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Antimicrobial resistance in the intensive care unit is an ongoing global healthcare

concern associated with high mortality and morbidity rates and high healthcare

costs. Select groups of bacterial pathogens express different mechanisms of

antimicrobial resistance. Clinicians face challenges in managing patients with

multidrug-resistant bacteria in the form of a limited pool of available antibiotics,

slow and potentially inaccurate conventional diagnostic microbial modalities,

mimicry of non-infective conditions with infective syndromes, and the

confounding of the clinical picture of organ dysfunction associated with sepsis

with postoperative surgical complications such as hemorrhage and fluid shifts.

Potential remedies for antimicrobial resistance include specific surveillance,

adequate and systematic antibiotic stewardship, use of pharmacokinetic and

pharmacodynamic techniques of therapy, and antimicrobial monitoring and

adequate employment of infection control policies. Novel techniques of

combating antimicrobial resistance include the use of aerosolized antibiotics

for lung infections, the restoration of gut microflora using fecal transplantation,

and orally administered probiotics. Newer antibiotics are urgently needed as part

of the armamentarium against multidrug-resistant bacteria. In this review we

discuss mechanisms and patterns of microbial resistance in a select group of

drug-resistant bacteria, and preventive and remedial measures for combating

antibiotic resistance in the critically ill.
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Introduction

Antimicrobial resistance in the ICU (intensive care unit) is a growing healthcare

concern. The Centers for Disease Control and Prevention (CDC) estimates that more than

2.8 million antibiotic-resistant infections occur each year, with more than 35,000 deaths as

a result (Despotovic et al., 2020). Continued exposure to antibiotics is one of the most

important factors, if not the most important factor, in the development of antimicrobial
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resistance (Bell et al., 2014). In the ICU, infections due to

multidrug-resistant (MDR) bacteria lead to poor clinical

outcomes, prolonged ICU and hospital stays, high mortality rates,

and higher healthcare costs (Campion and Scully, 2018).

A set of nosocomial pathogens, colloquially termed ESKAPE

organisms, are of particular interest because of their propensity for

antimicrobial resistance; these organisms are Enterococcus faecium,

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter

baumannii, Pseudomonas aeruginosa, and Enterobacter species

(Rice, 2008). ICU providers face challenges in diagnosing and

treating MDR bacteria in the form of differentiating colonization

from infection, mimicry of sepsis by non-infective syndromes such

as heart failure and inflammatory conditions, the slowness and

inaccuracy of current diagnostic modalities of bacterial infections in

terms of Gram stains and microbial cultures, and the confounding

of signs of organ system dysfunction in sepsis by postoperative

complications such as hypotension and hemorrhage (Lam et al.,

2018; Kisat and Zarzaur, 2022). Although previous reports have

focused on specific genres of either bacteria or antibiotic resistance,

this report provides a more comprehensive approach to the

problem of antimicrobial resistance in a sample of Gram-positive

and Gram-negative bacteria. In this report we will discuss risk

factors and mechanisms of antimicrobial resistance with a focus on

a group of resistant bacteria frequently encountered in the ICU. We

will also provide an update on current and future preventive and

therapeutic measures to manage antimicrobial resistance.
Risk factors for acquiring MDR
bacteria in the ICU

Risk factors for acquiring MDR bacteria in the ICU can be

classified as patient, epidemiological, or geographic factors. Patient

factors include an age of more than 60 years; diabetes mellitus;

immunosuppression; a history of use of third-generation

cephalosporins, vancomycin, or corticosteroids; and chronic liver

or kidney disease. Epidemiological factors include duration of

hospitalization, use of invasive catheters, hemodialysis, and high

colonization pressure in the community. Geographical factors

include travel from one geographic area with a high prevalence of

MDR to another area (Burillo et al., 2019). Several scoring systems

have been developed to predict, and stratify by risk, patients who are

prone to become infected by MDR with variable sensitivity,

specificity, and predictive values (Vasudevan et al., 2014;

Teysseyre et al., 2019).
Types and mechanisms of
antimicrobial resistance

Antimicrobial resistance can be broadly categorized into two

distinct groups: natural and acquired. Acquired resistance can be a

consequence of repeated exposure to antibiotic therapy, leading to

gene mutations within a population of bacteria. It can also come

about through a phenomenon called horizontal gene transfer
Frontiers in Antibiotics 02
(HGT). Indeed, HGT is the single-most important determinant of

high-level antibiotic resistance in ICUs around the world and is

directly correlated to antibiotic exposure (Baditoiu et al., 2017).

Although it is true that genetic mutations impart resistance to a

single class of antibiotics, it would take an innumerable amount of

time for enough mutations to accumulate and produce resistance to

multiple classes within the same organism. HGT bypasses this

mechanism via the exchange of genetic material (i.e., DNA)

encoding various resistance genes, giving rise to multidrug-

resistant (MDR) organisms. ESKAPE organisms are a notable set

of nosocomial pathogens because of their ability to evade and adapt

to antimicrobial exposure through various modes of resistance (De

Oliveira et al., 2020; Prajapati et al., 2021).

Natural resistance is defined as a genetically encoded trait that is

shared by the entire population of a species regardless of antibiotic

exposure. For example, vancomycin is a large glycopeptide

antibiotic with activity against Gram-positive organisms that

inhibits cell wall synthesis by binding the terminal d-Ala, d-Ala of

the peptidoglycan precursor.9 Gram-negative bacteria are naturally

resistant to the effects of vancomycin owing to the limited

permeability of their outer cell wall to this large molecule (https://

paperpile.com/c/MbHZBP/CZmw). Another well-documented

example is the propensity of members of the genus Enterococcus

to have a naturally occurring high level of cephalosporin resistance

due in part to an expression of low-affinity penicillin-binding

proteins (PBPs), notably PBP5 (Rice et al., 2009). In addition,

natural resistance may also manifest itself as a spontaneous

genetic mutation, granting resistance to an organism that is

usually susceptible to a particular agent. For example, Escherichia

coli has been shown to acquire resistance to quinolones through

mutations in the quinolone resistance-determining regions of the

gyrA and parC genes (Zeng et al., 2020) (Figure 1).
Examples of drug-resistant bacteria

1. Enterococcus faecium isolates can be pathogenic and have a

tendency to be highly resistant to multiple classes of antibiotics,

including b-lactams (especially cephalosporins), aminoglycosides,

and folate reductase inhibitors (i.e., sulfamethoxazole/

trimethoprim) (Rosselli Del Turco et al., 2021). An appreciable

increase in ampicillin-resistant Enterococcus spp. within U.S.

hospitals was noted to occur in the late 1980s and was mainly

driven by the widespread use of penicillin in the preceding

decades.19 The predominant mechanism of resistance was found

to be the development of low-affinity PBPs, specifically PBP5

(Leclercq et al., 1988). Around the same time period, the use of

vancomycin was on the rise because of an increase in methicillin-

resistant Staphylococcus aureus (MRSA) isolates (D'Agata et al.,

2009). Vancomycin-resistant Enterococcus (VRE) isolates were first

reported in England in 1988, followed by rapid identification in

other parts of Europe and the United States. Resistance to

vancomycin is conferred by the vanA, vanB, and vanC genes,

which are found within various species of Enterococcus. The

inducible vanA and vanB transposons have the propensity for

horizontal transfer between various Enterococcus species, whereas
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the vanC gene is an intrinsic resistance mechanism found in

Enterococcus gallinarum and Enterococcus casseliflavus (Arthur

and Courvalin, 1993). Although the incidence of VRE infections

between 2012 and 2017 decreased, the CDC expects the VRE

burden to reach 54,500 cases and lead to 5,400 deaths annually

(Reyes et al., 2016).

2. Staphylococcus aureus is of particular concern owing to its

ability to develop methicillin resistance via acquisition of the

staphylococcal cassette chromosome mec, which carries the

resistance gene mecA (Hardy et al., 2004). Since the discovery of

MRSA in the 1960s it has been a pathogen of interest for both

community- and hospital-acquired infections. A 2005 report by

Kuehnert et al. showed that there were 291,542 hospital discharges

with S. aureus-related-infection diagnoses between 1999 and 2000.

They also reported the overall rate of methicillin resistance for S.

aureus to be 43.2% (Kuehnert et al., 2005). More recently, a French

study looked at the impact of antibiotic exposure and selection of

MRSA in hospital settings. They found that a more prolonged

antibiotic exposure in ICUs than in general wards promoted the

dissemination of MRSA in the hospital (Patry et al., 2008). In

addition, other studies have corroborated the finding that excessive

antibiotic exposure promotes the emergence of MRSA infections

(Kardas-Sloma et al., 2011). Despite the high utilization rates of

antibiotics in ICUs across the nation, a 2019 CDC report reported a

74% drop in the incidence of hospital-acquired MRSA bloodstream

infections between 2005 and 2016, with an estimated 119,247 cases

of S. aureus bloodstream infections and 19,832 associated deaths in

2017 (Wunderink et al., 2020).
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3. Klebsiella pneumoniae is a commensal organism, normally

found in the human intestine, and an opportunistic pathogen that

can cause a range of infections. The 2019 CDC antimicrobial

resistance threat report lists carbapenem-resistant Enterobacterales

(CRE) as an urgent threat and extended-spectrum b-lactamase

(ESBL)-producing Enterobacterales as a serious threat, with 13,100

estimated cases and 1,100 estimated deaths in hospitalized patients

and 197,400 estimated cases and 9,100 estimated deaths in

hospitalized patients, respectively, that year (CDC 2022). K.

pneumoniae can express a multitude of resistance genes rendering

a wide range of b-lactams, including penicillins, broad-spectrum

cephalosporins, and carbapenems, ineffective in its treatment.

Resistance to penicillins and early-generation cephalosporins can

arise from mutations of genes encoding TEM-1, TEM-2, or SHV-1,

whereas resistance to third-generation cephalosporins is encoded by

CTX-M, OXA, or AmpC b-lactamase (Paterson, 2006). Infections

with ESBL-producing organisms place a strain on the healthcare

system and are associated with mortality rates ranging between 3.7%

and 22.1% (Gutierrez-Gutierrez et al., 2016). A report published in

2014 looked at healthcare-associated infections in 11,282 patients

from 183 hospitals. The most frequent infections were found to be

pneumonia (21.8%), surgical site infections (21.8%), gastrointestinal

infections (17.1%), urinary tract infections (12.9%), and bloodstream

infections (9.9%), with the leading causative organisms being

Clostridium difficile (12.1%), S. aureus (10.7%), Klebsiella (9.9%),

and Escherichia coli (9.3%) (Magill et al., 2014).

4. Acinetobacter baumannii is a Gram-negative opportunistic

bacterium, commonly found in soil and water samples, and is a
FIGURE 1

Mechanisms of antimicrobial resistance. The figure depicts various antimicrobial resistance strategies utilized by ESKAPE pathogens. b-lactamases
confer various levels of resistance to b-lactam antibiotics and are classified as Amber’s class A, B, C, and D. Cell wall modifications alter the synthesis
of lipopolysaccharide lipid A or peptidoglycan precursors, thereby preventing the inhibition of cell wall synthesis. Bacteria can also develop
antimicrobial resistance by altering target binding sites via genetic mutations. These alterations include modification to penicillin-binding proteins,
alterations to DNA gyrase and topoisomerase IV enzymes, and methyltransferase-mediated modifications to the 30S and 50S ribosomal subunits.
Outer membrane porin channel alterations prohibit entry of various antimicrobials into the cell. The expression of transmembrane efflux pumps,
classified into six major families, allows bacteria to actively remove nearly all classes of antibiotics from their cytoplasm. Plasmids are small mobile
genetic elements composed of extrachromosomal DNA. They can spread resistance genes between bacteria of the same or different species, with
the plasmid-mediated quinolone resistance gene being one such example. *ESKAPE pathogens: Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species.
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CDC pathogen that poses an urgent threat, with an estimated 8,500

infections and 700 estimated deaths per year (CDC 2022). It can

contaminate and survive on the surface of the skin and medical

devices, such as ventilator tubing, respirators, and arterial line

pressure monitoring devices, for up to 27 days (Jawad et al.,

1998). Acinetobacter infections are common in ICUs and can lead

to prolonged exposure to antibiotics, increased ICU length of stay,

and mortality rates ranging from 13% to 30% (Vincent et al., 2009)

(Mathai et al., 2012)(Garnacho-Montero et al., 2015)(Hidron et al.,

2008) (Garnacho-Montero et al., 2015). What makes Acinetobacter

infections particularly dangerous and difficult to treat is their

propensity for rapid and high-level development of resistance to

most available antibiotics, including “last-resort” agents such as

tigecycline, colistin, and polymyxins (Lee et al., 2017). A. baumannii

possesses multiple intrinsic and extrinsic mechanisms of resistance

that include a wide range of b-lactamases (e.g., TEM-1, CTX-M,

OXA, and class B metallo-b-lactamases), defects in cell wall

permeability porin channels, expression of multidrug efflux

pumps, and alteration of target sites (PBPs and mutations in

DNA gyrase). These mechanisms have to led to the isolation of

MDR (resistance to three or more classes of antibiotics), extensively

drug-resistant (XDR; MDR plus resistance to carbapenems), and

pan-drug-resistant (PDR; XDR plus resistance to polymyxins)

bacteria (Breijyeh et al., 2020). New treatment strategies must

adapt to developing resistances, whether through the use of “old-

school” agents like polymyxin, combination therapies with colistin

and carbapenems, or the development of new therapeutic agents

such as eravacycline and cefiderocol (Falcone et al., 2021).

5. Pseudomonas aeruginosa is a familiar nosocomial pathogen

often found in ICUs across the USA. Although it has been isolated

from normal gastrointestinal flora, it may also cause community-

acquired and nosocomial infections in immunocompromised hosts

(Chopra et al., 2008). Multidrug resistant Pseudomonas is a global

health concern and a serious threat according to the CDC, with an

estimated 32,600 cases and 2,700 deaths among hospitalized

patients in 2017 (CDC 2022). Resistance to multiple classes of

antibiotics is attained via intrinsic or acquired mechanisms,

including the expression of b-lactamases (e.g., TEM, SHV, CTX-

M, OXA, MBLs, and AmpC), target binding site alteration (e.g., 16S

ribosomal RNA mutations, aminoglycoside-modifying enzymes,

and gyraA and parC mutations), loss of surface porins such as

OprD (conferring carbapenem resistance), and overexpression of

efflux pumps capable of actively transporting antibiotics out of the

cell (Fang et al., 2014). In addition to the mechanisms listed above,

Pseudomonas has the ability to survive on devices found in

healthcare settings (e.g., ventilators, urinary tract devices, and

central line kits) through the formation of biofilm and persister

cells (Hong et al., 2015). Prolonged exposure to anti-pseudomonal

antibiotics has been reported to promote the selection and

proliferation of MDR Pseudomonas and lead to high rates of

colonization and prolonged duration of therapy in ICUs around

the country (Raman et al., 2018).

6. Enterobacter is a genus of Gram-negative bacteria known to

cause drug-resistant nosocomial infections. It has been isolated

from the respiratory and urinary tracts, surgical wounds, cardiac

and bone tissues, and blood samples of patients residing in ICUs.
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According to the Surveillance and Control of Pathogens of

Epidemiologic Importance (SCOPE) report, Enterobacter was

found to cause 4.7% of all ICU infections in US hospitals

(Wisplinghoff et al., 2004). Particular attention is being paid to

Enterobacter aerogenes and Enterobacter cloacae for their

propensity to develop resistance to multiple antibiotics. All

Enterobacter are naturally resistant to ampicillin, amoxicillin-

clavulanic acid, and cefoxitin via the production of b-lactamases

(Wisplinghoff et al., 2004). Moreover, they naturally express the

AmpC b-lactamase, which is further inducible by exposure to

broad-spectrum cephalosporins and has been found integrated

into a large plasmid element capable of horizontal gene

transmission (Lee et al., 2003). In addition, resistance to

aminoglycosides and fluoroquinolones is acquired via intrinsic

mutations or plasmid-encoded drug-modifying enzymes

(Mezzatesta et al., 2012). Finally, more recent data show the

emergence and spread of hospital-associated carbapenem-

resistant E. cloacae across the USA, as well as the emergence of

pan-drug-resistant strains, with resistance to colistin, around the

world (Diene et al., 2013).

A summary of the mechanisms of MDR to antibiotics is

presented in Tables 1 and 2.
Prevention and treatment of
antimicrobial resistance

Antibiotic stewardship

Antimicrobial stewardship (AS) refers to an organized program

designed to monitor, improve, and measure the responsible use of

antibiotics in the ICU. It has emerged to overcome the risks of the

inappropriate and inadequate use of antibiotics in the ICU.

Inappropriate use of antibiotics describes the very early use of

antibiotics with a too-broad spectrum, leading to an increased risk

of resistant bacteria. Inadequate use of antibiotics describes the very

early use of antibiotics that do not cover suspected organisms

(Zilberberg et al., 2014).

Essentials of AS entail the following:
1. Facility-specific guidelines based on national guidelines and

local antibiograms.
TABLE 1 ESKAPE pathogens mechanisms of resistance.

Pathogen Mechanisms of resistance

Enterococcus faecium

• b-lactamases
• Cell wall modification
• Aminoglycoside-modifying
enzymes
• Target enzyme modifications
• Ribosomal target alterations
• Porin alterations
• Efflux pumps

Staphylococcus aureus (methicillin-
resistant)

Klebsiella pneumoniae

Acinetobacter baumannii

Pseudomonas aeruginosa

Enterobacter spp.
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Fron
2. Restrictive programs in which a release of an antibiotic

requires approval by an AS team member. This approval is

based on cost, spectrum, and risk of side effects from the

antibiotic of interest.

3. A persuasive program [also called prospective audit and

feedback (PAF)] in which feedback in the form of

modification or discontinuation of an antibiotic is

provided by an AS team member on antibiotics that are

prescribed in a special ICU.

4. Automatic stop orders in which there is a set date after which

the prescribed antibiotics require an additional order to

extend the duration of the prescription.

5. An antibiotic “time out” in which there is a prompt to review

the prescribed antibiotics at a certain time point after

initiation.

6. Rapid microbial identification using rapid diagnostic testing,

such as real-time polymerase chain reaction (rtPCR), for

the diagnosis of the genes of resistant bacteria such as

MRSA from positive cultures.
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7. Systematic de-escalation of antibiotics based on the kinetics

of certain biomarkers, the most studied of which is

procalcitonin.

8. Embedding a member of an AS team in ICU rounds.

9. Implementation of alerts in prescription software to guide

clinicians at different stages of antibiotic prescription

(Doernberg and Chambers, 2017).
Antibiograms

An antibiogram is a snapshot of microbial susceptibility to

various antibiotics reported over time. It can provide useful insights

into current resistance patterns and past and future trends, and help

guide empiric antibiotic treatment. Antibiograms are commonly

encountered in a table format that categorizes bacteria as Gram

positive or Gram negative and breaks them down further by

individual species. Susceptibility rates to commonly used antibiotics
TABLE 2 Specific mechanisms of bacterial resistance to antimicrobial agents (ref. 11–12).

Resistance mechanism Examples of
resistant genotype/

phenotype

Conferred
antimicrobial
resistance

b-lactamases Enzymatic degradation of the b-lactam ring via Ambler’s class b-lactamases:
1) Serine-type b-lactamases—class A, C, and D
2) Metallo-b-lactamases—class B

Class A (ESBLs)—TEM,
CTX-M, KPC
Class B—IMP, VIM
Class C—AmpC
Class D—OXA-48

Penicillins
Cephalosporins
Monobactams
Carbapenems
Emerging resistance to
ceftazidime–avibactam

Cell wall
modification

Modification of cell wall peptidoglycan precursor from D-Ala-D-Ala to D-Ala-D-lactate or
D-Ala-D-serine
Enzymatic removal of natural D-Ala-D-Ala precursors
Alterations in lipopolysaccharide lipid A synthesis

vanA, vanB, vancC
mgrB, mcr, lpxA,
IpxC, lpxD

Vancomycin
Daptomycin
Emerging resistance to
polymyxins

Aminoglycoside-
modifying
enzymes

Enzymatic degradation of aminoglycoside molecules via aminoglycoside acetyltransferases
(AACs), phosphotransferases (APHs), and nucleotidyltransferases (ANTs), resulting in
diminished activity

AAC(3), AAC(6′)
APH(3′)
ANT(4′), ANT(2″)

Aminoglycosides

Target enzyme
alterations

Modification of peptidoglycan transpeptidases, namely the expression of a modified
penicillin-binding proteins (PBP2a, PBP5)
Modification of DNA gyrase and topoisomerase IV enzymes
Plasmid-mediated quinolone resistance (PMQR)

mecA, mecB, mecC
gyrA, gyrB
QnrA, QnrB, QnrS

Ampicillin
Methicillin
Fluoroquinolones

Ribosomal
target
alterations

rRNA methyltransferase-mediated modification of bacterial ribosomal subunits (30S and
50S)

erm(A), erm(B), erm(C)
cfr

Aminoglycosides
Macrolides
Linezolid

Porin
alterations

Modification (e.g., upregulation, downregulation, loss of function) of outer membrane
porins

OprD, Omp36, LamB Penicillins
Cephalosporins
Monobactams
Carbapenems
Fluoroquinolones

Efflux pumps Active efflux of antimicrobial agents via six major families:
1) Resistance–nodulation–division (RND)
2) Major facilitator superfamily (MFS)
3) Multidrug and toxic compound extrusion (MATE)
4) Small multidrug resistance (SMR)
5) ATP-binding cassette (ABC)
6) Proteobacterial antimicrobial compound efflux (PACE)

Mex-AB-OprM system
AcrAB-TolC system
OqxAB

Nearly all classes of
antibiotics
ATP, adenine triphosphate.
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are reported as percentages. Depending on facility capabilities,

antibiograms can drill down into specific susceptibilities based on

patient location, such as ICUs, and sites of infections, such as blood,

sputum, or urine. Susceptibility patterns can also have intrahospital

variability. A study by Kaufman et al. compared hospital-wide

susceptibility data with isolates from surgical intensive care unit

(SICU) patients. The two most commonly isolated organisms were

S. aureus and P. aeruginosa. Surprisingly, the susceptibility patterns

were significantly different between the hospital-wide and SICU data

(Kaufman et al., 1998). Another study by Chang et al. (2023)

evaluated the effect of empiric antibiotics on mortality in patients

with bloodstream infections in the emergency department (ED).

They found that empiric antibiotic selection based on a local

antibiogram was associated with a reduced mortality rate and a

shorter length of stay in the ICU (Chang et al., 2023).

Antibiograms are a useful tool in the clinician’s arsenal to help

prevent the emergence of antimicrobial resistance, but they also

have some limitations. First, antibiogram reporting is binary,

indicating whether or not a specific isolate is susceptible, and

does not account for minimum inhibitory concentrations (MICs).

The Clinical and Laboratory Standards Institute (CLSI) publishes

an annual report with MICs for various bacterial pathogens.

According to the 2023 CLSI report, S. aureus with a vancomycin

MIC of ≤ 2 µg/ml is considered susceptible (“M100” n.d.).

Consequently, every S. aureus isolate with that MIC will be

reported as susceptible on an antibiogram. Despite the fact that

an antibiogram is technically accurate, it is recommended to avoid

using vancomycin to treat S. aureus isolates with anMIC of 2 µg/mL

or greater (Rybak et al., 2009). Second, antibiograms may provide

false information regarding the timing of cultures, which may lead

to erroneous diagnosis of time-dependent classifications, such as

community-acquired pneumonia (CAP) compared with hospital-

acquired pneumonia (HAP). This in turn may lead to inappropriate

use of antibiotics, as the treatment for CAP and HAP is different

and aims at covering different pathogens based on indication.

In summary, antibiograms are an important tool in helping ICU

practitioners select appropriate empiric antibiotic regimens that will

provide a broad coverage and simultaneously help curtail the

development of antimicrobial resistance. They also come with

important limitations and are meant to be used as an aid and not

a replacement for clinical judgment or multidisciplinary

collaboration with members of the ICU team, including

physicians, mid-level practitioners, and pharmacists.
Surveillance

Surveillance entails monitoring trends in the susceptibilities of

microorganisms isolated in one or more ICUs within a hospital,

identifying patients colonized or infected with MDR bacteria, and

monitoring trends in the use of antibiotics. Practices vary in terms

of the population of patients to undergo surveillance, the laboratory

assays used to perform surveillance, the ICUs put under

surveillance, and the microorganisms surveilled. In addition to

the time and expense of routine universal ICU surveillance, there

is mixed evidence on whether or not it truly guides initial antibiotic
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therapy because of its low sensitivity (Hayon et al., 2002; Sanders

et al., 2008).
Pharmacokinetic/pharmacodynamic
optimization

Alterations in renal function and flow, ranging from augmented

renal clearance to acute kidney injury (AKI) and failure requiring the

initiation of renal replacement therapy, have strong implications for

antibiotics that are renally cleared, such as b-lactams. Patients with

augmented renal clearance may need an increased initial dosage or

infusion of b-lactam antibiotics to achieve adequate tissue levels. On

the other hand, patients with AKI may need renal dose adjustments.

An aggressive pharmacodynamic (PK) approach, though not a

standard of care at present, may be needed for novel b-lactam
antibiotics to reduce resistance (Gatti and Pea, 2021).
Adequate infection control measures

Adequate infection control measures in the form of standard

precautions (hand hygiene, gloves, gowns, and eye protection) in

addition to transmission (i.e., droplet, airborne, or contact)-based

precautions were developed to reduce the transmission of resistant

microorganisms from one site to another. Adherence to isolation

precautions has been conclusively shown to reduce the transmission

of MRSA and extended-spectrum b-lactamase (ESBL)-producing

Enterobacteriaceae (Bassetti et al., 2015).
Adequate source control

Source control is the removal of the source of infection by the

drainage of pus or inflammatory material, or debridement of necrotic

tissue, and is especially important in surgical patients. Achieving early

source control is associated with a reduction in antibiotic duration

and resistance. Timing of source control should be guided by the

severity of infection, source of infection, and hemodynamic stability

of the patient (Kisat and Zarzaur, 2022). Successful signs of source

control include, but are not limited to, the resolution of clinical signs

of infection, such as fever and leukocytosis, the amelioration of

tenderness, radiological resolution in the form of reduction in the

size of infected fluid, and the disappearance of previously recognized

fistulas or abscesses and a reduction in drainage from tubes and

drains (Solomkin et al., 2013).
Conclusion

Antibiotic resistance remains an ongoing challenge for patients

admitted to the ICU. The imbalance between limited antibiotic

pools on one side and rapidly evolving microbial resistance on the

other warrants attention and the implementation of more rigorous

preventive strategies, such as rapid diagnostic testing, AS policies,

strict infection control measures, and PK/PD drug dosing and
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monitoring. Novel areas of research, such as studying the

interactions of antibiotics and gut microbiota using metagenomic

techniques, the protection and restoration of the commensal gut

ecosystem via fecal transplantation or orally administered

probiotics (Ruppe et al., 2018), and the novel aerosolized routes

for administration of antibiotics for lung infections (Montgomery

et al., 2014), are urgently needed in the current battle against

antimicrobial resistance.
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