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Mimicking Directed Binary Networks
for Exploring Systemic Sensitivity: Is
NCAA FBS a Fragile Competition
System?
Fushing Hsieh* and Kevin Fujii

Department of Statistics, University of California, Davis, Davis, CA, USA

Can a popular real-world competition system indeed be fragile? To address this question,

we represent such a system by a directed binary network. Upon observed network

data, typically in a form of win-and-loss matrix, our computational developments

begin with collectively extracting network’s information flows. And then we compute

and discover network’s macrostate. This computable macrostate is further shown

to contain deterministic structures embedded with randomness mechanisms. Such

coupled deterministic and stochastic components becomes the basis for generating

the microstate ensemble. Specifically a network mimicking algorithm is proposed to

generate a microstate ensemble by subject to the statistical mechanics principle: All

generated microscopic states have to conform to its macrostate of the target system.

We demonstrate that such a microstate ensemble is an effective platform for exploring

systemic sensitivity. Throughout our computational developments, we employ the NCAA

Football Bowl Subdivision (FBS) as an illustrating example system. Upon this system,

its macrostate is discovered by having a nonlinear global ranking hierarchy as its

deterministic component, while its constrained randomness component is embraced

within the nearly completely recovered conference schedule . Based on the computed

microstate ensemble, we are able to conclude that the NCAA FBS is overall a fragile

competition system because it retains highly heterogeneous degrees of sensitivity with

its ranking hierarchy.

Keywords: beta random field, complex system, macrostate, network mimicking, system robustness

1. INTRODUCTION

Advances in Information Technology have equipped scientists with unprecedented capabilities to
create new systems as well as to peek into old systems in human societies and in nature. Scientific
endeavors of collecting and mining diverse kinds of high frequency, sequencing and network
data for better understanding on these new and old systems of interest are nearly overwhelming
across all branches of science. Though methodological techniques on computing and analyzing
data derived from such systems have progressed in many fronts in past decades, still the speed of
progress on learning from data apparently lags far behind the speed of generating data. One of
the key reasons behind this lagging phenomenon can be seen from the perspective of order and
chaos, as described in Crutchfield [1]. Any physical system of scientific interest is simultaneously
characterized by its deterministic structures and its randomness. Critically these two systemic
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characteristics are coupled with each other in unknown and
complex fashions. This coupling relation is hardly simple, much
less linear which contributes to the complexity of real world
systems.

Within a complex system, Crutchfield [1] asked questions:
What is a pattern? How do we come to recognize and compute
patterns never seen before? He further asserted that quantifying
the notion of pattern and formalizing the process of pattern
discovery go right to the heart of physical science. To formalize
a suitable process of pattern discovery in a target system, some
knowledge and insights regarding the architecture of systemic
complexity, which have been advanced several decades ago,
become even more valuable than ever. For instance, Simon [2]
argued that hierarchical organizations likely merge in the process
of evolution as systems converge toward their stable states, while
Anderson [3] brought out that the twin difficulties of scale
and complexity are keys to understanding large and complex
systems. Up to now much more light has been shed on complex
systems. A series of interesting related work can be found in
the journal Chaos’s Focus Issue on “Randomness, Structure, and
Causality: Measure of Complexity from Theory to Applications,
see Crutchfield and Machta [4] and papers therein.

In this paper we not only heel to the insights of hierarchical
and multiscale structures when formalizing a process of pattern
discovery upon a real world complex system, but also we take
one step further to make use the discovered systemic patterns
for exploring systems’ sensitivity. That is, after computing and
discovering deterministic structures in the form of pattern
hierarchy, we attempt to explore which scales of the hierarchical
constructs are susceptible to perturbations within discovered
reign of randomness. This perspective of coupling deterministic
and stochastic macroscopic components on research of directed
network is still missing in literature of statistical mechanics on
complex networks, see Albert and Barabási [5]. In contrast,
recent works on universal resilience patterns in complex network
are primarily studied through multiple dimensional differential
equations, see Barzel and Barabási [6] and Gao et al. [7]. Our
data-driven exploration endeavors here should add one more
dimension of systemic understanding from the perspective of
control theory, in which a system’s complexity is thought of being
characterized by its robustness as well [8].

Here our focus is particularly placed on any system that can
be represented or approximated by a directed binary network.
For the purpose of concrete and real exposition, but without loss
of generality, we employ the competitive system of the NCAA
Football Bowl Subdivision (FBS) to illustrate our computational
developments. A glimpse at the characteristics of a directed
binary network is given as follows.

It can be mathematically represented by a non-symmetric
square binary matrix. The directedness refers to its relational
“flows” on each linkage beginning from one node and ending
on another node. A collection of such flows make up ample
quantities of flow-paths, also called dominance paths, of various
lengths. It likely also contains cyclic flow-paths as loops of
different lengths. In the sense of dominance, a cyclic flow-
path indicates a piece of conflicting dominance information.
In the NCAA example, flow-path cycles are prevalent. It is

worth noting that this case is not universal. For instance, the
Rhesus Macaque monkeys’ Silent Bared Teeth (SBT) behavioral
networks, as reported in Fujii et al. [9], have no such flow-cycles.
That is, there is no ambiguity in any dominance relationship in
the monkey society through the SBT behavior. In contrast the
NCAA Football competitive system is much more complex in
this aspect, since it indeed allows highly heterogeneous degrees
of uncertainties among all possible node-pairs. As would be seen
in sections below, such conflicting information is the primary
source of computational complexity and difficulty in directed
binary networks. Though this fact has long been recognized
by animal scientists, who studied ranking structures in animal
societies (see [10–14]), so far no theories are available to
constitute optimal methodologies for extracting global structural
patterns from directed binary network data (see [15]).

For expositional simplicity within the competition system of
NCAA football, a directed binary network is represented by a
binary “win-and-loss” matrix. And the symmetrized “win-and-
loss” matrix, the sum of the transposed “win-and-loss” matrix
with itself, is a symmetric undirected schedule matrix.

We attempt the pattern discovery by following steps. We
first construct a dominance probability matrix by extracting all
pairwise dominance potentials from the collection of dominance
paths contained within an observed binary “win-and-loss”
matrix. We then take this dominance probability matrix as
a thermodynamic system, on which we build a Hamiltonian.
As such we quantify the deterministic structure by the
minimum energy ground state, or macrostate. Such a computable
macrostate reveals a power hierarchy among all involved nodes.
Another pattern structure, called the Parisi adjacency matrix,
is computationally discovered from the schedule matrix via an
approach also based on statistical mechanics, see Fushing et
al. [16]. We then argue that this dominance probability matrix
together with the computed Parisi adjacency matrix constitute
the discovered randomness as another intrinsic stochastic
component embedded within the directed binary network under
study. Based on such a randomness component, we are able to
propose a network mimicking algorithm to generate microstates
that are indeed conforming the macrostate. The resultant
microstate ensemble would be used as an operational platform
for exploring systemic sensitivity. This series of computational
development is exclusively illustrated upon 2 years of NCAA
college football data from the 2012 and 2013 seasons.

2. MATERIALS AND METHODS

2.1. Win-and-Loss Matrix
Let a directed binary network G(W0) be represented by a m×m
binary win-and-loss matrix W0 = [W0[i, j]] with W0[i, j] = 1
meaning team i having one “win” over team j, and W0[i, j] = 0
one “loss” to team j. The sum of W0 and its transpose, A0 =

W0 + WT
0 , is termed the schedule matrix. A0 is binary and

symmetric.
The 2012 and 2013 NCAA college football schedules are

shown in Figures 1A,B, respectively. There are 124(= m) teams
in 2012, and 125 in 2013, competing in the two NCAA football
examples. The majority of teams are divided into 10 conferences,
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FIGURE 1 | Schedule matrix A0 of NCAA football data for the 2012 season (Left panel) and 2013 season(Right panel). The schedule matrix is composed of

colored diagonal blocks marking the intra-conference games for the real conferences, and off-diagonal inter-conference games are marked in gray. The six

independent teams account for the gap in the middle rows and columns. Conferences, from blue to red, are ACC, American, Big 12, Big Ten, Conference-USA,

Independent schools, Mid-American, Mountain West, Pac 12, SEC, and Sun Belt.

such as Pac-12, Big-10, and SEC etc. with 6 independent teams.
The ten block structures in Figure 1 show more intra-conference
than inter-conference games. Each team plays 12 or 13 games
without multiplicity against any opponent team. That is, if two
teams meet, we have W0[i, j] + W0[j, i] = A0[i, j] = A0[j, i] =
1, so that they meet only once in the regular season. As a
result, these two win-and-loss matrices are not only authentically
binary, but also are rather sparse since there are in total fewer
than 750 games played among more than 7500 possible team-
pairs. Hence nine out of ten entries in both matrices are missing.
In sharp contrast a dominance probability matrix computed
below solely based on the twoW0 has nearly no missing entries.

2.2. Initial Beta Random Field
To begin, it is natural to ask: How much a win is worth in the
sense of dominance? Formally, given the fact that W0[i, j] = 1,
what is the conditional probability that team i would win against
team j in their next hypothetical encounter? Such a probability
surely depends on the nature or uncertainty in outcome of
the “game,” such as the NCAA football competitive landscape,
as well as on their discrepancy of their winning potentials,
which is intuitively related to the difference of their “true”
ranking statuses. To mathematically formalize these thoughts,
we propose to model such a conditional probability through
a Beta random variable Be(w[i, j]αi,j + 1,w[j, i]αi,j + 1). This
proposal relies on the fact that Be(w[i, j] + 1,w[j, i] + 1) is a
Beta posterior distribution under a Bernoulli trial with Uniform
prior U[0, 1] = Be(1, 1). And αi,j would be computed in a
data-driven fashion. The larger αi,j value is, the distribution of
Be(w[i, j]αi,j + 1,w[j, i]αi,j + 1) is more concentrated toward 1.

To compute αi,j in a data-driven fashion, we consider the
following decomposition αi,j = α0+1αi,j, where α0 accounts for

the nature of NCAA football games, and1αi,j for the discrepancy
of winning potentials between teams i and j. The α0 is computed
based on the overall triad-based transitivity, while 1αi,j is based
on their tree distance found in a classification hierarchy of all
involving teams.

The triad-based transitivity on W0 is computed as follows.
Here an order-0, or a direct, dominance of (i, j) pair is referring
to the case w[i, j] + w[j, i] = 1. If w[i, j] = 1, i is direct
dominating j. An order-1 dominance path of (i, j) pair refers to
the existence of one intermediate team-node k such that, either
w[i, k] = 1,w[k, j] = 1 for the order-1 indirect dominance
of i over j, or w[j, k] = 1,w[k, i] = 1 for j over i. Further
a triad {i, j, k} is termed being coherent in dominance if i
dominates j, i dominates k and k dominates j. For a triad of
nodes having three directed edges, there are only two possibilities:
being coherent or incoherent between the direct and the order-1
indirect dominance direction. Therefore as one of global features
ofW0, the triad-based transitivity is defined as the proportion of
coherent dominance, excluding all triads with fewer than three

edges. The empirical proportion is denoted as T̂(W0).

Then we heuristically equate the transitivity estimate T̂(W0)
to the dominance probability computed through an order-1
dominance path:

T̂(W0) =

(

α0 + 1

α0 + 2

)2

where α0+1
α0+2 is the mean value of Be(α0 + 1, 1).

Though this equation is rather simplistic, it works reasonably

well when T̂(W0) ≥ 0.5. For instance, if the empirical T̂(W0)
is calculated as 0.72, then the data-driven α0 = 5.6. Then the
random variable Be(5.6 + 1, 1) has its mean around 0.9 and
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variance less than 0.015. This context-dependent choice of Beta
distribution is very different from Be(2, 1) with its mean 2/3
and variance 0.056(= 1/18) as used in Fushing et al. [17]. As
the extreme case, if T(W0) = 1.0, the perfect transitivity, then
α0 = ∞. It means that the dominance probability is always 1.

We place one Beta random variable with distribution Be(α0 +

1, 1) onto every (i, j)-entry of the m × m lattice where w[i, j] =
1, otherwise the entry is left blank. It is emphasized that the
blanks, not Be(1, 1), are placed for entries without observed direct
dominance, that is, for all (i, j) pairs withw[i, j]+w[j, i] = 0. The
m×mmatrix array of Beta random variables and blanks is called
Beta Random Field in Fushing et al. [17].

This random field allows us to simulate random dominance
paths mimicking the observed ones. This capability is critical for
carrying out the “ensemble” idea for extracting the initial version
of dominance probability matrix, from which the initial version
of power structural hierarchy is derived, as will be discussed in
the next subsection.

After the initial version of the power structural hierarchy is
derived, tree distances for all pairs of nodes become available. We
then estimate 1αi,j for all (i, j) pairs having w[i, j] + w[j, i] = 1.
Finally, refined versions of the dominance probability matrix and
the power structural hierarchy are derived.

2.3. Initial Dominance Probability Matrix
The complexity of computing an initial dominance probability

matrix, denoted as P
(0)
D (W0) based on an observed win-and-

loss matrix W0, involves one critical front: to identify all of the
locations of “real structural” blank entries under a nonparametric
framework. Here a “real structural” blank entry refers to a pair
of nodes without dominance relationship, not because of lack of
data. This task becomes particularly difficult when the number of
all possible pairs m(m− 1)/2 is large and the number of missing
entries, w[i, j]+ w[j, i] = 0 is overwhelming inW0.

To resolve this critical computational issue, we devise an
algorithm called the Trickling percolation process. Heuristically
we make use of common percolation processes trickling within
the Beta random field to explore and simulate as many
dominance paths as possible. By performing a huge number
of such percolation processes, we hope that collectively such
percolating trajectories would be able to exhaustively visit every
possible non-blank entries. Those entries completely missed by
every single percolation processing should be reasonably taken
as blank entries. At the same time the ensemble of simulated
percolation trajectories is thought to achieve a uniform sampling
of all possible dominance paths. Therefore any pair of nodes,
which have dominance relationship, is sampled with pertinent
frequencies in either dominance direction. The ratio of these two
frequencies should properly reflect their dominance potential.
The precise algorithmic description of the Trickling percolation
process is given below.

2.3.1. Trickling Percolation Algorithm
TP-1: Consider a Markovian process to begin with a random

initial node i0 such that
∑m

j= 1 wi0,j > 0 and make a zero

m×mmatrix E and index k = 1;

TP-2: Select a candidate neighbor ik with equal probability from
the set of nodes {i|wi0,i = 1, i = 1, ..,m}(also excluding
nodes already appeared in the Markovian process);

TP-3: Generate a random value p from Be(α0+1, 1) and simulate
a Bernoulli random variable Xik ∼ BN(p). If Xik = 1, then
count it as a “win,” otherwise a “loss.” Record the win or
loss as order-0 dominance for the node-pair into entries
(i0, ik) and (ik, i0) in matrix E.;

TP-4: If Xik = 1, then add node ik into the dominance path and
let the Markovian process go to the TP-2 step with index
k = k + 1. If it is loss, then a simulated dominance path
ends, so is the Markovian process stops. Go to the next
step;

TP-5: Transform all order-2, 3,.... of pairwise dominance along
the Markovian simulated dominance path into order-0
pairwise dominance and record them into E.

Specifically the simulated dominance matrix E resulted from the
Tricking percolation algorithm has 1’s in the following collection
of entries {(ik, ij)|k < j ≤ K, k = 0, 1, ...,K} when a
realized simulated Markovian dominance path is the sequence
{i0, i1, ...ik, ....iK , iK+1} with XiK+1 = 0 and entries E[iK , iK+1] =
0 and E[iK+1, iK] = 1.

One simulation of the above Trickling percolation algorithm
gives rise to one replication of simulated win-and-loss dominance
matrix E. We construct a collection of a large number of
replications of E′s matrices, and denote the matrix summing
over the win-and-loss dominance matrix ensemble as E(W0). We
then take the following ensemble average via an entry-wise ratio
operation: for the (i, j) entry of matrix D(W0),

D(W0)[i, j] =
E(W′)[i, j]

E(W′)[i, j]+ E(W′)[j, i]
.

This special ensemble average D(W0) pragmatically provides
reasonable pairwise dominance probability for all potential
dominance relationships possibly embedded within W0. And
very importantly, any blank in D(W0) reliably has no dominance
relationships up to the extent of the percolating capability of
Trickling percolation algorithm. Hence D(W0) is taken as a
non-structural version of dominance probability matrix.

3. RESULTS

The computed dominance probability matrix D(W0) from
the previous section would be the basis for extracting
systemic structures: namely, its deterministic structure and its
randomness. It is noted that the deterministic structure is likely
a composite structure comprised of multiple overlapping trees.
To bring out and present such a structural composition in one
single hierarchy can be rather complicated. Here we represent
two global aspects of the deterministic structure of dominance:
one power-ordering axis and one power hierarchy. It is also
noted that the system’s randomness is highly associated with
the deterministic structure and the environmental constraints
pertaining to the system under study. Here we extract the pattern
information contents from the schedule matrixA0. The systemic

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 July 2016 | Volume 2 | Article 9

http://www.frontiersin.org/Applied_Mathematics_and_Statistics
http://www.frontiersin.org
http://www.frontiersin.org/Applied_Mathematics_and_Statistics/archive


Hsieh and Fujii Mimicking Directed Binary Networks

randomness is constructed by coupling a simulated schedule
matrix, which conforms to the computed pattern constraints,
with an estimate of the structured dominance probability matrix.

3.1. Systemic Structures I: Power
Structural Hierarchy
The task of extracting NCAA college football’s yearly
deterministic structure involves two steps. First we derive
an estimate of the m × m structural dominance probability
matrix, denoted PD(W0), that reveals one global aspect of
the dominance along a power ordering axis, which is not
necessary in linear ordering. Second, based on the estimate of
PD(W0), we derive a clustering tree that reveals another global
aspect of dominance via a power hierarchy, in which nodes
belonging a core cluster are viewed as not significantly different
in dominance, while two nodes belonging to clusters on two
different tree branches are considered significantly distinct in
dominance. Indeed the larger tree distance between two nodes,
the bigger discrepancy in dominance.

Intuitively an estimate of PD(W0) can be obtained by properly
permuting rows and columns of D(W0) to reveal a power
ordering axis. For extracting such a global structure out of
D(W0), we consider the following Hamiltonian, or the cost
function of the permuted matrix U(σ )D(W0)U

T(σ ) = [dij(σ )]
with permutation matrixU(σ ) pertaining to permutation σ ∈ U :

H(U(σ )D(W0)U
T(σ )) =

∑m
i= 2

∑i−1
j= 1max(0,− log[2(1− dij(σ ))])e

(m+1−j)(i−j)

m2 .

In the lower triangular matrix of U(σ )D(W0)U
T(σ ), this

Hamiltonian has a built-in function that not only penalizes
entries larger than 0.5, but also penalizes such entries that are far
away from the diagonal. Symmetrically in the upper triangular
matrix, this corresponds to entries smaller than 0.5.

This Hamiltonian H(.) defines the potential field of
{U(σ )D(W0)U

T(σ )|σ ∈ U}. Its ground state is taken as:

H(U(σ ∗)D(W0)U
T(σ ∗)) = min

σ ∈U

H(U(σ )D(W0)U
T(σ )).

It is known that the simulated annealing algorithm [18] is not
effective to deal with computational complexity of searching for
σ ∗ when m is not small. For moderate m(≈ 100), this simulated
annealing (SA) algorithm works effectively to reorder the rows
and columns of D(W0) only when it starts on an initial state,
which is already in the vicinity of the ground state. A reasonable
initial state is simply the permutation obtained by sorting the row
sums of D(W0). This choice of initial state seems to give rise to
an efficient implementation of SA algorithm, particularly for the
NCAA football data.

Let this SA algorithm provide one final permutation denoted
by σ̂ ∗, and one estimate of the m × m dominance probability
matrix PD(W0) denoted by

P̂D(W0) = U(σ̂ ∗)D(W0)U
T(σ̂ ∗).

The two computed dominance probability matrices for thee
NCAA football data on years 2012 and 2013 are shown in the left

panels of Figures 2, 3. And we specifically term σ̂ ∗ the “power
ordering axis” of P̂D(W0).

Next we address the task of extracting the power hierarchy
embedded within P̂D(W0). Here we build this power hierarchy
via Ultrametric tree geometry based on a Hamiltonian distance
matrix. Here, the new “distance” between two nodes is
defined as the Hamiltonian incurred by switching the two
nodes’ positions in σ̂ ∗ subtracting the minimum Hamiltonian
H(U(σ̂ ∗)D(W0)U

T(σ̂ ∗)). Small values of such a distance indicate
that these two nodes are indeed nearly equal in the power
hierarchy, and should share a core cluster. By arranging the
football teams on the new distance matrix according to σ̂ ∗, as
shown right panels of in Figure 2 for Year 2012 and Figure 3

for year 2013, the presence of a serial of small white blocks
along the diagonal is clearly visualized. This block pattern
information confirms that the permutation resulting from the
simulated annealing algorithm is reasonable. Each white block
indeed indicates a core cluster, in which all involved teams are
considered equal in power or dominance.

Further core clusters, which only include nodes being very
close to each others, should be allowed to merge into a
conglomerate cluster upon a higher level of hierarchy. By
discovering all involved levels, an Ultrametric tree geometry is
built (see [19, 20] for the detailed algorithmic construction)
called Data Cloud Geometry (DCG). It is essential to point
out here that such a distance has a built-in global ingredient,
which is implicitly critical in constructing an Ultrametric tree
geometry. The two Ultrametric tree geometries pertaining to
two years of NCAA college football are shown in Figures 6, 7,
respectively.

3.1.1. Refined Version of Power Structural Hierarchy
The estimation of the m × m dominance probability matrix
PD(W0) via P̂D(W0) derived above can be improved by
considering the following version of local transitivity. We
propose to compute local transitivity between nodes i and j

with ultrametric tree (level-based) distance dij as T̂ij = T̂1/dij .
For instance, in Figures 6, 7, two teams sharing the same core
cluster on the bottom tree level would have distance dij = 1,
two team sin the same cluster on the second-lowest tree level
would have distance dij = 2, and so on. We then update
α0 with a recalculated αij and re-run the Trickling percolation
algorithm with a Beta Random field based on Beta random
variables from Be(αij + 1, 1). The idea behind this is that Beta
random variables from Be(αij + 1, 1) are closer to reality than
Be(α0+1, 1) in the sense that the simulated dominance paths are
expected to be expanded and the number of unrealistic simulated
“upset” games are significantly reduced. Then a refined version
of D(W0) is computed, and a more efficient estimate P̂D(W0) is
constructed. This improvement on estimating PD(W0) turns out
to be crucial because of the inherent sensitivity in mimicking
directed binary networks as will be discussed in the next
subsection.

3.2. Systemic Structures II: Randomness
From the NCAA Football competitive system, the observed
directed binary network G(W′) is understood to have two sources
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FIGURE 2 | Optimally permuted P̂D(W0) (left panel) and Hamiltonian distance matrix with teams being arranged according to σ̂ * for the 2012 NCAA

football season (right panel).

FIGURE 3 | Optimally permuted P̂D(W0) (left panel) and Hamiltonian distance matrix with teams being arranged according to σ̂ * for the 2013 NCAA

football season (right panel).

of uncertainty: the schedule network G(A0) and the Binomial
stochastic mechanism ideally governed by PD(W0), which is
responsible for transforming G(A0) into G(W0). We elaborate
these sources briefly as follows.

The randomness embedded within a binary undirected
network, A0, has recently been studied in Fushing et al. [16].
It is now understood that such a component of randomness is
constrained by its multiscale block patterns organized in the form
of a Parisi adjacency matrix.

By taking G(A0) as a thermodynamic system equipped
with Ising model potential, this Parisi adjacency matrix is
computed as its minimum energy macrostate again by applying
the DCG algorithmic computations, see Fushing et al. [16].
Its evident multiscale block patterns are explicitly revealed by
superimposing the node organization pertaining to the computed

DCG ultrametric tree onto rows and columns of the binary
schedule matrixA0.

The DCG ultrametric trees of the 2012 and 2013 NCAA
college football schedules are computed and shown in
Figures 6A, 7A, respectively. These Ultrametric trees rediscover
the real conference structure of the college football teams.
The three singletons are indeed independent teams: Notre
Dame, Navy and Air Force. These tree also bring out which
conferences are closer, and which are far apart. The resultant
Parisi adjacency matrices with their multiscale block patterns
are seen in Figures 2B, 3B. Such block information becomes
evident when we compare Figure 1A with Figure 6B, as well
as Figure 1B with Figure 7B. It is noted that the randomness
pertaining to any block of G(A0) is the randomness of
generating such a sub-matrix by subject to constraints of two
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FIGURE 4 | Hamiltonian distance based DCG tree for the 2012 NCAA football season. The tree has been cut at its highest level for ease of presentation. The

branch containing the top 64 teams is displayed on left; the remaining teams are displayed on right. The number in the parentheses next to each team name is its

position in σ̂ *.

sequences of row and column sums. Such an explicit use of
randomness would be seen in the next section of Network
mimicking.

The second source of randomness regarding to transforming

G(A0) into G(W0) is pragmatically modeled via a Binomial
stochastic mechanism on a game-by-game basis. We assume
the global conditional independence given PD(W0) among

all football games. This assumption could be realistic under

the setting of learning from the network data G(W0). In
contrast, such an assumption of independence would be too
simplistic when the data set is indeed a sequence of directed

binary networks, which is realized along the series of football
games sequentially played throughout the entire 13 week
season.

3.3. Mimicking Directed Binary Networks
and System’s Robustness
Mimicking a directed binary network G(W0) is meant to generate
a microscopic state, or microstate of the system as one whole.
That is to say that any mimicry of directed binary network is
required to conform to the computed deterministic structures,
while its generating mechanism has to be carried out subject
to the constraints pertaining to the identified randomness. An
algorithm for mimicking a directed binary network is proposed
below. A microstate ensemble can be derived by repeatedly
applying this mimicking algorithm. We then make use of such
a microstate ensemble to explore the systemic sensitivity, which
is typically focused on a noticeable function of this system of
interest. Here we designate the power ordering axis on the
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FIGURE 5 | Hamiltonian distance based DCG tree for the 2013 NCAA football season. The tree has been cut at its highest level for ease of presentation. The

branch containing the top 68 teams is displayed on left; the remaining teams are displayed on right. The number in the parentheses next to each team name is its

position in σ̂ *.

optimally permuted dominance probability matrix P̂D(W0 as
the “linear-like ranking function” from top to bottom. Such a
linear-like ranking function is then evaluated on each member
of the ensemble in the exact same way of computing P̂D(W0).
The global variability along the whole spectrum of ranking
ordering axis from Number one to Number m is evaluated in
this sensitivity investigation.

3.3.1. Directed Binary Network Mimicking Algorithm
NB-1: Simulate a schedule matrix conforming to the finest

block-patterns in its Parisi adjacency matrix of G(A0) (see
[16] for this computational algorithm);

NB-2: Simulate win-and-loss matrix based upon the simulated

schedule matrix and Binomial random mechanism with
means being fixed corresponding to P̂D(W0).

By applying the above algorithm, a microstate ensemble of size

100 is generated for each of the two NCAA data on Years 2012
and 2013. Their linear-like ranking functions are evaluated and
summarized in Tables 1, 2 below. We use the mimicked ranking

standard deviation as an index of sensitivity of one team-node.

The heterogeneity of sensitivity across the entire power ordering
axis is clearly seen. In both tables, there is a noticeable increasing
trend in standard deviation as teams become more lowly ranked;
standard deviations then decrease again as approaching the most
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FIGURE 6 | Schedule DCG tree and its induced schedule matrix S0 of NCAA football data on year 2012: (Upper panel) DCG tree and (Lower panel)

Parisi adjacency matrix with colored diagonal blocks marking the intra-conference games for the real conferences, and off-diagonal inter-conference

games are marked in gray. The six independent teams are scatted on the tree. Conferences, from blue to red, are ACC, American, Big 12, Big Ten,

Conference-USA, Independent schools, Mid-American, Mountain West, Pac 12, SEC, and Sun Belt.

lowly-ranked teams. However, several outliers have significant
large standard variations.

In Table 1, we notice an outlier, San Jose State, with
a significant large standard deviation with respect to its

mimicked ranking median. San Jose State had a successful
season, only losing two games. However, their conference
(Mountain West) is generally considered to be one of the
weaker conferences. Since San Jose State plays many of its
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FIGURE 7 | Schedule DCG tree and its induced schedule matrix S0 of NCAA football data on year 2013: (Upper panel) DCG tree and (Lower panel)

Parisi adjacency matrix with colored diagonal blocks marking the intra-conference games for the real conferences, and off-diagonal inter-conference

games are marked in gray. The six independent teams are scatted on the tree. Conferences, from blue to red, are ACC, American, Big 12, Big Ten,

Conference-USA, Independent schools, Mid-American, Mountain West, Pac 12, SEC, and Sun Belt.

games against teams in the Mountain West, we would expect
them to win many of them. While San Jose State’s standing
within their conference is clear, it is much less apparent where
they should be ranked among all teams. Here’s a little bit

more about San Jose State. It lost to Stanford (ranked 8th)
and Utah State (ranked 39th). Our hypothesis is that the
simulated annealing wanted to put them as high as possible,
without surpassing Utah State. In fact, all 9 teams that San Jose
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TABLE 1 | Top 25 NCAA football teams for the 2012 season as ranked with

respect to microstate ensemble.

Rank School W L Conference Mean Median SD

1 Florida 10 1 SEC 4.12 3.0 2.99

2 Alabama 11 1 SEC 5.63 5.0 3.11

3 Notre Dame 12 0 Ind6 5.58 5.0 3.79

4 Stanford 11 2 Pac-12 5.38 5.0 3.12

5 Louisiana State 9 2 SEC 6.03 5.5 3.09

6 Ohio State 12 0 Big Ten 6.82 7.0 3.92

7 Kansas State 10 1 Big 12 7.58 7.5 5.39

8 Georgia 10 2 SEC 7.78 8.0 3.98

9 Texas A&M 8 2 SEC 8.50 8.5 3.97

10 Oregon 10 1 Pac-12 8.61 9.0 3.31

11 South Carolina 9 2 SEC 9.71 10.0 3.51

12 San Jose State 9 2 Mountain West 18.13 13.5 14.40

13 Oregon State 8 3 Pac-12 13.67 14.0 2.53

14 Oklahoma 9 2 Big 12 14.45 15.0 5.94

15 UCLA 9 4 Pac-12 16.33 16.0 3.26

16 Arizona 6 5 Pac-12 19.18 18.0 4.10

17 Southern Cal 7 5 Pac-12 19.66 18.0 4.73

18 Nebraska 9 3 Big Ten 21.96 20.0 6.10

19 Arizona State 6 5 Pac-12 21.55 20.5 5.63

20 Michigan 8 4 Big Ten 23.89 22.0 8.07

21 Penn State 8 4 Big Ten 27.02 23.5 13.82

22 Texas 8 4 Big 12 23.54 23.5 4.24

23 Vanderbilt 7 4 SEC 26.41 24.0 7.76

24 Missouri 4 7 SEC 27.48 25.0 10.71

25 Northern Illinois 11 1 MAC 25.11 25.0 16.29

Mean, median, and standard deviation of ranks from 100 mimicking iterations are

reported. The first column “Rank” is primarily based on the ranking on the 7th column

“Median.” When there is a tie, the ranking is resolved by comparing the “winning”

proportion among the 100 mimicking iterations.

State defeated are ranked below them, so with respect to only
their own schedule, they are ranked appropriately at 40 in the
computed σ̂ ∗. Why is it ranked 12th based on the microstate
ensemble?

We also notice from their schedule that it played 4
independent teams. These games are necessarily played again in
every simulated schedule, since each independent team is treated
as its own conference. Since San Jose State won all 4 of these
games, they will have a very good chance of winning those 4
games again in the mimicked seasons, since those games were
actually played, the dominance probability is particularly high.
However, it might not play with the Utah State in mimicked
seasons. If they meet, then San Jose State could even win over
Utah State with a positive probability. Due to such uncertainty
in the mimicked schedule and in Beta random field adapted
to P̂D(W0), San Jose State has a significant large variation in
linear ranking. We see this inflation of standard deviation for
top teams in weaker conferences (Northern Illinois in 2012 and
Central Florida in 2013 have the same characteristic), and also for
bottom-dwelling teams in strong conferences. This phenomenon
to some extent nicely explains the sensitivity of this network
mimicking.

TABLE 2 | Top 25 NCAA football teams for the 2013 season as ranked with

respect to microstate ensemble.

Rank School W L Conference Mean Median SD

1 Auburn 11 1 SEC 3.81 3.0 2.57

2 Florida State 12 0 ACC 4.09 3.0 4.84

3 Alabama 10 1 SEC 4.35 4.0 2.56

4 Michigan State 11 1 Big Ten 9.41 6.0 8.64

5 Missouri 10 2 SEC 8.59 8.0 4.16

6 Oklahoma State 9 2 Big 12 10.94 8.0 9.63

7 Ohio State 11 1 Big Ten 12.09 9.0 8.66

8 Stanford 11 2 Pac-12 9.19 9.0 5.23

9 South Carolina 9 2 SEC 10.43 10.0 4.62

10 Arizona State 9 3 Pac-12 12.84 12.0 6.03

11 Baylor 10 1 Big 12 15.45 12.0 9.44

12 Clemson 8 2 ACC 14.26 12.0 9.06

13 Georgia 7 4 SEC 14.39 13.0 6.66

14 Central Florida 11 1 American 15.10 15.0 10.78

15 Louisiana State 8 3 SEC 15.35 15.0 6.25

16 Notre Dame 8 4 Ind6 15.69 16.0 8.52

17 Mississippi 6 5 SEC 18.02 16.5 8.75

18 Texas A&M 7 4 SEC 17.16 17.0 5.65

19 Oregon 9 2 Pac-12 18.42 18.0 7.09

20 UCLA 9 3 Pac-12 19.66 19.5 5.86

21 Vanderbilt 7 4 SEC 23.62 23.0 7.33

22 Southern Cal 9 4 Pac-12 24.21 24.0 6.48

23 Oklahoma 10 2 Big 12 27.37 25.0 11.03

24 Texas 8 4 Big 12 27.95 25.5 11.41

25 Washington 7 4 Pac-12 26.35 26.0 6.33

Mean, median, and standard deviation of ranks from 100 mimicking iterations are

reported. The first column “Rank” is primarily based on the ranking on the 7th column

“Median.” When there is a tie, the ranking is resolved by comparing the “winning”

proportion among the 100 mimicking iterations.

We also see that the microstate ensemble does not always
place undefeated teams at the top of the rankings. In Table 1,
Notre Dame and Ohio State were both undefeated, but were
ranked third and sixth, respectively. While we do not directly
observe evidence for any other teams to be more highly ranked,
we must accept that neither team is from the most dominant
conference in 2012, the SEC. Neither team had many games
played against other highly-ranked teams, while SEC teams such
as Florida and Alabama had a higher level of competition. In
2013, the same phenomenon occurs with Florida State. Florida
State’s conference, the ACC, is broadly considered a weaker
conference than the SEC. As a result, we are more hesitant to give
Florida State the top ranking because their level of competition
was lower than Auburn’s, even though Auburn lost one game.

In summary, aforementioned episodes linking to the
heterogeneity in ranking sensitivity clearly indicates that NCAA
college football is a rather complex system of competition.

As a final note on our sensitivity exploration, beyond our
mimicking algorithm, other simulated ensembles of G(W0) could
be derived, for instance, by enlarging focal scales on the Parisi
adjacency matrix on G(A0). With the NCAA data, this type of
simulated ensemble corresponds to schedules swapping between
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different conferences. Our experimental results drastically vary
from what are reported here in the Tables 1, 2 even when
schedule swapping is only limited between nearest conferences.
This sensitivity is likely due to the fact that the dyadic data in
NCAA data is sparse. Consider a simulated game involving two
teams in two different conferences. The two teams likely have
few common opponents. Any upset loss resulted from such a
simulated game would create a large amount of uncertainty when
it comes to predicting the more dominant team. Even such a
seemingly unremarkable simulated event may obscure the whole
power structure.

4. DISCUSSION

Our computational and algorithmic developments on directed
binary networks show the capability of extracting deterministic
structures and randomness of the underlying complex system
of interest. The compositional constructs advance our systemic
understanding in a critical way. The platform of network
mimicking is proven to have impacts on exploring a system’s
functional sensitivity. By putting together all computed results
from all considered perspectives, we should be able to advance
further our understanding of a complex system.

Through the illustrating NCAA college football example, we
clearly see complexity embedded within this competitive system,
while at the same time we are able to recognize realistically
the complicated information contents contained in a seemingly
simplistic directed binary network. This fact reminds us that
understanding a system of scientific interest does require a heavy
investment on computing.

At this stage there are still many key technical difficulties
remaining unsolved. They are tentatively resolved with heuristic
approaches or proposals in this paper. Some questions that
particularly need rigorous endeavors are listed as follows: How
can we effectively measure and estimate pairwise transitivity Tij

and the related parameter αij? How much confidence can be

placed on the blank entries of P̂D(W0)?
Here it is worth emphasizing again the network mimicking

principle: any mimicked network must be taken as a microscopic
state that is generated coherently with respect to the system’s
randomness, and conforms to the system’s deterministic
structures.

The proposed directed binary network mimicking algorithm
would allow us to evaluate the network entropy. This entropy

should be the sum of the entropy pertaining to the finest scale
block patterns of the Parisi adjacency matrix (which is computed
by measuring the sizes of corresponding microstate ensembles as
discussed in [16]), plus the entropy derived from the Binomial
random mechanism with means being fixed corresponding to
P̂D(W0).

On the other hand. this NCAA football analysis comes at
a particularly opportune time, as the NCAA recently changed
the postseason format from a single championship game to a
four-team playoff. The teams participating in the playoff will be
decided by an appointed committee, rather than by a computer
and/or voting system like the Bowl Championship Series (BCS).

A linear-like ranking hierarchy such as the one developed in
this paper could be applied to provide the committee with some
objectivity in choosing the participating schools, or even the
number of schools that are to participate. Trees such as those
in Figures 4, 5 can be used to determine the contents of the
highest tier of football teams, while rankings derived based on
the microstate ensemble, holding conferences constant, provide
insight into the level of uncertainty we might have about teams’
relative standing.

As a final remark, we mention one implication of our
sensitivity explorations on the power hierarchy of NCAA
Football League. These investigations clearly show the difficulties
in pertinent and realistic network modeling and its statistical
inferences. At this stage there is no available methodology or
even knowledge for how to physically generate multiscale block-
patterns without knowing the tree structure priori, neither for the
power structural hierarchy. The unavailability is not surprising
because that a network is better perceived as a complex system
itself. The network mimicking principle proposed here might
serve as a guide on networkmodeling, goodness-of-fit testing and
making inferences.
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