposed
algorithms to several well-knownmethods. Specifically, we would
explore the connection of the proposed algorithms to Chambolle
and Pock’s Primal-Dual method, Augmented Lagrangian
Method, Alternating Direction Method of Multipliers, and
Generalized ADM.

4.1. Connection to Chambolle and Pock’s
Algorithm
First of all, let us review Chambolle and Pock’s (CP) method [9]
for solving the following optimization problem

min{f (Ax)+ g(x) : x ∈ R
n}, (37)

where f ∈ Ŵ0(R
m), g ∈ Ŵ0(R

n), and A is a matrix of size
m × n. We assume that model (37) has a minimizer. The CP
method proposed in Chambolle and Pock [9] for model (37) can
be written as





wk+ 1 = proxσ f ∗ (w
k + σAx̄k),

xk+ 1 = proxτg(x
k − τA⊤wk+ 1),

x̄k+ 1 = 2xk+ 1 − xk.

(38)

For any initial guess (x0, x̄0,w0) ∈ R
n × R

n × R
m, the sequence

{(xk,wk) : k ∈ N} converges as long as 0 < στ < ‖A‖−2.
In particular, when we set g = 0, a direct computation shows

that proxτg is the identity operator for any τ > 0. Set α = σ and
β = 2τ . Accordingly, the general CP method in Equation (38)
becomes

{
wk+ 1 = proxαf ∗

(
wk + αA

(
xk− 1 − βA⊤wk

))
,

xk+ 1 = xk − β
2A

⊤wk+ 1.
(39)

On the other hand, when we set g = 0, model (37) reduces
to model (3). Our algorithm for model (3) is presented in
scheme (14).

Therefore, by comparing the CP method and the scheme
(14) for model (3), we can see that the CP method uses xk−1

while the scheme (14) uses xk in the computation of wk+ 1.
Further, the step size of the CP method for updating xk+ 1 is

fixed as β2 while it can be any number in (0, 2β] for the scheme
(14). Although, the relation 0 < αβ < 2‖A‖−2 is required
for the CP method while the relation 0 < αβ < ‖A‖−2 is
needed for the scheme (14), for a fixed α, we can choose the
step size for the scheme (14) twice bigger than that for the CP
method.

4.2. Connection to Augmented Lagrangian
Methods
As we already know that the scheme (14) model (3) is derived
from the scheme (20) with a proper chosen Q. The scheme (20)
is used to solve the constrained dual optimization problem (7).

In the literature of nonlinear programming [16], augmented
Lagrangian methods (ALMs) are often used to convert a
constrained optimization problem to an unconstrained one by
adding the objective function a penalty term associated with the
constraints. For model (7), the augmented Lagrangian method is
as follows:

{
wk+ 1 = argmin{f ∗(w)− 〈xk,A⊤w〉 + β

2 ‖A⊤w‖22 : w ∈ R
m},

xk+ 1 = xk − βA⊤wk+ 1.

(40)

We can see that the scheme (20) reduces to the ALM Equation
(40) if we choose Q = 0 and γ = β in Equation (20). Even
though we can assume that the proximity operator of f has a
closed form, there is lack of an effective way to update wk+ 1 in
Equation (40) when A is not the identity matrix. However, the
vector wk+ 1 in the scheme (20) can be effectively updated once a
proper Q is chosen. This essentially illustrates that Algorithm 1 is
superior to the ALM from the numerical implementation point
of view.

4.3. Connection to Alternating Direction
Method of Multipliers
By specializing the dual formulation (7) of model (7) to
model (1), we have that

min{f ∗1 (u)+ f ∗2 (v) : A⊤
1 u+ A⊤

2 v = 0, u ∈ R
m1 , v ∈ R

m2}. (41)

The alternating direction method of multipliers (ADMM) for
dual problem (41) reads as
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



uk+ 1 = argmin{f ∗1 (u)+ f ∗2 (v
k)− 〈xk,A⊤

1 u+ A⊤
2 v

k〉
+ β

2 ‖A⊤
1 u+ A⊤

2 v
k‖22 : u ∈ R

m1}
vk+ 1 = argmin{f ∗1 (uk+ 1)+ f ∗2 (v)− 〈xk,A⊤

1 u
k+ 1 + A⊤

2 v〉
+ β

2 ‖A⊤
1 u

k+ 1 + A⊤
2 v‖22 : v ∈ R

m2}
xk+ 1 = xk − β(A⊤

1 u
k+ 1 + A⊤

2 v
k+ 1)

.

(42)

We can see that the scheme (21) reduces to the above ADMM
method if we set Q1 = 0, Q2 = 0, and γ = β in Equation
(21). Similar to what we have observed for the ALM method,
solving the two optimization problems in Equation (42) is still
challenging in general when both A1 and A2 are not the identity
matrix. However, the vectors uk+ 1 and vk+ 1 in the scheme (21)
can be effectively updated once Q1 and Q2 are properly chosen.
Hence our Algorithm 2 is superior to the ADMM from the
numerical implementation point of view.

4.4. Connection to Generalized Alternating
Direction Method
Finally, we comment that the generalized ADM proposed in
Deng and Yin [3] can be applied for solving the optimization
problem (41) and the resulting algorithm is exactly the same
as Algorithm 2. However, the motivations behind [3] and
our current paper are completely different. The generalized
ADM in Deng and Yin [3] was developed based on the
augmented Lagrangian function of the objective function of
Equation (41) and the work in there focused on linear
convergence rate of the corresponding algorithm. In our
current work, we formulated the optimization problem (8) as
a constrained optimization problem (8) and recognized the
solution of Equation (8) as a solution of a fixed-point equation
(see Proposition 2.2) from which Algorithm 2 was naturally
derived.

TABLE 1 | Numerical results for the L2-TV model for images blurred by the (21, 10)-GBM.

Method Cameraman Lena Peppers Goldhill

Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR

CP 177 18.82 23.09 157 107.57 26.45 205 21.10 25.38 166 16.64 24.80

ZBO 177 19.90 23.09 157 109.51 26.45 205 22.96 25.38 166 18.43 24.80

Algorithm 1 151 15.98 23.35 140 93.92 26.66 171 17.17 25.61 152 15.48 24.87

Algorithm 2 with Equation (53) 93 11.34 23.45 84 45.60 26.79 98 10.73 25.75 91 10.01 25.13

Algorithm 2 with Equation (55) 86 9.73 23.68 79 38.68 26.94 90 9.95 25.92 83 9.12 25.13

FIGURE 1 | Evolutions of function values of the L2-TV model for images of (A) “Cameraman” and (B) “Lena.”

TABLE 2 | Numerical results for the L2-TV model for images blurred by the (15, 10)-GBM.

Method Cameraman Lena Peppers Goldhill

Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR

CP 88 8.00 22.88 77 51.82 26.12 89 8.64 23.98 76 7.42 24.27

ZBO 84 8.95 22.88 77 54.50 26.12 89 9.42 23.98 76 8.06 24.27

Algorithm 1 81 7.76 23.11 76 50.59 26.17 86 8.45 24.19 75 7.53 24.26

Algorithm 2 with Equation (53) 50 5.18 23.00 46 23.75 26.12 50 5.15 24.13 44 4.68 24.29

Algorithm 2 with Equation (55) 49 5.09 23.14 46 25.71 26.10 48 4.96 24.21 44 4.85 24.24
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5. APPLICATIONS TO IMAGE DEBLURRING

In this section, we first identity two well-known image deblurring
models, namely L2-TV and L1-TV, as special cases of the general
model (1). We then give details on how Algorithms 1 and 2 are
applied. In particular, we present the explicit expressions of the
proximity operators of f ∗1 and f ∗2 . Since the total variation (TV)
is involved in the both image deblurring models, we begin with
presenting the discrete setting for total variation.

For convenience of exposition, we assume that an image
considered in this paper has a size of

√
n × √

n. The image is

treated as a vector in R
n in such a way that the ij-th pixel of the

image corresponds to the (i + (j − 1)
√
n)-th component of the

vector in R
n. The total variation of the image x can be expressed

as the composite function of a convex function ψ : R
2n → R and

a 2n × n matrix B. To define the matrix B, we need a
√
n × √

n
difference matrix D as follows:

D: =




0
−1 1

. . .
. . .

−1 1


 .

FIGURE 2 | Evolutions of function values of the L2-TV model for images of (A) “Cameraman” and (B) “Lena.”

TABLE 3 | Numerical results for the L1-TV model for images blurred by the (21, 10)-GBM.

Method Cameraman Lena Peppers Goldhill

Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR

CP 367 44.39 23.47 354 241.09 26.53 414 45.57 25.73 381 42.07 25.05

ZBO 368 45.09 23.48 355 251.43 26.53 415 47.70 25.74 382 44.28 25.04

Algorithm 1 275 29.92 23.57 272 194.29 26.69 315 34.68 25.82 312 34.56 25.16

Algorithm 2 with Equation (53) 192 21.34 24.22 189 136.42 27.38 207 22.79 26.66 208 23.09 25.74

Algorithm 2 with Equation (55) 154 17.46 24.33 153 109.64 27.52 162 18.04 26.78 168 18.87 25.78

FIGURE 3 | Evolutions of function values of the L1-TV model for images of (A) “Cameraman” and (B) “Lena.”
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The matrix D will be used to “differentiate” a row or a column of
an image matrix. Through the matrix Kronecker product ⊗, we
define the 2n× nmatrix B by

B: =
[
I ⊗ D
D⊗ I

]
, (43)

where I is the
√
n × √

n identity matrix. The matrix B will be
used to “differentiate” the entire image matrix. The norm of B is

‖B‖2 = 8 sin2
(
√
n−1)π

2
√
n

(see [17]).

We define ψ : R
2n → R is at y ∈ R

2n as

ψ(y): =
n∑

i= 1

∥∥∥[yi, yn+ i]
⊤
∥∥∥
2
, (44)

Based on the definition of the 2n × n matrix B and the convex
function ψ , the total variation of an image x can be denoted by
ψ(Bx) for (isotropic) total variation, i.e.,

‖x‖TV: = ψ(Bx). (45)

5.1. The L2-TV Image Deblurring Model
The L2-TV image deblurring model is usually used for the
recovery of an unknown image x ∈ R

n from an observable data
b ∈ R

n modeled by

b = Kx+ white noise (46)

where K is a blurring matrix of size n × n. The L2-TV image
deblurring model has the form of

min

{
1

2
‖Kx− b‖22 + µ‖x‖TV : x ∈ R

n

}
, (47)

where µ is a regularization parameter.
Now, let us set

m1 = n, m2 = 2n, f1: =
1

2
‖ · −b‖22, f2: = µψ,

A1: = K, and A2: = B,

where K and b are from Equation (46), ψ is given by Equation
(44), and B is defined by Equation (43). Then the L2-TV
image deblurring mode (47) can be viewed as a special case of
model (1). Therefore, both Algorithms 1 and 2 can be applied
for the L2-TV model. Further, we give the explicit forms of the
proximity operators proxαf ∗1

and proxαf ∗2
for any positive number

α. Actually, using Moreau decomposition and the definition of
the proximity operator, we have that for u ∈ R

m1

proxαf ∗1
(u) = 1

1+ α u− α

1+ α b.

For v ∈ R
m2 , we write z = proxαf ∗2

(v). Then for i = 1, 2, . . . , n,

we have that

[zi, zn+ i] = min{‖[vi, vn+ i]‖2, α}
[vi, vn+ i]

‖[vi, vn+ i]‖2
. (48)

FIGURE 4 | Recovered images of “Cameraman” and “Lena” (from top

row to bottom row) with the L1-TV model for images blurred by the

(21, 10)-GBM and corrupted by impulsive noise of level p = 0.3. Row 1:

the CP; Row 2: ZBO; Row 3: Algorithm 1; Row 4: Algorithm 2 with Equation

(53); Row 5: Algorithm 2 with Equation (55).
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5.2. The L1-TV Image Deblurring Model
The L1-TV image deblurring model is usually used for the
recovery of an unknown image x ∈ R

n from an impulsive noise
corrupted observable data b ∈ R

n modeled by

bi =





0, with a probability p/2;
255, with a probability p/2;
(Kx)i, with a probability 1− p.

(49)

where K is a blurring matrix of size n×n, p is the noise level, and
the index i runs from 1 to n. The L1-TV image deblurring model
has the form of

min{‖Kx− b‖1 + µ‖x‖TV : x ∈ R
n}, (50)

where µ is again the regularization parameter.
Now, let us set

m1 = n, m2 = 2n, f1: = ‖ · −b‖1, f2: = µψ,

A1: = K, and A2: = B,

where K and b are from Equation (49), ψ is given by Equation
(44), and B is defined by Equation (43). Then the L1-TV image
deblurring mode Equation (50) can be viewed as a special case of
model (1). Therefore, both Algorithms 1 and 2 can be applied
for the L1-TV model. Further, the proximity operator proxαf ∗2
has been given via Equation (48). We jus need to present the
proximity operator proxαf ∗1

. Actually, we have that for u ∈ R
m1

(proxαf ∗1
(u))i =

{
sign(ui − αbi), if |ui − αbi| ≥ 1;
ui − αbi, otherwise,

where i = 1, 2, . . . , n.
In summary, for both the L2-TV and L1-TV image deblurring

models, the associated proximity operators proxαf ∗1
and proxαf ∗2

have closed forms. As a consequence, the sequence {(uk, vk, xk) :

k ∈ N} generated by Algorithms 1 and 2 can be efficiently
computed.

6. NUMERICAL EXPERIMENTS

In this section, numerical experiments for image deblurring are
carried out to demonstrate the performance of our proposed
Algorithms 1 and 2 for the 256 × 256 test images “Cameraman,”
“Peppers,” “Goldhill,” and 512 × 512 test image “Lena.” The
Chambolle-Pock (CP) algorithm and scheme (6) are compared
to our algorithms for the L2-TV and L1-TV image deblurring
models. In the following, we quote scheme (6) as ZBO
algorithm. Each algorithm is carried out until the stopping
criterion ‖xk+ 1 − xk‖2/‖xk‖2 ≤ Tol is satisfied, where Tol
representing the tolerance, is chosen to be 10−6. The quality of
the recovered images from each algorithm is evaluated by the
peak-signal- to-noise ratio (PSNR), which is defined as PSNR: =
20 log10

(
255n

‖x̃−x‖2
)
, where x ∈ R

n is the original image and

x̃ represents the recovered image. The evolution curve of the
function values with respect to iteration will be also adopted to
evaluate the performance of algorithms.

In our simulations, blurring matrices K in
models (46) and (49) are generated by a rotationally
symmetric Gaussian lowpass filter of size “hsize” with
standard deviation “sigma” from the MATLAB script
fspecial(’gaussian’,hsize,sigma). Such matrix K
is referred to as the (hsize, sigma)-GBM. We remark that the
norm of K is always 1, i.e.,

‖K‖ = 1. (51)

The (15, 10)-GBM and (21, 10)-GBM are used to generate
blurred images in our experiments. All experiments are
performed in Matlab 7.11 on Dell Desktop Inspiron 620 with
Intel Core i3 CPU @3.30G, 4GB RAM on Windows 7 Home
Premium operating system.

6.1. Parameter Settings
Prior to applying Algorithms 1 and 2, and the CP method to
the L2-TV model and the L1-TV model for image deblurring
problems blurred by (hsize, sigma)-GBMs, the parameters arising
from these algorithms need to be determined. Convergence

FIGURE 5 | Evolutions of function values of the L1-TV model for images of (A) “Cameraman” and (B) “Lena.”
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analysis of the algorithms specifies the relation between these
parameters. Therefore, once one parameter is fixed, the others
can be described by this fixed one. To this end, we fix the value of
the parameter β in each above algorithm and then figure out the
values of the others.

Let K be a rotationally symmetric Gaussian lowpass filter
generated blurring matrix in the L2-TV model and the L1-TV
model and let B be the differencematrix defined by Equation (43).
We know that ‖K‖ = 1 by Equation (51) and ‖B‖ <

√
8. To

compute the pixel values under the operation of K and B near
the boundary of images, we choose to use “symmetric” type for
the boundary extension. Correspondingly, we can compute that∥∥∥∥
[
K
B

]∥∥∥∥
2

< 8.

For Algorithm 1, we set the parameters α and γ as follows:

α: = 1

8β
and γ : = 2β . (52)

For Algorithm 2, we set the parameters α1, α2, and γ as follows:

α1: =
0.999

β
, α2: =

1

8β
, and γ : = β . (53)

For the CP method (see Equation 39), we set

α: = 1

4β
. (54)

With the choices of the parameters given for the algorithms, the
convergence of Algorithm 1, Algorithm 2, and the CP method
are guaranteed by Theorem 3.5, Theorem 3.3, and a result
from Chambolle and Pock [9], respectively. The parameter β in
each algorithm is chosen in a way that it would produce better
recovered images in terms of PSNR value with the given stopping
criterion.

An additional set of parameters for Algorithm 2 will be used
as well. They are

α1: =
0.999

β
, α2: =

1

8β
, and γ : = 2β . (55)

By comparing these parameters with those in Equation (53), the
parameters α1 and α2 are kept unchanged, but the parameter
γ in Equation (55) is twice bigger than that in Equation
(53). By Theorem 3.3, although the convergence analysis for

Algorithm 2 with the parameters given by Equation (55) is
missing currently, our numerical experiments presented in
the rest of the paper indicate that Algorithm 2 converges
and usually produces better recovered images than that with
the parameters given by Equation (53) in terms of the CPU
times consumed.

6.2. Numerical Results for The L2-TV
Image Deblurring
In problems of image deblurring with the L2-TV model, a
noisy image is obtained by blurring an ideal image with a
(hsize, sigma)-GBM followed by adding white Gaussian noise.
Two blurring matrices, namely (21, 10)-GBM and (15, 10)-
GBM, are used in our experiments.

For the blurring matrix (21, 10)-GBM, the white noise with
mean zero and the standard deviation 1 is added to blurred
images. We set the regularization parameter µ = 0.02 in the L2-
TV model (47). We choose β = 50 for Algorithm 2, β = 25
for Algorithm 1, β = 50 for the CP method, and β = 0.005
for ZBO method. With these settings, numerical results for four
test images “Cameraman,” “Lena,” “Peppers,” and “Goldhill” are
reported in Table 1 in terms of numbers of iterations, the CPU
times, and the PSNR values. The evolutions of function values
for the images of “Peppers” and “Lena” with the L2-TV model
are shown in Figure 1. The corresponding curves for the images
of “Peppers,” and “Goldhill” are similar to that of “Peppers,”
therefore are omitted here. As shown in the Table, Algorithm 2
performs best in terms of computational cost (total iterations and
CPU time) and PSNR. Also, as shown in Figure 1 the sequence
of function values generated by Algorithm 2 approaches the
minimum value fastest, followed by sequences from Algorithm
1 and then by that from CP and ZBO. For the two versions of
Algorithm 2, the one with Equation (55) performs slightly better
in terms of computational cost and PSNR. The performance of
CP and ZBO methods is quite similar in terms of iterations,
CPU time, PSNR and evolution of function values. Indeed, the
iterations and PSNR in Table 1 are consistent for CP and ZBO
methods and the evolution curves of function values for CP and
ZBO methods overlap together. We comment that comparable
PSNRs and function value can be achieved in Algorithm 1, CP
method and ZBO method as in Algorithm 2 if more iteration or
computational time is allowed.

For the blurring matrix (15, 10)-GBM, the white noise with
mean zero and the standard deviation 5 is added to blurred

TABLE 4 | Numerical results for the L1-TV model for images blurred by the (15, 10)-GBM.

Method Cameraman Lena Peppers Goldhill

Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR Itrs CPU(s) PSNR

CP 280 29.78 23.77 289 200.71 27.15 300 31.85 25.75 294 32.01 25.15

ZBO 281 31.51 23.77 290 209.85 27.15 300 35.82 25.74 295 32.82 25.15

Algorithm 1 228 24.14 24.20 235 170.57 27.55 250 26.59 26.28 247 26.56 25.52

Algorithm 2 with Equation (53) 147 16.10 24.42 149 108.95 27.89 153 16.37 26.61 151 16.06 25.76

Algorithm 2 with Equation (55) 120 12.79 24.71 123 88.68 28.11 127 14.48 27.01 127 13.78 25.94

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 September 2016 | Volume 2 | Article 12

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Chen et al. Minimizing Compositions of Functions

FIGURE 6 | Recovered images of “Cameraman” and “Lena” (from top

row to bottom row) with the L1-TV model for images blurred by the

(15,10)-GBM and corrupted by impulsive noise of level p = 0.5. Row 1:

the CP; Row 2: the ZBO; Row 3: Algorithm 1; Row 4: Algorithm 2 with

Equation (53); Row 5: Algorithm 2 with Equation (55).

images. We set the regularization parameter µ = 0.2 in the
L2-TV model (47). We choose β = 10 for Algorithm 2,
β = 5 for Algorithm 1, β = 10 for the CP method, and
β = 0.025 for ZBO method. With these settings, numerical
results for four test images are reported in Table 2 in terms of
numbers of iterations, the CPU times, and the PSNR values.
For each image, the PSNR values from each algorithm are
comparable. But Algorithm 2 performs better than Algorithm
1, CP and ZBO in terms of computational cost. The evolutions
of function values for the images of “Peppers” and “Lena”
are shown in Figure 2. The sequence of function values from
Algorithm 2 approaches faster to the minimum function value
than that from CP and ZBO method. The performance of the
two versions of Algorithm 2 is similar. Like in the setting
(21, 10)-GBM, the performance of CP and ZBO methods is
similar.

6.3. Numerical Results for The L1-TV
Image Deblurring
In problems of image deblurring with the L1-TV model, a
noisy image is obtained by blurring an ideal image with a
(hsize, sigma)-GBM followed by adding impulsive noise. Two
blurring matrices, namely (21, 10)-GBM and (15, 10)-GBM, are
used again in our experiments.

For the blurring matrix (21, 10)-GBM, the impulsive noise
with noise level p = 0.3 is added to blurred images. We
set the regularization parameter µ = 0.01 in the L1-TV
model (50). we set β = 100 for Algorithm 2, β = 50
for Algorithm 1, β = 100 for the CP method, and β =
0.0025 for ZBO method. With these settings, numerical results
for four test images “Cameraman,” “Lena,” “Peppers,” and
“Goldhill” are reported in Table 3 in terms of numbers of
iterations, the CPU times, and the PSNR values. Algorithm 2
yields higher PSNR value but consumes less CPU time than
Algorithm 1, CP and ZBO methods. The evolution curves of
function values with respect to iteration for the images of
“Cameraman” and “Lena” are shown in Figure 3. It can be
noticed that sequence of function values generated by Algorithm
2 approaches the minimum value fastest. Regarding the two
version of Algorithm 2, the one with setting Equation (55)
performs better. We point out that the evolution curves for
CP and ZBO overlap with each other. Further, visual quality
of the deblurred images of “Cameraman” and “Lena” is shown
in Figure 4 for each algorithm. The visual improvement by
Algorithm 2 over CP and the ZBO can be seen by the deblurred
images.

For the blurring matrix (15, 10)-GBM, the impulsive noise
with noise level p = 0.5 is added to blurred images. We
set the regularization parameter µ = 0.02 in the L1-TV
model (50). we set β = 50 for Algorithm 2 , β = 25 for
Algorithm 1, β = 50 for the CP method, and β = 0.005
for ZBO method. With these settings, numerical results for four
test images “Cameraman,” “Lena,” “Peppers,” and “Goldhill” are
reported in Table 4 in terms of numbers of iterations, the CPU
times, and the PSNR values. The evolution curves of function
values with respect to iteration for the images of “Cameraman”
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and “Lena” are shown in Figure 5. Visual quality of the deblurred
“Cameraman” and “Lena” images is shown in Figure 6 for each
algorithm. It is the same as above that Algorithm 2 performs
the best.

7. CONCLUSION

We propose algorithms to solve a general problem that includes
L2-TV and L1-TV image deblurring problems. Algorithm with
Block Gauss-Seidel acceleration is also derived for the two term
composite minimization Equation (1). The key feature of the
proposed algorithms is their ability to yield closed form in
each step of iterations. Convergence analysis of the proposed

algorithms can be guaranteed under appropriate conditions.

Numerical experiments show that the proposed algorithms has
computational advantage over CP method and ZBO algorithm.
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