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The assumption of unidimensionality and quantitativemeasurement represents one of the

key concepts underlying most of the commonly applied of item response models. The

assumption of unidimensionality is frequently tested although most commonly applied

methods have been shown having low power against violations of unidimensionality

whereas the assumption of quantitative measurement remains in most of the cases only

an (implicit) assumption. On the basis of a simulation study it is shown that order restricted

inference methods within a Markov Chain Monte Carlo framework can successfully be

used to test both assumptions.

Keywords: additive conjoint measurement, Rasch model, nonparametric methods, scaling theory,

unidimensionality, model fit

INTRODUCTION

Assessing the data-model fit forms the most essential part of psychometric modeling before any
theoretical or practical conclusions can be derived from a model under consideration. The most
crucial feature of many psychometric models is the assumption of undimensionality. That is, that
a single latent trait accounts for the statistical dependence among the items of a psychological test
in the entire population; and that the items are statistically independent in each subpopulation
of examinees that are homogenous with respect to the latent trait (local independence). An
assessment aimed at identifying and measuring inter-individual differences on some attribute
necessarily requires unidimensionality. Consequently, unidimensionality must hold before either
a total score is calculated under true score theory, or person parameters are estimated using item
response theory (IRT) and Rasch [1] models. Violation of unidimensionality may bias item and
person estimates [2–4] and will result in wrong conclusions about the nature of latent traits.
Applying reliable methods to assess unidimensionality is therefore of critical importance before
any theoretical and/or practical conclusions can be drawn from psychometric test data.

Because measurements can only be made of continuous quantities [5, 6], the claim of
unidimensionality is essentially equivalent to the hypothesis that individual differences in test
performance are caused by the behavior of a single, relevant and quantitative psychological
attribute. It is frequently stated that “Unidimensionality refers to the existence of a single trait
or construct underlying a set of measures” ([7], p. 186) or, likewise, “A unidimensional test may
be defined simply as a test in which all items are measuring the same thing” ([8], p. 268). We do
not regard these merely conceptual definitions as sufficiently unambiguous because they reach too
far into a premature causal interpretation of unidimensionality leaving too many questions open
what is meant, for example, by an “underlying” trait or the “same thing” (see also [9]). Therefore,
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in order to avoid conceptual confusions which might arise
from those definitions, we think it is important to stress the
point that unidimensionality does not necessarily imply that
a single psychological or physiological attribute or process
determines the responses on a set of items. Even a large
number of attributes/processes can affect item responses and
unidimensionality will hold (see [10, 11] for a classical illustration
and explanation). As long as the different attributes/processes
determining those responses affect the item responses in
the same manner, that is, are held constant among the
items, unidimensionality will hold. So, in order to avoid any
conceptual ambiguities related to the psychological interpretation
of unidimensionality, our definition of unidimensionality
will therefore strictly refer to the statistical definition of
local independence of a set of random observed variables
conditional on a hypothetical variable, that is, the person
parameter from the parameter space of a psychometric model.
That is, let Y1, Y2,...,YK be random observed variables and
θ be a single hypothetical variable, then P[Y1, Y2,...,YK]
constitutes the joint probability of the observed variables and
P[Y1| θ]P[Y2| θ]...P[YK | θ] denotes the conditional probabilities.
If the hypothetical variable θ alone accounts for the dependencies
among the observed variables, then the joint probability equals
the product of the conditional probabilities:

P[Y1,Y2, . . . ,YK | θ] = P[Y1 | θ] · P[Y2 | θ] ·... ·P[YK | θ]. (1)

This definition relies on strict tests of unidimensionality which
are in fact difficult to achieve in practice. Consequently, weaker
definitions of unidimensionality exist, such as Stout’s [12]
definition of essential unidimensionality which states that on
average, the conditional covariances over all item pairs must
be small in magnitude and is thus based on assessing only
the dominant dimensions. At first sight it seems therefore
to be questionable why strict unidimensionality, as proposed
in this paper, should be of any practical value. While it is
presumably true that strict unidimensionality rarely holds in
psychology it is important to note that the main aim of this
paper is not to contribute once more to the debate of how
multidimensional a test can be without disturbing conclusions
about the dominant latent trait assessed by a test. More
importantly, the main aim of this paper is to investigate the
more fundamental assumption of quantitative measurement
within psychological testing which presupposes the requirement
of unidimensionality. Thus, unidimensionality is a necessary but
not sufficient condition for quantitative measurement to hold.
Note that the fit of a certain item response model does not
necessarily imply that the psychological attribute is quantitative
and can therefore not serve as a test of quantitative measurement.
As Suppes and Zanotti [13] have shown, there always (i.e., for
every joint distribution) exists a scalar-valued latent trait variable
such that conditional independence holds. This implies that any
IRT model with a continuous latent trait is equivalent to a model
with a discrete latent trait. Since psychologists conceptualize
many latent variables as continuous, testing this assumption
within a framework of strict unidimensionality is required.

Consequently, and as noted above, the problem of
unidimensionality is twofold; and it is therefore essential not
only to test local independence but also the (usually implicitly
assumed) hypothesis that the attribute under consideration
is quantitative. By quantitative, it is meant that the relations
amongst the degrees (levels) of the attribute are consistent
with the ordinal, additive and continuity conditions proven
by Hölder [14] as being necessary for quantity (c.f., [15] for
an English translation). The base quantities of physics, notably
mass, length and time, are unidimensional quantities. Derived
quantities, notably three dimensional space, consist of these base
unidimensional quantities (c.f., [16]).

Within psychometrics, it has been argued that the Rasch
model [1] is a probabilistic form of conjoint measurement [17]
and so hence constitutes a means of “fundamental measurement”
for the behavioral sciences [18]. This is because arrays of Rasch
model probabilities exhibit ordinal relations consistent with the
cancelation axioms of conjoint measurement [19]. Given the
Rasch model is also considered a strict test of the assumption
of unidimensionality (e.g., [20]), application of the model is
considered a stringent test of the hypothesis of the existence of
a single, quantitative and unidimensional psychological variable.

Application of the Rasch model, however, is unlikely to lead
to the quantification of human cognitive abilities. Firstly, there
is no logical substantive, theoretical or scientific reason that the
empirical sample estimates of Raschmodel probabilities, the item
response proportions, must also exhibit ordinal relations consist
with the cancelation axioms of conjoint measurement. Studies
testing the conjoint measurement cancelation axioms directly via
order constrained probabilistic frameworks (e.g., [21–23]) have
found that such proportions violate these axioms, even though
the Rasch model may fit the data.

Secondly, a rather more severe conceptual problem is the
“Rasch Paradox” identified by Michell [24]. Suppose X is a set of
items ostensibly designed to assess a particular intellectual ability
and A is a set of persons. Guttman’s [25] model is such that:

(a, x) ∈ B ⇔ f (a) > g(x) (2)

where 〈ℜ,>〉 are the real numbers and f :A 7→ ℜ and g :X 7→ ℜ;
and B is a biorder.

The uniqueness of Equation (2) is such that for
(

f , g
)

and
(

f ′, g′
)

there exists a monotonically increasing function K such
that:

f ′ = K ◦ f and g′ = K ◦ g (3)

where “◦” designates function composition [26]. Therefore,
ability estimates in Guttman’s model are unique up to monotonic
transformations only [27]. Hence Guttman’s model is ordinal and
not quantitative.

Michell ([24], p. 122) argued the Rasch model is a “woolly”
version of Guttman’s theory because it posits that:

Pr (a, x) ⇔ f (a) ≥ g(x) + ε = �
(

θa − bx
)

(4)

where ε is an error term, Ω is the logistic cumulative distribution
function, θa is the ability of a and bx is the difficulty of x.
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Because Guttman’s model is ordinal (Equation 2), Rasch’s
quantitative and the only difference between them being error,
it follows that the Rasch model’s status as a quantitative theory
is derived exclusively through the theoretical error term of
Equation (4). This creates a paradoxical situation, because
in physics and metrology, error is a measurement confound.
Physicists and metrologists work to create observational
methodologies that reduce measurement error precisely because
such methods lead to better measurement [28]. However,
removal of the error term from Equation (4) results in Equation
(1) and the result is an ordinal, not quantitative, scale. Hence
the elimination of error from the model renders measurement
impossible. But in science, eliminating would lead to perfect
scientific measurement, not the impossibility of measurement;
and so hence a paradox is obtained.

Sijtsma [29] disputed the Rasch Paradox, claiming it did not
exist. However, he mistook the arguments of Michell [24] as
pertaining to the presence or absence of error in test data, rather
than the Paradox residing at the theoretical level of the model
itself [30].

The Rasch Paradox implies that it may never be possible for
the Rasch or other IRT model to scientifically quantify human
cognitive abilities. Hence perhaps the most rigorous way to
quantify human abilities (and also assess unidimensionality) is
to directly test the cancelation axioms of conjoint measurement
upon test data.

THE THEORY OF CONJOINT
MEASUREMENT

Let A = {a, b, c,...} and X = {x, y, z,...} be non-empty (and
possibly infinite) sets of magnitudes of the same quantity. Let �∼
be a simple order (i.e., one that is transitive, antisymmetric and
strongly connected) holding upon the set A × X = {(a, x), (b,
x),..., (c, z)}, which is the set of all ordered pairs of the elements of
A and X. The relation �∼ upon A × X satisfies single cancelation
if and only if (cf. [31]):

• For all a, b in A and x in X, (a, x) �∼ (b, x) implies for every w
in X that (a, w) �∼ (b, w);

• For all x, y in X and a in A, (a, x) �∼ (a, y) implies for every d
in A that (d, x) �∼ (d, y).

Satisfaction of the single cancelation axiom means that the
ordinal and equivalence relations holding upon the levels of A
are independent of the levels of X and vice versa.

The relation �∼ upon A× X satisfies double cancelation if and
only if for every a, b, c in A and x, y, z in X, (a, y) �∼ (b, x) and
(b, z) �∼ (c, y) therefore (a, z) �∼ (c, x). Satisfaction of double
cancelation means that A and X are additive and are therefore
quantitative (c.f., [32]). Double cancelation can be difficult to
empirically test as some instances of it are redundant (i.e., they
trivially hold if single cancelation is true; [33]). A weaker form
of double cancelation, in which the relation �∼ is replaced by the
equivalence relation ∼, is known as the Thomsen condition [32].
Luce and Steingrimsson [34] argued that conjoint commutativity
and the Thomsen condition are preferable to double cancelation

as this redundancy is avoided, although it is worth mentioning
that in decision-making contexts, double cancelation is often
easier to test and it can be evaluated via preferences, as opposed
to indifferences (see [35, 36]).

The cancelation axioms place rather stringent ordinal
restrictions upon a dataset, which if satisfied, can produce
compelling evidence of unidimensionality. This has been found
in applications of conjoint measurement in the assessment of
attitudes (e.g., [37–39]), where the dominant path condition
of Coombs’ [40] theory of unidimensional unfolding has
satisfied single and double cancelation. However, dominant paths
supporting single cancelation yet rejecting double cancelation
were discovered by Kyngdon and Richards [41]. They also
found that Andrich’s [42] unidimensional IRT unfolding model
fitted this data well. Yet application of conjoint measurement in
psychometrics has been limited [43, 44]. Its most effective formal
use thus far has been in the study of decision making under
conditions of risk and uncertainty (c.f., [45]). Most prominently,
conjoint measurement served as the formal proof to Kahneman
and Tversky’s [46] prospect theory, for which Kahneman received
the 2002 Nobel Economics Memorial Prize [47].

As conjoint measurement is non-stochastic, attempts
at applying it to invariably noisy psychometric test data
are problematic [48, 49]. Moreover, the ordinal constraints
posed by the cancelation axioms render the application of
common statistical procedures invalid [50]. Scheiblechner
[51] proposed a class of order-restricted non-parametric
probabilistic IRT models. Karabatsos [21] extended this
approach by integrating the theory of conjoint measurement
[17] with order-restricted inference and Markov Chain Monte
Carlo methods (MCMC). The integration of these concepts
into a MCMC framework enables one to test the order-
restricted approach statistically, that is, to assess the degree of
stochastic approximation to the conjoint measurement axioms.
The present study is aimed to show that this approach can
be used to assess data-model fit in regard to the common
problem of violations of unidimensionality in psychological test
data.

Using Order-Restricted Response Models
to Detect Violations of Unidimensionality
At first glance, it seems odd to use order-restricted response
models to detect violations of unidimensionality. However, as
previous studies have shown, unmodeled multidimensionality
can heterogeneously affect item slope parameters, resulting
in crossing Item Response Functions (IRFs; [52–54]).
Consequently, for the case of the Rasch model, Glas and
Verhelst [20] have shown that the likelihood ratio test by
Andersen [55], originally aimed to detect violations of non-
intersecting IRFs, has also reasonable power against violations
of unidimensionality. However, a major drawback of tests
of parametric item response models exists because they rest
on the assumption that the estimated model parameters are
true population parameters, hence unspoiled by random or
systematic measurement error. As Karabatsos [21] has shown
if data contain such noise, the estimated IRFs contain noise
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and model violations are—to an unknown extend—absorbed.
The approach suggested by Karabatsos, on the other hand, is
not based on estimated parameters but on the degree to which
the observed data matrix conforms to the restrictions imposed
by an order-restricted non-parametric probabilistic IRT model.
That is, item and person response functions of the observed
data are constrained by non-numerical order restrictions of
the conjoint measurement cancelation axioms. However, the
number of tests of the double cancelation axiom in m × n

conjoint matrices per dataset equals

(

m
3

) (

m
3

)

[56]. In the

present study (and explained below), we constructed 3 × 30
conjoint data matrices from replicated data sets. This poses
a major computational problem because, even with a single
conjoint matrix of order 3 × 30, there are 4060 tests of the
double cancelation axiom. However, with multidimensional data
and as described above, we expected a violation already of the
single cancelation axiom, that is, violations of the requirement
that the IRFs for any particular response category are non-
decreasing and non-intersecting. Thus, if single cancelation is
violated, there is no logical point in testing double cancelation.
At this point it is essential to recognize that the isotonic
ordinal probabilistic model (ISOP; [51]) imposes order relations
implying single cancelation. In general, the ISOP model defines
non-intersecting and non-decreasing non-parametric IRFs,
therefore implying double monotonicity, that is, the probability
of a positive response increases monotonically with the person
parameter and the probability of a positive response is also
monotonically decreasing with the item difficulty parameter,
where the order of the item difficulty is invariant over the
response categories. It is important to note that the ISOP
model differs from the Rasch model (which was used to
simulate the data sets in this study) because the IRFs can take
any positive monotonic functions, unlike the Rasch model,
assuming the logistic function. Hence, the ISOP model also
covers non-parametric models with non-intersecting IRFs
such as the Mokken [57] and the Guttman model [58]. Note
that since the IRFs of the ISOP model need not to be parallel
(as in the case of parametric functions) but only positively
monotonic and non-intersecting, the joint scale of item
and person parameters is on an ordinal metric. The general
structure of the order restrictions characterizing the ISOP model
resulting from the restriction on the row- (respondents) and
column-wise (items) ordered data matrix are illustrated by in
Figure 1.

The ISOP model, within the context of Karabatsos’ [21]
framework, can be formally expressed as follows. The matrix of
observed proportions of correct item responses corresponding to
Figure 1 can be defined as:

p =
(

pax | a = 1, ..., 3; x = 1, ..., 3
)

∈ [0, 1]9. (2)

The matrix of expected proportions of correct responses is
defined as:

2 = (θax | a = 1, ..., 3; x = 1, ..., 3) ∈ [0, 1]9. (3)

FIGURE 1 | Graphical representation of the single cancelation axiom

(row and column independence).

The posterior distribution for 2, conditional upon the data (p),
is given by Bayes’ Theorem:

p
(

2 | p
)

=
L

(

p | 2
)

π (2)
∫

�L
(

p | 2
)

π (2) d2
, (4)

where π (2) is the order constraining prior distribution of the
parameters in 2. This distribution restricts 2 to lie within the
proper subset � of [0,1]9. Karabatsos and Sheu [22] state that the
prior distribution has the form:

π (2) =

{

> 0 ⇔ 2 ∈ �

0 ⇔ 2 /∈ �.

The likelihood, L
(

p|2
)

, is assumed to be a product of
independent binomial distributions such that:

L
(

p|2
)

=
∏3

a = 1

∏3

x = 1

(

Nax

nax

)

θnaxax (1− θax)
Nax−nax . (5)

Equation (5) assumes independence of the data conditional
on the parameters in 2, with the product operation directly
corresponding to the local independence condition stated in
Equation (1) [22]. The denominator of the posterior distribution,
the marginal density, is not of closed form and therefore
numerical methods must be used to obtain a solution. To this
end, Karabatsos [21] proposed an MCMC algorithm, a hybrid
Metropolis Hastings–Gibbs sampler. The prior distribution,
π(2), constrains the order upon the elements of2 to accord with
the cancelation axioms of conjoint measurement. Two different
order constraining prior distributions are proposed forπ(2). For
the ISOP model, the prior π (θI) subjects each parameter θax to
the constraint:

0 ≤ max
{

θ(a−1)x, θa(x−1)

}

≤ θax ≤ min
{

θ(a+1)x, θa(x+1)

}

≤ 1
(6)

for all a, x. Additionally, θ0x ≡ θa0 ≡ 0 and θ(A+1)x ≡

θa(X+1) ≡ 1.
The monotone homogeneity (MH) model is a weaker form of

the ISOP model in that IRFs are monotonically increasing but
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intersect. For the MH model, the prior π (2MH) subjects each
parameter θax to the constraint:

0 ≤ θ(a−1)x ≤ θax ≤ θ(a+1)x ≤ 1 (7)

for all a, x. Additionally, θ0x ≡ 0 and θ(A+1)x ≡ 1.
To initiate the algorithm, a set of starting values 2(0) =

(

θ
(0)
ax |a = 1, ..., 3; x = 1, ..., 3

)

∈ [0, 1]9 is randomly drawn from

a uniform distribution under constraint that the elements follow
the ordinal restrictions imposed by the prior. For any element of

2 at iteration t, two steps determine θ
(t)
ax :

Step 1. A random number rax∼Unif [0, 1] is drawn and a

candidate θ
(∗)
ax is sampled from the order restrictions

defined by the prior uniform distribution on
[min (θax) ,max (θax)].

Step 2. Decide:

θ (t)
ax =











θ∗ax iff rax ≤
L
(

p|θ∗ax,θ
(t)
<a(1≤x≤X)

,θ
(t)
a(<x),θ

(t−1)
a(>x),θ

(t−1)
>a(1≤x≤X)

)

L
(

p|θ
(t−1)
ax ,θ

(t)
<a(1≤x≤X)

,θ
(t)
a(<x),θ

(t−1)
a(>x),θ

(t−1)
>a(1≤x≤X)

)

θ
(t−1)
ax otherwise.

(8)

In Step 1, min (θax) = max
{

θ t
(a−1)x, θ

t
a(x−1)

}

and max (θax) =

min
{

θ t−1
(a+1)x, θ

t−1
a(x+1)

}

when the ISOP model is tested. For the

MH model, min (θax) = θ t
(a−1)x and max (θax) = θ

(t−1)
(a+1)x.

Support of the ISOP model (Figure 1) logically implies that Item
z > Item y > Item x, where > is the relation of “is easier
than”; and that Group c > Group b > Group a, where > is
the relation of “has more ability than.” As “item easiness” is
simply the amount of ability needed to correctly respond to an
item, both A and X are instances of the same attribute (viz., a
cognitive ability of some kind). From the ISOP model, it can
only be concluded that A and X are ordinal attributes. Via the
binary relation of transitivity (i.e., if a > b and b > c, then
a > c), single cancelation determines only half the number of
the relations between the diagonally adjacent cells of a conjoint
matrix. Michell [6] calls such relations left leaning diagonals.
Figure 1 shows that because single cancelation has determined
that (b, y) ≥ (b, x) and (b, x) ≥ (a, x), via transitivity it
follows that (b, y) ≥ (a, x). But the relation between (a, y)
and (b, x) remains logically undetermined. These particular
relations, the right leaning diagonals, are determined by double
cancelation.

The ISOP model and double cancelation constitutes what
Scheiblechner [51] calls a complete additive conjoint ISOP
model or CADISOP model. In this model, the prior π(2D),
for each 3 × 3 submatrix, constrains the elements of 2 such
that:

0 ≤ max
{

θ(a−1)x, θa(x−1), θ(a+1)(x−1)

}

≤ θax

≤ min
{

θ(a+1)x, θa(x+1), θ(a−1)(x+1)

}

≤ 1 (9)

for all a, x. Additionally, θ0x ≡ θa0 ≡ θ(A+1)x ≡ θa(X+1) ≡ 0 and
θ0x ≡ θa0 ≡ θ(A+1)x ≡ θa(X+1) ≡ 1 . In Step 1 of Karabatsos’

[21] algorithm, min (θax) = max
{

θ t
(a−1)x, θ

t
a(x−1), θ

t−1
(a+1)(x−1)

}

and max (θax) = min
{

θ t−1
(a+1)x, θ

t−1
a(x+1), θ

t
(a−1)(x+1)

}

.

In the weaker MH model, single cancelation holds only upon
the rows of Figure 1 and so hence it can only be concluded that
Group c > Group b > Group a.

METHODS

Data Simulations
ConQuest [59] was used to simulate 900 data matrices
according to a fully-crossed 2 × 3 × 3 design. In order
to investigate the power of the ISOP approach to detect
violations of unidimensionality, that is, to calculate Type II
error rates, two-dimensional data according to a between-item
multidimensionality Rasch model [60] were simulated. A total
of 30 items were chosen to represent an “average” length.
Person and item parameters for each dimension were both
drawn from a standard normal distribution. The design included
two levels of sample sizes (250 and 500) and three degrees of
correlations between both dimensions (r12 = 0.30, 0.50, and
0.80). Finally, the proportion of items reflecting each dimension
was varied across three different ratios (25:5, 20:10, and 15:15).
For each of the resulting 18 conditions, 100 data replications were
generated. This simulation design was chosen in order to reflect a
representative range of possible violations of unidimensionality
a test constructor can encounter in practical test construction.
Most psychological scales are constructed to measure a single
variable but are in fact composed of item subsets measuring
different aspects of the variable. Note that the size of these subsets
and the correlation between both dimensions being meausured
by those subsets can vary from test to test and both factors should
therefore be varied in a simulation study. Thus, the condition
with an item ratio of 25:5 and a low correlation between both
dimensions of 0.30 stands for the situation that the data matrix
is formed from a major dimension of interest but that there is
also a minor dimension that accounts for some of the shared
covariance between variables. The opposite case, that is, an equal
number of items in each subset with a high correlation between
both dimensions was defined by the condition of an equal item
ratio of 15:15 on both dimensions with a correlation of 0.80. (See,
for example, [61, 62], for practical examples of typical violations
of unidimensionality in psychology).

Besides investigating the power of the ISOP approach with
respect to violations of unidimensionality, the often implicitly
made assumption of quantitative measurement also needs to be
tested. As already noted above, it has been argued that fit of the
Rasch model [1] is not only a stringent test of the hypothesis of
unidimensionality but is also tantamount for the existence of a
quantitative variable [19]. This assertion can be directly tested by
analyzing Rasch-fitting data should under the ISOP model. We
therefore analyzed simulated unidimensional and Rasch-fitting
data under the ISPO model. To do so, we also generated Rasch-
fitting data of 30 dichotomous items with sample sizes N = 250
andN = 500 with person and item parameters being drawn from
a standard normal distribution and 100 replicated data sets under
each sample size condition.
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The order constrained Bayesian MCMC inference approach
was conducted by using a modified version of the original S-Plus
program by Karabatsos [21], adapted by the second author for R
[63] and can be obtained from the first author. This R program
differed from the original version with respect to the calculation
of the posterior distribution quantiles needed for the MCMC
approach, by using the method recommended by Hyndman and
Fan [64] which gives median-unbiased estimates of the quantiles
independent of the distribution. The MCMC approach assesses
the degree of stochastic approximation to the measurement
axioms of a model under consideration and offers three methods
focusing on different aspects to evaluate model fit.

Firstly, the MCMC algorithm generates samples from
p
(

θ (I) | p(I)
)

, p
(

θ (MH) | p(MH)
)

and p
(

θ (D) | p(D)
)

. It is therefore
possible to It is therefore possible to conduct the following three
tests of fit – p = p(I), p(MH) and p = p(D)— by comparing
p to the posterior-predictive distribution [22]. To estimate the
posterior-predictive distribution from a given data matrix, the
Gibbs sampling algorithm needs to be repeated for a sufficiently
large number of T times [65] to find a good starting point
for the MCMC algorithm. Usually (cf., 63), iterations at the
beginning of an MCMC run (“burn-in” samples) should be
discarded because they are affected by the arbitrary starting
values required to initiate the Gibbs algorithm. Note that in the
present study, we used 500 “burn-in” samples {t = 1,...,500} and
5000 MCMC iterations {t = 501,...,5000} for sufficient precision
in the posterior estimates. As Geyer [66] has demonstrated, using
at least 1% of T usually results in sufficient precision. For a future
value p∗, this posterior-predictive distribution is:

p
(

p∗ | p
)

=

∫

p
(

p∗ | 2
)

p
(

2 | p
)

d2 (10)

which can be estimated as a simple byproduct of the MCMC
algorithm used to calculate p

(

θ | p
)

. A posterior-predictive or
“Bayesian” p-value [67] of the Pearson χ2 discrepancy statistic
can therefore be obtained such that:

χ2
(

p | 2
)

=

A
∑

a=0

X
∑

x=1

[(

Nax pax − Nax θax
)

/Naxθax
]

(11)

and

p value
(

p | 2
)

= Pr
[

χ2
(

p∗ | 2
)

≥ χ2
(

p | 2
)

| p
]

. (12)

Given the set of MCMC samples
(

2(t) | t = 1, ...,T
)

, whereby T
should be reasonable large (i.e., T = 5000 as in the present study)
the above equation is estimated by:

1

T

T
∑

t=1

I
(

χ2
(

p∗(t)
| 2(t)

)

≥ χ2
(

p | 2(t)
))

(13)

where I (·) is the indicator function [22]. This Bayesian p-value
is therefore the probability that the χ2-value of “future” data is
greater or equal to the χ2-value of the observed data [67]. Hence
it indicates if the data can be described by the model, assuming
the model is correct. Large values are indicative of global model

fit whereas low values (such as the conventional p< 0.05) suggest
poor fit.

Secondly, since the Bayesian p-value does not provide
information whether a certain model is correct but rather that
it is one of possibly many fitting models [68], the Deviance
Information Criterion (DIC; [69]) serves as a decision criterion
to select a model with the highest generalizability over future
observations of the same conditions which generated the actual
data set. Thus, the DIC serves as a criterion for Bayesian model
selection and model comparison and is thus a measure of relative
model fit. For the matrix of observed proportions of correct
item responses corresponding to Figure 1, the deviance function
obtained from the MCMC algorithm is as follows:

D (2) = 2

9
∑

j=1

[

(

nj
)

ln

(

nj

Njθj

)

+
(

Nj − nj
)

ln

(

Nj − nj

Nj − Njθj

)]

(14)
where nj is the number of correct responses and Nj is the total
number of responses corresponding to the j-th cell of the conjoint
array. The DIC is given by:

DIC = D
(

2
)

+ 2
(

D (2) − D
(

2
))

(15)

where D
(

2
)

is the deviance evaluated at the posterior mean,
(

D (2) − D
(

2
))

penalizes the complexity of an axiom and

D (2) is the posterior mean of the deviance [70].
In our study, the DIC was used in order to compare the fit

of the ISOP model compared to the monotone homogeneity
model (MH; [22]), differing from the ISOP model with respect
to conjoint matrices in which the single cancelation axiom
holds upon only the rows of the matrix, that is, allowing for
intersecting item response functions. According to Spiegelhalter
et al. [71], a difference of less than five in the DIC measures
between models does not provide sufficient evidence favoring
one model over another. Thirdly, local model fit, that is, the fit
of any cell of proportions of correct responses in the observed
data matrix, can be judged by constructing a Bayesian 95%
confidence interval around the observed proportions. Based on
that, one can construct an unstandardized effect size measure of
approximate model fit as the number of proportions within their
95% corresponding confidence interval.

It is important to note that with 30 items and sample sizes
of 250 and 500, as in our study, the dimensionality of the row-
(respondents) and column-wise (items) ordered data matrix of
observed proportions becomes huge, increasing computational
time of the MCMC method drastically. Therefore, the conjoint
matrices were constructed by defining only three score groups
based on the quantiles q33% and q66%, resulting in 3× 30 conjoint
matrices of the replicated data sets, simulated as described above.
Furthermore, extreme scores (i.e., persons with scores of either
0 or 30) were automatically deleted before each analysis of the
replicated data sets.
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RESULTS

Two-Dimensional Data
The observed statistical power (i.e., rate of correct rejections) of
the ISOP χ2-model test to detect violations of unidimensionality
was 100% under all simulation conditions. Furthermore, the
relative frequencies of proportions within their 95% confidence
interval as an unstandardized effect size measure of model
violations indicated clear deviations from the requirements of the
ISOP model under all conditions as shown in Figures 2, 3.

As the results show, relative frequencies of the proportions
within their confidence intervals were low under all simulation
conditions, indicating gross violations of the order restrictions
imposed by the ISOP model. The slight positive relationship
between the relative frequencies of proportions within their 95%
confidence interval and the item ratio may seem surprising at the
first glance but can be explained by a compensation effect of the
positively correlated dimensions.

To begin with, recall that the ISOP model requires non-

decreasing and non-intersecting IRFs and that the estimated
proportions of correct responses within their 95% confidence
interval are indicating whether the IRFs are monotonically
increasing and non-intersecting. Now, note that the ability of
each person i within each quantile score group is determined by
their parameter values θij and θik on the two dimensions j and k.
As long as both dimensions are not perfectly positively correlated,
each quantile score group consists of subgroups characterized by
different ability configurations (θij, θik). Clearly, three types of
parameter configurations within each quantile score group can
be distinguished: θij = θik, θij > θik and θij < θik. For persons
with θij > θik items of the first dimension are easier, whereby
for θij < θik items of the second dimension are easier and for
persons with θij = θik items are equally difficult. Because both
types of parameter configurations θij > θik and θij < θik are part of
each score group, effects of item heterogeneity, are—to a certain
extend—compensated. Furthermore, because item homogeneity
holds for persons in subgroups characterized by the parameter
configuration θij = θij which are also included in each subgroup,

effects of multidimensionality/item heterogeneity are even more
reduced. In general, this effect is of course more pronounced if
the ratio of items belonging to each dimension approaches one as
the results show. Nevertheless, the very low relative frequencies
of proportions within their 95% confidence interval leave no
doubt about the strong violations of the single cancelation
axiom and the sensitivity of the presented approach to detect
violations of unidimensionality, regardless of the described slight
compensation effect.

The violation of the single cancelation axiom is also
demonstrated in Table 1 showing the means and standard
deviations of the DIC from the replicated data sets per simulation
condition.

Under both sample size conditions the mean DIC statistic
clearly indicate a better relative model fit of the MH model
than the ISOP model [71], suggesting violation of the single
cancelation axiom on both rows and columns of the conjoint
matrices due to violations of unidimensionality. Furthermore,
under the condition with N = 500 of the ISOP model, there is
a clear positive relationship between mean DIC-values and the
number of items assigned to each of the two dimensions as well as
higher mean DIC-values can be observed when both dimensions
are less correlated. With N = 250 and in contrast to the positive
relationship between the number of items per dimension and
mean DIC-values under the condition with N = 500, higher
mean DIC-values are obtained when both dimensions are more
strongly correlated. Presently we can only speculate on this effect.
Because sample size bias has also been observed with the special
cases of the DIC, Akaike’s Information Criterion and Bayesian
information criterion (cf. [72]), it is likely that sample sizes
within each of the three quantile score groups with approximately
83 simulated persons per score group are too small to obtain
unbiased estimates of the DIC statistic.

Rasch-Fitting Data
The analysis of the unidimensional Rasch-fitting data with
the ISOP χ2-model test resulted in a 100% rejection rate

FIGURE 2 | Relative frequencies of proportions correct within their 95% confidence interval for the ISOP model and N = 250.
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FIGURE 3 | Relative frequencies of proportions correct within their 95% confidence interval for the ISOP model and N = 500.

TABLE 1 | Mean and (Standard Deviations) of the DIC statistic under

different conditions of multidimensionality for the MH and ISOP model.

Simulation condition: Mean DIC Mean DIC

Item proportion per dimension; MH (SD) ISOP (SD)

correlation between dimensions

N = 250

15:15; 0.30 160.04 (1.62) 7294.60 (5393.54)

20:10; 0.30 161.02 (1.45) 7054.81 (2490.37)

25:5; 0.30 162.58 (1.75) 3165.86 (1544.96)

15:15; 0.50 161.28 (1.69) 7477.30 (5517.04)

20:10; 0.50 162.18 (1.32) 6731.95(2038.71)

25:5; 0.50 163.72 (1.43) 3298.02 (1552.76)

15:15; 0.80 162.33 (1.27) 7779.28 (5090.63)

20:10; 0.80 163.38 (1.13) 6949.97 (1912.70)

25:5; 0.80 164.81 (1.21) 3016.76 (1468.86)

N = 500

15:15; 0.30 171.76 (0.87) 65755.17 (11379.87)

20:10; 0.30 171.98 (0.93) 44116.90 (9259.99)

25:5; 0.30 172.16 (0.92) 27030.33 (8212.32)

15:15; 0.50 172.25 (0.95) 64965.55 (13358.31)

20:10; 0.50 172.85 (0.82) 43330.11 (10368.75)

25:5; 0.50 173.25 (0.74) 29293.09 (6477.56)

15:15; 0.80 172.43 (0.79) 64546.78 (16331.75)

20:10; 0.80 173.27 (0.64) 44596.95 (9574.25)

25:5; 0.80 173.95 (0.73) 29104.85 (6840.63)

under both sample size conditions, implying clear violations of
the of single cancelation axiom. This was also supported by
the mean DIC statistic indicating a better relative fit of the
MH model under both sample size conditions as shown in
Table 2.

Furthermore, relative frequencies of the proportions
within their 95% confidence intervals were low under
both sample size conditions with 17 (N = 250) and

TABLE 2 | Mean and (Standard Deviations) of the DIC statistic for the MH

and ISOP model under different sample size conditions with Rasch-fitting

data.

Sample size condition Mean DIC MH (SD) Mean DIC ISOP (SD)

N = 250 162.27 (1.50) 5762.98 (2416.04)

N = 500 172.38 (0.64) 52384.12 (9579.73)

7% (N = 500), showing clear violations of the order
restrictions imposed by the ISOP model implying quantitative
measurement.

For the sake of completeness, we furthermore applied the
generalization of Karabatsos’ [21] algorithm recently developed
by [23]. Domingue developed an improved version of the
“jumping”/proposal function (cf., [73], p. 295f.) used in the
Metropolis-Hastings algorithm to check both single and double
cancelation. To keep the presented results of this study
comprehensive, we decided to apply this approach to selected yet
meaningful conditions only. We therefore chose the conditions
of Rasch-fitting data with N = 500 and two-dimensional data
with r12 = 0.30, N = 500, and an item proportion per dimension
of 15:15. Domingue’s approach uses mean percentages of checks
that detected violations from adjacent 3 × 3 matrices from a
conjoint matrix, weighted by the number of individuals at each
sum score level to reduce the impact of possible volatility at
extreme abilities. Interestingly, we found practically no difference
between the weighted means of these conditions with which
were 0.27 and 0.28, respectively. We can only speculate on
the reasons for the finding that Karabatsos’ approach seems to
be highly sensitive to departures from unidimensionality but
Domingue’s is not, for the experimental conditions realized in
this study. In future studies, it might be worth checking randomly
formed 3 × 3 because those turned to be more sensitive as first
findings indicate (Domingue, personal communication, June,
2014).
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DISCUSSION

Before the study results are interpreted, it should be noted that
the presented study was carried out under specific conditions
of the distribution of the person and item parameters, test
length, sample size and degrees of model violation. Under
these restrictions, the results of this simulation study clearly
demonstrated the power of the order-restricted inference
approach to detect violations of unidimensionality by imposing
the restrictions of the single cancelation axiom of conjoint
measurement, using the ISOP model and integrated within a
MCMC framework. Under each condition of different degrees
of violations of unidimensionality the χ2-model test of the
discrepancy statistics between the observed and expected
data always rejected the hypothesis of the data-model fit
under the assumption of unidimensionality. Furthermore,
relative frequencies of proportions of correct responses
within their 95% confidence interval as unstandardized
effect size measures demonstrated gross violations of the
unidimensionality assumption. These results were supported
by comparing a nonparametric item response model assuming
monotone homogeneity with the ISOP model, assuming double
monotonicity or single cancelation, respectively. By applying the
DIC statistic the results always showed a superior data-model
fit of the monotone homogeneity model when compared to
the ISOP model. Furthermore, for N = 500 higher mean
DIC statistics (i.e., less fitting models) were observed when
dimensions were less correlated. However, the somewhat biased
results observed under the smaller sample size condition (N =

250), where higher mean DIC-values are obtained when both
dimensions were more strongly correlated, possibly indicate that
the suggested approach should only be used with big sample
sizes (N ≥ 500).

In general, this study demonstrates that stochastic tests
of the conjoint measurement cancelation axioms are highly
sensitive with regard to different degrees of violations of the
unidimensionality assumption. Because these axioms imply
certain order relations upon the cells of a conjoint matrix, being
violated in case of multidimensional data, they can also be
employed in the context of applied psychometrics without relying
on assumptions of most parametric tests of unidimensionality.
Even more important, as a direct result of testing these
cancelation axioms, the presented approach enables one to test
the only implicitly assumed hypothesis of most psychometrical
models that the attribute under consideration is a continuous
quantity. Given that “...psychologists are quite cavalier in their
use of the loaded term ‘measure”’ [74] because they have not yet
attempted an explicit unit of measurement [75, 76], testing the
assumption of continuous quantity is of critical importance for
the advancement of a science.

It has nevertheless been argued that the measurement
axioms used in this study are too restrictive for psychological
data because factors extraneous to the attribute (measurement
errors) affect test performances and that item response models,
accounting for measurement error by assuming monotonically
increasing IRFs (cf. [77]), should be preferred. Even more
importantly, and as already alluded in the introduction of this

article, it is argued that the Rasch model in particular produces
quantitative measurements [19, 78]. If this assertion is true, how
come was violation of single cancelation observed in data which
fitted the unidimensional Rasch model?

A possible explanation for this was advanced by Michell [24].
The Rasch model is considered a stochastic version of an older
IRT model proposed by Guttman [58], in that test score data
which fit the Rasch model are stochastic realizations of Guttman
item response patterns. But this leads to a contradiction which
Michell [24] called the Rasch Paradox.

Let Guttman’s model be formally defined as follows. Suppose
X is a set of items ostensibly designed to assess a particular
intellectual ability andA is a set of persons. Let aRx be the relation
“Person a responds to item x correctly.” Ducamp and Falmagne
([26], Theorem 3) found that for x, y ∈ X and a, b ∈ A;

If aRx, not aRy, and bRy then bRx (16)

This then has the representation:

(a, x) ∈ B ⇔ f (a) > g(x) (17)

where 〈ℜ,>〉 are the real numbers and f :A 7→ ℜ and g :X 7→ ℜ

; and B is a biorder. In psychometrics, a Guttman scale is inferred
when the Boolean tableau of “1”s and “0’s of persons” responses
corresponding to Equation (16) are separated by a staircase type
function [79] such that a Guttman scalogram results:





x y
a 1 0
b 1 1



 (18)

Thus, a biorder is the empirical relational structure underlying
Guttman scalograms. However, there is a problem with Equation
(17) in that Equation (18) does not always empirically hold [26].
Suppose that:





x y
a 1 0
b 0 1



 (19)

which indicates that person b did not get item x correct. Thus,
Equation (17) with Equation (18) implies a contradiction, in that
g(y) ≥ f (a) > g(x) and g(x) ≥ f (b) > g(y) [26]. Hence
the uniqueness of the representation in Equation (17) depends
upon the support of Equation (18) and so hence the negation
of Equation (19). Therefore, the uniqueness of Equation (17) is
such that for

(

f , g
)

and
(

f ′, g′
)

then there exists a monotonically
increasing function K such that:

f ′ = K ◦ f and g′ = K ◦ g (20)

where “ ◦ ” designates function composition [26]. Therefore,
measurements in Guttman’s model are unique up to monotonic
transformations only [27]. Hence Guttman’s model is merely
ordinal, not quantitative.

Michell ([24], p. 122) argued the Rasch model is a “woolly”
version of Guttman’s theory because it posits that:

(a, x) ⇔ f (a) ≥ g (x) + ε (21)
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where error is assumed to form a logistic distribution. Michell
[24] contended that because Guttman’s model is ordinal, Rasch’s
quantitative and the only difference between them being error, it
follows that the Rasch model’s status as a quantitative theory is
derived exclusively through the error term of Equation (21). This
creates a paradoxical situation, because in physics andmetrology,
error is perceived as ameasurement confound.Metrologists work
to create observational methodologies that reduce measurement
error precisely because such methods lead to better measurement
(c.f., [16]). If error were completely eliminated, physical
measurement would be perfect. But with the Rasch model, if
the error was eliminated, then the “measurements” of the Rasch
model reduce only to mere order (i.e., the Guttman model
is obtained). Measurement would therefore be impossible. But
eliminating error must by definition lead to better measurement,
not the impossibility of measurement, and so hence the paradox.

In the present study, the ISOP model stochastically tested
the single cancelation condition. It therefore tested only for
order. Given a Raschmodel simulation yields stochastic Guttman
response patterns (i.e., Guttman response patterns contaminated
by error), and if the Rasch Paradox is true, then it can reasonably
be expected that Rasch model simulations lead to violations of
single cancelation. Such violation was indeed observed in the
present study.

What the ISOP analyses of the present study perhaps reveal is
the effect of adding error to ordinal data. That psychometric test
score data are fundamentally ordinal is by no means contentious.
As directly observed and absent descriptive theories of the item
response process, test score response patterns form partial orders
[5, 80, 81]. Partial orders are not measureable, yet they have been
mistakenly argued to provide a foundation for the measurement
of cognitive abilities (e.g., [81, 82]). Partial orders also violate
the cancelation axioms as the latter propose that simple orders
must hold upon persons and items, whilst the former implies that
simple orders are not possible.

Three different conclusions may be drawn from the present
study. Firstly, it is possible that human cognitive abilities,
or at least those aspects of cognition which cause individual
differences in psychometric test performance, simply are not
quantitative. Application of all psychometric models to test
score data that assume continuous and quantitative latent traits
is therefore misguided and other non-quantitative theories
should be explored. To a large extent this has already occurred
with non-parametric IRT models such as the Mokken model
[57], which assume that abilities can only be ordered. Non
parametric IRT has received serious attention in theoretical
psychometrics, with Applied Psychological Measurement (2001,
25(3)) devoting a special issue to the topic. The Mokken
[57] model has been successfully applied in quality of life
research (e.g., [83, 84]) and in tests of inductive reasoning [85].
Moreover, in an investigation of 36 person fit statistics, including
both parametric and non-parametric indices, Karabatsos [86]
found that the Mokken HT statistic outperformed all others
in detecting aberrant response behavior such as guessing and
cheating. The idea of non-quantitative measures may not to
every taste because it undermines psychology’s self-conception
as a quantitative science with a strong resemblance to the

natural sciences. As Schönemann ([87], p. 151) put it: “...it
also requires a willingness to accept empirical results which
conflict with traditional beliefs.” We doubt that psychologists
are willing to pay the price of falsification of theories being
based on the claim of quantitative measures (cf., [88, 89]). Yet
“solving” the problem by ignoring the possible non-quantitative
properties of psychological phenomena is a pleasant self-delusion
at the expense of falsifiability, resting on the dubious implicit
assumption that knowledge is the “...result of ‘processing’ rather
than discovery” ([90], p. 259).

Secondly, it could be that the traditional psychometric test,
as an observational methodology, is simply far too crude to
enable the application of the theory of conjoint measurement to
human cognitive abilities. Our current theoretical understanding
of what it means for an attribute to be quantitative and
measureable may simply exceed our capacity to observe cognitive
abilities. Cliff ([43], p. 189) already pointed to this problem
by observing: “The levels of variables are never infinitely fine,
as is often required in the proofs” (see [87], p. 153 for an
illustration). Effort may therefore be needed in developing
better observational methodologies, perhaps using information
technology. Whether the development of better observational
methodologies would reveal a quantitative structure of at least
some psychological phenomena is, admittedly, speculative. One
could, on the other hand, argue that this could shift the current
focus from processing to discovery mentioned above. To us, the
current and problematic state of affair in this respect is provided
by Schönemann ([91], p. 200): “Numerous ‘general scientific
methods’ came and went, ranging frommultidimensional scaling
(...) to latent trait theory, IRT, linear structural models (...), and
meta-analysis and log-linear models. None of them (...) helped
answer any of the basic theoretical questions (...).”

Thirdly, it could be the case that cognitive abilities are
quantitative, but that psychometricians have mostly failed to
develop and test behavioral theories of individual differences in
ability test performance [92]. Without explicit behavioral theory,
it is difficult to tell whether or not the zero in the test score
response pattern (1, 1, 0, 1), for example, is truly an item
response error or something that genuinely reflects the behavior
of the relevant cognitive ability. In this respect, Kyngdon [92]
applied the theory of conjoint measurement to data from the
Lexile Framework for Reading [93], which argues that individual
differences in performance upon reading tests are caused by
differences in readers’ verbal working memory capacities and
vocabularies. He found the cancelation axioms were supported
only when the columns of the relevant conjoint array were
permuted. This suggested that reading ability was quantitative
but that the Lexile Framework is not a complete behavioral
account of individual differences in reading test performance.
Such findings might make things worse in the short term because
it would just be easier to show how poorly the theoretical claims
are connected to the data. However, such disapointing surprises
might pay off scientifically in the long run.

It is likely that psychometricians would not welcome the
conclusions of this article and judge them as too severe for
practical testing purposes. However, it is they who continue to
argue that cognitive abilities are quantitative and measureable
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“latent traits” (e.g., [94]). If this argument is correct, then once
item response error is controlled for using an order restricted
inference framework, test score response data should be
consistent with the cancelation axioms of conjoint measurement;
and the stringent unidimensionality that they entail. If test data
does not, then testing need not be dispensed with. Most practical
applications of testing only require that persons be ordered with
respect their cognitive abilities (cf., [95]) and something like
Stout’s [12] notion of essential unidimensionalitymay be useful in
practical testing contexts. In any case, the stochastic ISOP model,

integrated in an MCMC framework that implies the cancelation
axioms of the theory of conjoint measurement, is perhaps the
most stringent test of the unidimensionality hypothesis currently
available.
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