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Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
Streptococcus pneumoniae is one of the major concerns of clinicians and one of

the global public health problems. This pathogen is associated with high

morbidity and mortality rates and antimicrobial resistance (AMR). In the last

few years, reduced genome sequencing costs have made it possible to explore

more of the drug resistance of S. pneumoniae, and machine learning (ML) has

become a popular tool for understanding, diagnosing, treating, and predicting

these phenotypes. Nucleotide k-mers, amino acid k-mers, single nucleotide

polymorphisms (SNPs), and combinations of these features have rich genetic

information in whole-genome sequencing. This study compares different ML

models for predicting AMR phenotype for S. pneumoniae. We compared

nucleotide k-mers, amino acid k-mers, SNPs, and their combinations to

predict AMR in S. pneumoniae for three antibiotics: Penicillin, Erythromycin,

and Tetracycline. 980 pneumococcal strains were downloaded from the

European Nucleotide Archive (ENA). Furthermore, we used and compared

several machine learning methods to train the models, including random

forests, support vector machines, stochastic gradient boosting, and extreme

gradient boosting. In this study, we found that key features of the AMR prediction

model setup and the choice of machine learning method affected the results.

The approach can be applied here to further studies to improve AMR prediction

accuracy and efficiency.

KEYWORDS

AMR, machine learning, streptococcus pneumonaie, SNP, kmer, whole genome
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1 Introduction

Antimicrobial resistance (AMR) has caused a significant

increase in morbidity and mortality rate in infectious diseases all

over the world. According to World Health Organization (WHO),

AMR is one of the top 10 global public health threats humanity

faces. The global death rate from infectious diseases is projected to

rise to 10 million per year by 2050 (World Health Organization,

2019; World Health Organization, 2022a). Many commonly used

antibiotics have become ineffective due to rapidly increasing

antimicrobial resistance in pathogens (Blair et al., 2015). In recent

years, the development of new antimicrobial compounds has not

been as rapid as the spread of resistance (Henriques-Normark and

Tuomanen, 2013; Michael et al., 2014; Christaki et al., 2019), and

this raises global health concerns. Rapid antibiotic susceptibility

tests (AST) can guide the use of antibiotics and reduce drug-

resistant strains. Currently, classical phenotypic AST methods,

based on culturing target pathogens, are the gold standard.

However, these methods take a few days to result and delay

urgent treatment decisions. This delay also contributes to the

spread of drug resistance (AMR Review, 2015). Molecular

approaches have significantly improved over the years and play a

critical role in the fight against antimicrobial resistance (Inouye

et al., 2014). Due to the rapid development of sequencing

technology and the decreasing cost, whole genome sequencing

(WGS) or direct metagenomic sequencing of clinical materials

has been proposed as the next-generation genotypic AST (Dunne

et al., 2017; Zhang et al., 2019). In the face of growing AMR threats,

it is increasingly vital to develop methods for interpreting minimum

inhibitor concentrations (MICs) tests (Michael et al., 2020).

Epidemiological cutoff values are set by the European Committee

on Antimicrobial Susceptibility Testing (EUCAST) (ESCMID -

European Society of Clinical Microbiology and Infectious

Diseases, 2008) and by the Clinical and Laboratory Standards

Institute (CLSI) for its epidemiological cutoff values (CLSI

guidelines, 2022). Clinical breakpoints are another popular

method of categorization. As a result of this process, MIC values

are categorized according to different clinical outcomes (Michael

et al., 2020). According to CLSI, these classes are “resistant” (R),

“susceptible” (S), and “intermediate” (I) (CLSI guidelines, 2022).

As discussed above, due to reduced genome sequencing costs,

detecting AMR phenotypes directly from sequence data has become

a preferred method. In the last few years, the use of machine

learning (ML) for understanding, diagnosing, treating, and

predicting AMR phenotypes has aroused interest in the literature,

and it has been shown in publications (Yang et al., 2017; Nguyen

et al., 2018; Deelder et al., 2019; Nguyen et al., 2019; Khaledi et al.,

2020; Wang et al., 2022) that for many bacterial species.

Antimicrobial resistance can be predicted quite accurately based

on the genome sequence. ML techniques applied to WGS can

accurately predict MIC results. However, some MIC data are only

shared as classes, while the remaining are shared as concentration,

which may cause discrepancies while training ML models.

AMR has been extensively studied via ML in various

microorganisms, including Mycobacterium tuberculosis (Davis

et al., 2016; Drouin et al., 2016; Yang et al., 2017; Deelder et al.,
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2019; Aytan-Aktug et al., 2020; Wang et al., 2022), Escherichia coli

(Moradigaravand et al., 2018; Pataki et al., 2020; Aytan-Aktug et al.,

2020), Salmonella enterica (Aytan-Aktug et al., 2020), nontyphoidal

Salmonella (Nguyen et al., 2019), Staphylococcus aureus (Davis

et al., 2016; Aytan-Aktug et al., 2020; ValizadehAslani et al.,

2020), Acinetobacter baumannii (Davis et al., 2016), Streptococcus

pneumoniae (Davis et al., 2016; Drouin et al., 2016; Li et al., 2016; Li

et al., 2017; Zhang et al., 2019), Clostridium difficile (Drouin et al.,

2016), Pseudomonas aeruginosa (Drouin et al., 2016; Khaledi et al.,

2020), Actinobacillus pleuropneumoniae (Liu et al., 2020),

Elizabethkingia (Naidenov et al., 2019), Klebsiella pneumoniae

(Nguyen et al., 2018; ValizadehAslani et al., 2020), Campylobacter

jejuni (ValizadehAslani et al., 2020), and Neisseria gonorrhoeae

(Eyre et al., 2017; ValizadehAslani et al., 2020). While setting upML

models, k-mer counts of various lengths (8-mers to 11-mers

(ValizadehAslani et al., 2020), 10-mers (Nguyen et al., 2018), 15-

mers (Nguyen et al., 2019), 31-mers (Davis et al., 2016; Drouin et al.,

2016)), AMR genes (Her and Wu, 2018), SNPs (Yang et al., 2017;

Deelder et al., 2019; Shi et al., 2019), or a combination of these

(Moradigaravand et al., 2018; Naidenov et al., 2019; Khaledi et al.,

2020) have been successfully used as features. In a recently

published study by ValizadehAslani et al. (2020), amino acid k-

mers were also utilized as features and yielded successful results.

Streptococcus pneumoniae is known to be one of the bacteria

with the most common AMR problem (van der Poll et al., 2009). S.

pneumoniae is a gram-positive human pathogen that is the primary

cause of respiratory tract infection and diseases such as pneumonia

and meningitis. This bacterium is also found in the nasopharyngeal

flora in childhood and often causes invasive infectious diseases such

as acute otitis media and sinusitis (Henriques-Normark and

Tuomanen 2013). According to the WHO, diseases caused by

Streptococcus pneumoniae are an important public health

problem worldwide. It is estimated that about one million

children die yearly from pneumococcal disease (World Health

Organization, 2022b-2).

Many pneumococcal isolates are resistant to common

antibacterial drugs like fluoroquinolones, macrolides, and b-
lactams (Sader et al., 2019). The main targets of penicillin are

penicillin-binding proteins (PBPs). For many years, penicillin has

been the primary choice for treating S.pneumoniae-associated

infections (Zapun et al., 2008). b-lactams bind to enzymes

essential for bacterial cell wall synthesis and reducing

peptidoglycan synthesis. (Zapun et al., 2008). The main resistance

mechanism to resist b-lactams is mutating PBPs to reduce their

affinity to antibiotics (Poole, 2004). During the same time as

penicillin resistance spread, macrolide-resistant pneumococci also

increased. Moreover, the removal of the antimicrobial from the cell

by the acquisition of mef and erm genes and modification of the

target site are the two main mechanisms of macrolide-like

erythromycin resistance in S. pneumoniae (Cornick and Bentley,

2012). Tetracyclines inhibit the growth of bacteria by binding to the

30S subunit of the bacterial ribosome. Pneumococcal resistance to

tetracycline occurs via ribosomal protection (tet(O) and tet(M)

genes) (Montanari et al., 2003).

This study compares different ML models for predicting AMR

phenotype for S. pneumoniae. We compared nucleotide k-mers,
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amino acid k-mers, and SNPs to predict AMR in S. pneumoniae for

three antibiotics: Penicillin, Erythromycin, and Tetracycline.

Further, we attempted to use and compare various ML methods:

random forest (RF), support vector machine (SVM), stochastic

gradient boosting (GBM), and extreme gradient boosting

(XGBoost) to train the models. We discuss the strengths and

limitations of feature and ML model selection for MIC prediction.

We observed and concluded that the choice of features and the

selection of the ML model affects the performance of prediction (as

measured by F1 score and accuracy) differently for each antibiotic.
2 Methods

2.1 Overview

The overview of the study is presented in Figure 1. Following

feature generation, feature selection, and various ML models were

trained to predict theMIC class for each antibiotic. The performances

were evaluated using several metrics, and the results were compared.
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The details of data, feature generation, feature selection, model

training, and evaluation are described in the following subsections.

All analyses were performed in R version 4.0.2 (http://www.R-

project.org). The R scripts utilized in this study are available on

GitHub at https://github.com/denizecek/AMRprediction.
2.2 Datasets and pre-processing

S. pneumoniae metagenomic sequences and the related MIC

class information of the antibiotics penicillin, erythromycin, and

tetracycline were included in our study. We used four publicly

available datasets: 980 pneumococcal strains were downloaded from

the European Nucleotide Archive (ENA) (http://www.ebi.ac.uk/

ena/) with the project accession code in PRJEB2632 (Croucher

et al., 2013; Croucher et al., 2015), PRJNA34791 (Demczuk et al.,

2017), PRJEB3084 (Gladstone et al., 2019), PRJEB2255 (Croucher

et al., 2014; Croucher et al., 2015). The MIC class information was

downloaded from the PATRIC database (Davis et al., 2020) and

PubMLST (Jolley et al., 2018), and the “Resistant” and “Susceptible”

classes were matched to the genome data. For each antibiotic, we

discarded the “Intermediate” class because these were

underrepresented. Table 1 presents the sample number of the

four datasets, and Table S1 (Supplementary 1) contains detailed

sample information.
2.3 Feature generation and selection

2.3.1 Nucleotide K-mers
SPAdes (Bankevich et al., 2012) in the PATRIC assembly service

(Davis et al., 2020) was used for genome assembly. Contigs with less

than 5-fold coverage and lengths less than 500 bp were removed.

The contigs were divided into 10-mers, and the frequencies of these

10-mers were obtained using the R “kmer” package (Wilkinson,

2018). For the AMR classification task, the k-mer counts were used

as one set of features, and antibiotic MIC classes were used as labels.

In this work, we chose to use a 10-mers instead of a longer k-

mer length to reduce the size of the resulting k-mer matrix. Longer

k-mers were not selected because of memory limitations, and we did

not utilize shorter k-mers due to lower initial accuracy. Next, k-mer

counts were converted to depict the presence “1” or absence “0” of

each k-mer in each genome.

The dataset was very large, and fitting ML models using this

data might have caused significant challenges, including high

computational cost and processing time. Moreover, it is known

that ML models trained on large datasets (i.e., large sets of features)

tend to have poorer performance compared to using an optimal set

of features (Yu and Liu, 2004; Pudjihartono et al., 2022). Since the

total number of 10-kmers is 1,048,578 in our dataset, the absolute

mean difference between resistant and susceptible samples of each

feature was used as the first feature selection step. For every feature,

we calculated the mean of the resistance and susceptible samples,

features with an absolute mean difference of at least 0.3 were

selected for penicillin and erythromycin and 0.4 were selected for

tetracycline. The main reason we choose 0.3 as the threshold is to
FIGURE 1

Overall pipeline for all feature extraction and classification approaches.
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reduce the number of features below 10000. When this cutoff value

was set to 0.2, 11149 features remained for penicillin, and when it

was set to 0.3, 2099 features remained. When 0.4 was selected, we

had 141 features remaining. Final number of features before the

next feature selection step for penicillin, erythromycin and

tetracycline are 1591, 2099 and 3376.

2.3.2 Single nucleotide polymorphisms
We used single nucleotide polymorphisms (SNPs) as another set

of features for ML model training. Our reference genome for SNP

calling was S. pneumoniae TIGR4. For variant calling, BWA-mem

(Li, 2013) and SAMtools (Li et al., 2009) were used via the PATRIC

variant calling service (Davis et al., 2020). Bcftools (Li, 2011) was

used for filtering variants with DP > 20 and qual > 50 parameters. A

total of 221,304 SNPs were obtained. SNP positions (compared to

the reference genome) were the columns of the resulting matrix, and

the samples were rows. A sample with an SNP at a given site was

shown as 1, and those without any SNPs were shown as 0. Compared

to the 10-mer features, the number of SNP features was much lower

(221,304); hence the absolute mean difference cutoff value was also

decreased. The absolute mean difference between resistant and

susceptible samples was calculated for each SNP and filtered at

least 0.2 for all three antibiotics. The features with an absolute mean

difference lower than this cutoff were removed. With this first step of

feature selection, for penicillin, 4,954 features remained; for

erythromycin, 8,844 features remained and for tetracycline, 6,695

features remained.

2.3.3 Amino acid K-mers
An amino acid k-mer model for predicting MIC classes for the

three antibiotics was built following the method previously

described by ValizadehAslani et al. (2020). To provide annotation

of genomic features, the Genome Annotation Service in PATRIC

(Davis et al., 2016), which uses the RAST toolkit (RASTtk) (Brettin

et al., 2015), was utilized. Protein FASTA sequences were
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downloaded from the PATRIC database. For counting the amino

acid k-mers, we used the “kmer” R package (Wilkinson, 2018). The

Dayhoff-6 alphabet (Edgar, 2004) was used to minimize

computation time when counting longer k-mers. 5-mers of the

amino acid were counted for the genome of each strain. We did not

use shorter amino acid k-mers due to lower initial accuracy, and

longer k-mers were not chosen because of memory limitations.

Since the total number of features was less than 10,000, the pre-

elimination used in other feature extraction methods (absolute

mean difference between MIC classes) was not used here.

2.3.4 Combinations of features
10-mer nucleotides, 5-mer amino acid content, and SNP

features were combined as binary combinations and tested as

another feature extraction method. Sections 2.3.1, 2.3.2, and 2.3.3

were used for feature selection, and the optimal features

were combined.

2.3.5 Boruta
Feature selection algorithm Boruta, implemented as an R

package, was used for the second and final feature selection step.

Boruta is an ML algorithm used in feature selection (Kursa and

Rudnicki, 2010). It is a wrapper feature selection method built

around the Random Forest classification algorithm. The algorithm

adds randomness to the data set by creating a shuffled copy of all

features. These features are called “Shadow Features”. The shadow

features and original features are then merged, and the algorithm

builds a random forest classifier, which determines each feature’s

importance using Z-score and mean decreased accuracy. Boruta

then checks whether an original feature has higher importance than

the shadow features. At each iteration, significant features are kept,

and unimportant ones are constantly removed. This iteration

repeats until all features are confirmed or rejected (Kursa and

Rudnicki, 2010). In this study, the important features (Table 2)

were chosen using the default settings of Boruta.
TABLE 2 Boruta Results and number of Important (Imp), Unimportant (Unimp), and Tentative (Ten) features.

Antibiotic Nucleotide 10-mer Boruta Results Amino Acid 5-mer Boruta Results SNP Boruta Results

Imp Unimp Ten Imp Unimp Ten Imp Unimp Ten

Penicillin 138 4690 126 162 8394 288 25 6628 42

Erythromycin 153 4633 168 45 8660 139 124 6394 177

Tetracycline 108 4642 204 18 8736 90 106 6432 157
frontier
TABLE 1 Datasets and the corresponding numbers of samples per MIC class for the three antibiotics.

Antibiotic DS 1 - PRJEB2632 DS 2 – PRJEB3084 DS 3 – PRJNA347910 DS 4 - PRJEB2255 Total

S R S R S R S R

Penicillin 453 68 11 49 2 109 128 49 869

Erythromycin 470 78 18 41 25 132 17 114 895

Tetracycline 287 36 35 19 3 131 11 121 643
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2.3.6 Statistical Analysis
To understand the importance of nucleotide 10-mers, top ten

features were determined for each model. The union of these most

successful features consisting of nucleotide 10-mers has been

prepared. Hypergeometric distribution test was used to determine

whether these kmers were over-represented in AMR genes. For

penicillin samples, pbp2B, pbp2x, pbp1a genes were downloaded

from NCBI, the contigs were divided into 10-mers, and

hypergeometric distribution was calculated for each antibiotic.

Ermb, mefE, mefA were used for erythromysin nucleotide 10-

mers and tetS and tetM were for tetracycline.
2.4 Machine learning models for
AMR classification

As samples to generate the MLmodels, as discussed above, since

the small number of intermediate samples created an imbalance, we

only included isolates categorized as either “resistant” or

“susceptible” for each antibiotic. As features, we separately

utilized the presence/absence of SNPs, nucleotide 10-mers, and

amino acid 5-mers. Pairs of combinations of these features were

analyzed in the same manner. An experiment of tenfold cross

validation was used to evaluate the model’s stability and accuracy

and was built according to the methodology previously described by

Davis et al. (2020). For each drug, we randomly assigned isolates to

a training set comprising 80% of the resistant and susceptible

isolates, respectively. The remaining 20% were divided equally

into a test set and a validation set. Parameters of ML models were

optimized on the validation set, and their accuracy was assessed in

cross-validation, while the test set was used to obtain another

independent performance estimate.

The accuracy and sensitivity of the MLmodels generated by this

study were evaluated by 10-fold cross-validation. The data were

divided into training and test sets as 8:2. The matrix is divided into

ten equal parts by cross-validation, with an equal number of

antibiotic-MIC combinations in each part. One part is used for

testing, one for validation, and eight for training. Each model used

the validation set to avoid overfitting. 10-fold cross-validation was

performed in the hyperparameter tuning stage. Optimal

combinations of hyper-parameters were selected for each fold

based on the mean squared error of validation. Ten sets of hyper-

parameters were generated from the tests, one for each fold.

Different ML algorithms were compared based on accuracy, F1

score, and Cohen’s (unweighted) Kappa statistic averaged across the

resampling results.

To detect penicillin, erythromycin, and tetracycline resistance

Streptococcus pneumonia, we trained random forest (RF), support

vector machine (SVM), stochastic gradient boosting (GBM), and

extreme gradient boosting (XGBoost) classifiers. Three different

models were tested for RF. The model with the default for each

parameter, random search, and grid search was performed. For the

SVM classifier, SVM with linear kernel, polynomial and radial

kernel functions were tested. For the GBM we tried the tuning

parameters. For XGBoost models, we used a grid search to tune our

important hyperparameters. The models with the highest F1 score
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among all created models were compared. The optimal parameters

for each ML approach are presented in Table S2.

Notably, the relative contribution of the different information

sources to the susceptibility and resistance sensitivity strongly

depended on the antibiotic. To assess the effect of the

classification technique, we compared the performance of

different classifiers. The 980-genome model contained data from

all antibiotics and MICs, making feature extraction challenging to

determine which k-mers contribute to the MIC predictions for each

antibiotic. To address this limitation, we modified the protocol by

building separate models for each antibiotic. Another reason why

we set up a separate model for each antibiotic is that not all samples

have MIC information for all three antibiotics. As you can see in

Table 1 we have 869 penicillin samples, however we have 643

tetracycline samples with MIC information. We did not want to

reduce the number of samples to train our models with a single

large integrated model. We also worried about the computational

problems like memory, RAM and training times to performing best

classifier for a single large integrated models for all antibiotics.
3 Results

As detailed in Methods, we trained several ML classification

methods on features individually and in combination for predicting

antibiotic susceptibility or resistance of isolates and evaluated the

classifier performances. We calculated the accuracy, sensitivity,

specificity, and the F1-score, as an overall performance measure

based on a classifier trained on a specific combination and shown in

Tables 3–5. Training and validation sets accuracy and kappa results

are presented in Tables S3–S5.

F1 Scores of all penicillin, erythromycin, and tetracycline

resistance models using six feature types and 4 ML approaches

are presented in Figure 2. While the overall performances were

adequate, different feature types andML approaches yielded varying

performances per each antibiotic.

Of interest when the distribution of SNPs between resistant and

susceptible samples were compared for each antibiotic, it was

observed that the number of SNPs in the susceptible samples was

significantly higher for all three antibiotics (Figure S1).

For penicillin, parameters were optimized via cross-validation,

and performance estimates averaged over five repeats of this setup

on 869 samples. For the prediction of penicillin susceptibility and

resistance, the machine learning classifiers performed almost

equally well with the five feature types (k-mer, AA k-mer, k-mer/

AA k-mer, SNP/k-mer, and SNP/AA k-mer) except SNP alone

itself. (all F1 score> 0.76). Comparisons of the models are shown in

Table 3 and Figures 2–4. These figures shows the F1 score, accuracy

and kappa results of penicillin, erythromycin, and tetracycline

resistance classification models using six different input types and

four different ML approaches.

When different features for penicillin were compared, it was

observed that nucleotide 10-mer and amino acid 5-mer F1 scores

were higher than other features; amino acid 5-mer combinations

were other inputs that yielded relatively higher F1 scores. SNP,

SNP/AA k-mer, and SNP/k-mer combinations yielded lower
frontiersin.org
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accuracy and F1 scores than other penicillin models. The highest F1

score was observed in the Random Forest model at 0.9. The

accuracy of the same model was found to be 0.96. The second-

best option was SVM, and the third-best option was XGBoost,

which performed almost as well as RF in F1-Score. The RF model

utilizing 5-mer AA k-mer features to classify penicillin resistance

yielded a sensitivity of 0.882 and a specificity of 0.99. Similarly, the

SVM linear model resulted in high predictive sensitivity and

specificity values of 0.86 and 0.99. Moreover, the XGBoost

resulted in a sensitivity of 0.96 and a specificity of 0.93.

For erythromycin, a total of 895 samples were used in our

models. As measured by the accuracy and F1 score, the best

performance was achieved by nucleotide k-mer model with

XGBoost (F1-Score 0.97, Accuracy 0.98). For the erythromycin

AMR prediction, all classifiers performed almost equally well with

all feature types except for SNP features. The first and second

highest F1 score measured by XGBoost and random forest, which

performed close to GBM in F1-Score and accuracy. When different

features in erythromycin models were compared, it was seen for

combinations of inputs, including SNP/AA k-mer, SNP/k-mer, and
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AA k-mer/k-mer, F1-scores were higher than SNP. Amino acid 5-

mer and SNP combinations yielded the highest F1 scores.

Performances of the erythromycin models are presented in

Table 4. The second-best option was Random Forest in terms of

F1-Score. With nucleotide k-mer feature, the erythromycin

resistance classification using the XGBoost model correctly

predicted resistance with a sensitivity of 0.87 and a specificity

of 0.88.

Tetracycline parameters were optimized via cross-validation,

and performance estimates were averaged over five repeats of this

setup using 643 samples. Performances of all tetracycline models are

presented in Table 5. For the prediction of tetracycline resistance,

the ML classifiers performed almost equally well with the six input

data types (k-mer, AA k-mer, SNPs, k-mer/AA k-mer, SNP/k-mer,

and SNP/AA k-mer) (F1 score > 0.85, Figure 2). When different

feature inputs in tetracycline were compared, it was observed that

the AA k-mer/k-mer combination yielded a higher F1 score than

other inputs. The highest F1 score was observed for the random

forest model, with 0.93. The accuracy of the same model was found

to be 0.96. The second-best option was GBM, and the third option
TABLE 3 Penicillin models performances.

Algorithm Input F1-score Kappa Accuracy Sensitivity Specificity

Random Forest k-mer 0.848 0.814 0.943 0.849 0.965

Support Vector Machine k-mer 0.865 0.834 0.950 0.852 0.972

Stochastic Gradient Boosting k-mer 0.879 0.851 0.955 0.879 0.972

Extreme Gradient Boosting k-mer 0.866 0.843 0.950 0.853 0.972

Random Forest AA k-mer 0.900 0.871 0.961 0.882 0.980

Support Vector Machine AA k-mer 0.899 0.874 0.961 0.861 0.986

Stochastic Gradient Boosting AA k-mer 0.882 0.854 0.955 0.857 0.979

Extreme Gradient Boosting AA k-mer 0.886 0.858 0.955 0.838 0.986

Random Forest SNP 0.786 0.747 0.932 0.957 0.929

Support Vector Machine SNP 0.772 0.730 0.927 0.917 0.928

Stochastic Gradient Boosting SNP 0.759 0.712 0.921 0.880 0.928

Extreme Gradient Boosting SNP 0.786 0.747 0.932 0.957 0.929

Random Forest SNP/AA k-mer 0.889 0.865 0.961 0.933 0.966

Support Vector Machine SNP/AA k-mer 0.889 0.865 0.961 0.933 0.966

Stochastic Gradient Boosting SNP/AA k-mer 0.857 0.826 0.950 0.900 0.959

Extreme Gradient Boosting SNP/AA k-mer 0.871 0.844 0.955 0.931 0.960

Random Forest SNP/k-mer 0.831 0.793 0.938 0.844 0.959

Support Vector Machine SNP/k-mer 0.820 0.782 0.938 0.893 0.946

Stochastic Gradient Boosting SNP/k-mer 0.852 0.822 0.949 0.929 0.963

Extreme Gradient Boosting SNP/k-mer 0.867 0.840 0.955 0.953 0.953

Random Forest AA k-mer/k-mer 0.867 0.840 0.955 0.963 0.953

Support Vector Machine AA k-mer/k-mer 0.852 0.822 0.950 0.929 0.953

Stochastic Gradient Boosting AA k-mer/k-mer 0.847 0.818 0.950 0.962 0.947

Extreme Gradient Boosting AA k-mer/k-mer 0.847 0.818 0.950 0.962 0.947
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was SVM, which performed close to RF in terms of F1-Score and

accuracy. With the AA k-mer/k-mer feature tetracycline resistance

RF model, tetracycline resistance could be predicted with a

sensitivity of 0.85 and a specificity of 0.98.

As described in Methods, we used binary features (i.e., the

presence or absence of k-mers) rather than k-mer counts to simplify

the analyses. When a model is used to predict the MIC class for a

new genome, the k-mers with the highest importance values are

expected to be the most informative. Thus, by analyzing the feature

importance values of each k-mer, we can use the models generated

in this study to understand the genomic regions that differentiate

MIC classes. Hence, to understand the relationship between known

AMR genes and the important k-mers chosen by each model, we

searched for k-mers with high-importance values within AMR

genes or near an AMR gene.

In most cases, the top k-mers corresponded to known AMR

genes. The top 10 10-mers with the highest feature importance

values were checked against S. pneumoniae-related known AMR

genes, including penicillin-binding proteins (PBPs), which have a

major role in the cell wall synthesis (PBP2b, PBP2x, and PBP1a) and
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are most often associated with penicillin resistance. For macrolide

resistance mechanisms in S. pneumoniae, ermB and mefE genes

stand out, encoding an active efflux pump. Also, the most common

resistance mechanism to tetracycline in S. pneumoniae is the

acquisition of one of the three genes, tetM, tetO, and tetK. In the

case of penicillin, for the top 10 features in S. pneumoniae, we used

the hypergeometric test to calculate the probability of top 10 10-

mers appearing in the resistance genes. As a result, p value (0.036)

was found to be statistically significant when compared with pbp2b,

pbp2x and pbp1a resistance genes. When we looked for tetracycline

with tetS and tetM genes, the p value was 0.015. When we evaluated

our 10-mers for Erythromycin, the rate of occurrence of nucleotide

sequences in these genes for four genes (Ermb, mefE, msrD, mefA)

was found to be 0.12.
4 Discussion

AMR has caused a significant increase in morbidity and

mortality rate in infectious diseases worldwide, raising global
TABLE 4 Erythromycin models performances.

Algorithm input F1-score Kappa Accuracy Sensitivity Specificity

Random Forest k-mer 0.961 0.944 0.977 0.961 0.984

Support Vector Machine k-mer 0.940 0.916 0.965 0.960 0.968

Stochastic Gradient Boosting k-mer 0.951 0.931 0.971 0.942 0.984

Extreme Gradient Boosting k-mer 0.971 0.959 0.983 0.962 0.991

Random Forest AA k-mer 0.952 0.932 0.971 0.926 0.992

Support Vector Machine AA k-mer 0.952 0.932 0.971 0.926 0.992

Stochastic Gradient Boosting AA k-mer 0.961 0.944 0.977 0.961 0.983

Extreme Gradient Boosting AA k-mer 0.961 0.944 0.977 0.961 0.983

Random Forest SNP 0.813 0.748 0.902 0.925 0.895

Support Vector Machine SNP 0.821 0.754 0.902 0.886 0.907

Stochastic Gradient Boosting SNP 0.816 0.744 0.896 0.851 0.913

Extreme Gradient Boosting SNP 0.792 0.712 0.884 0.844 0.898

Random Forest SNP/AA k-mer 0.876 0.822 0.925 0.851 0.958

Support Vector Machine SNP/AA k-mer 0.884 0.835 0.930 0.867 0.958

Stochastic Gradient Boosting SNP/AA k-mer 0.862 0.805 0.919 0.862 0.942

Extreme Gradient Boosting SNP/AA k-mer 0.873 0.820 0.924 0.865 0.950

Random Forest SNP/k-mer 0.944 0.919 0.965 0.894 1.000

Support Vector Machine SNP/k-mer 0.927 0.893 0.953 0.864 1.000

Stochastic Gradient Boosting SNP/k-mer 0.914 0.877 0.948 0.889 0.974

Extreme Gradient Boosting SNP/k-mer 0.884 0.835 0.930 0.867 0.958

Random Forest AA k-mer/k-mer 0.932 0.903 0.959 0.923 0.975

Support Vector Machine AA k-mer/k-mer 0.942 0.917 0.965 0.924 0.983

Stochastic Gradient Boosting AA k-mer/k-mer 0.932 0.903 0.959 0.923 0.975

Extreme Gradient Boosting AA k-mer/k-mer 0.900 0.859 0.942 0.918 0.951
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TABLE 5 Tetracycline models performances.

Algorithm input F1-score Kappa Accuracy Sensitivity Specificity

Random Forest k-mer 0.906 0.867 0.944 0.850 0.988

Support Vector Machine k-mer 0.921 0.887 0.952 0.853 1.000

Stochastic Gradient Boosting k-mer 0.891 0.847 0.937 0.846 0.977

Extreme Gradient Boosting k-mer 0.891 0.847 0.937 0.846 0.977

Random Forest AA k-mer 0.933 0.905 0.960 0.875 1.000

Support Vector Machine AA k-mer 0.931 0.903 0.960 0.894 0.988

Stochastic Gradient Boosting AA k-mer 0.933 0.905 0.960 0.875 1.000

Extreme Gradient Boosting AA k-mer 0.917 0.883 0.952 0.891 0.977

Random Forest SNP 0.869 0.820 0.929 0.882 0.946

Support Vector Machine SNP 0.849 0.788 0.913 0.815 0.955

Stochastic Gradient Boosting SNP 0.869 0.820 0.929 0.882 0.946

Extreme Gradient Boosting SNP 0.873 0.824 0.929 0.861 0.956

Random Forest SNP/AA k-mer 0.929 0.902 0.960 0.916 0.978

Support Vector Machine SNP/AA k-mer 0.901 0.863 0.944 0.888 0.967

Stochastic Gradient Boosting SNP/AA k-mer 0.916 0.883 0.952 0.891 0.997

Extreme Gradient Boosting SNP/AA k-mer 0.929 0.902 0.960 0.916 0.978

Random Forest SNP/k-mer 0.906 0.867 0.944 0.850 0.988

Support Vector Machine SNP/k-mer 0.906 0.867 0.944 0.850 0.988

Stochastic Gradient Boosting SNP/k-mer 0.876 0.827 0.929 0.842 0.966

Extreme Gradient Boosting SNP/k-mer 0.891 0.847 0.937 0.846 0.933

Random Forest AA k-mer/k-mer 0.906 0.867 0.944 0.850 0.988

Support Vector Machine AA k-mer/k-mer 0.921 0.887 0.952 0.853 1.000

Stochastic Gradient Boosting AA k-mer/k-mer 0.906 0.867 0.944 0.850 0.988

Extreme Gradient Boosting AA k-mer/k-mer 0.918 0.885 0.952 0.871 0.988
F
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FIGURE 2

F1 Scores of penicillin, erythromycin, and tetracycline resistance classification models using six different input types and four different ML approaches.
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health concerns (World Health Organization, 2019; World Health

Organization, 2022a). It is crucial to quickly detect AMR in bacterial

genomes as the number of effective antibiotics decreases. Molecular

approaches have significantly improved over the years and play a

critical role in the fight against antimicrobial resistance. (Leski et al.,

2013; Inouye et al., 2014; Davis et al., 2016) Building classifiers with

a balanced number of susceptible and resistant genomes is also

important for building accurate classifiers but is currently a major

limitation. In most cases, the number of available genomes with

AMR data is resistant because these are of clinical importance to

hospitals and epidemiologists.

Given the current data sets available on PATRIC, we built RF,

SVM, GBM, and XGBoost classifiers for penicillin, erythromycin,

and tetracycline resistance Streptococcus pneumoniae. The

classifiers were highly accurate and performed classifications

based on nucleotide k-mers.

The feature extraction methods that we present here have

different pre-processing steps. In the case of SNP features,

alignment to the reference genome is required because each SNP

must have a unique position in the reference genome. In order to
Frontiers in Antibiotics 09
work with SNP locations, variant calling is required. Although it is

not a very long process, it is a pre-process that should be evaluated.

Apart from the location of the SNPs, we looked to see if there was a

difference in the number of SNPs between susceptible and resistant

samples, it was observed that the number of SNPs in the susceptible

samples was significantly higher for all three antibiotics (Figure S1).

The number of SNPs was significantly lower in the resistance

samples regardless of antibiotic. This shows that simply assessing

the number of SNPs in a sample might be a useful initial step when

predicting MIC class.

When we compared the machine learning models, we could not

find any obvious difference that could distinguish one from the other.

When evaluating the results of Erythromycin, when we ran XGBoost,

which gave F1 scores of 0.97 and 0.96, with the SNP feature, we saw

that it gave the weakest result among the tested models (Figures 2–4).

XGBoost is a popular machine learning algorithm it’s because of high

predictive accuracy. XGBoost is fast and ideal for big datasets, when

we compare to other models like random forest.

For amino acid k-mers methods, by contrast, the input to the

feature extraction method is the amino acid sequence of the genes.
FIGURE 3

Accuracy results of penicillin, erythromycin, and tetracycline resistance classification models using six different input types and four different ML approaches.
FIGURE 4

Kappa results of penicillin, erythromycin, and tetracycline resistance classification models using six different input types and four different ML approaches.
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This means that just aligning the short reads to contigs is not

sufficient. This adds an extra pre-processing step to these methods.

However, predicting AMR as fast as possible and as cheaply as

possible is the top priority. Thus, amino acid k-mers are the better

option because of the smaller feature size and better interpretability

of AA features. Overall, aa kmer can be a useful tool for prediction,

This method, which has just started to be used for MIC prediction,

is seen to give high results when compared to other feature inputs.

Our comparisons showed that different feature inputs yielded

the optimal results for each antibiotic. Amino acid 5-mers resulted

in the best performance for penicillin. In contrast, the SNP and

amino acid 5-mers combination were the best for tetracycline, and

the combination of nucleotide 10-mers and amino acid 5-mers

yielded the best performance for tetracycline.

In machine learning, an excessive number of features can

increase the required memory and lead to over-fitting. Using long

k-mers is hard because the number of features increases; however,

we have shown that for amino acid k-mers, this increase in feature

size is less severe than for nucleotide k-mers. One advantage of

amino acid k-mers over nucleotide k-mers is that they are more

compact representations of biological information. Each codon

consists of three nucleotides and translates into one amino acid.

Moreover, amino acid k-mers and their combinations achieved

better performance in terms of accuracy.

In this study, the k-mers relating to penicillin resistance in S.

pneumoniae that were identified by RF corresponded with the

pbp2x gene that was also identified in previous genome-wide

association studies (Chewapreecha et al., 2014). In that study,

Chewapreecha and colleagues (2014) also found significant

variations relating to resistance in the pbp1a and pbp2a penicillin-

binding proteins, which were also identified in this study using the

RF model.

In this study, we compared feature sets and ML models for

predicting AMR phenotype for S. pneumoniae. We compared

nucleotide k-mers, amino acid k-mers, and SNPs to predict AMR

for three antibiotics: Penicillin, Erythromycin, and Tetracycline.

Further, we attempted to use and compare various ML methods:

random forest, support vector machine, stochastic gradient

boosting, and extreme gradient boosting to train the classification

models. We attempted to discuss the strengths and limitations of

feature and ML model selection for MIC prediction. As a result of

our work, we have observed that the features used in the model

setup and the choice of ML method affect the result. Especially the

feature combinations giving high accuracy and F1 score for some
Frontiers in Antibiotics 10
antibiotics showed that these feature inputs should be evaluated in

the future. We hope that the approach undertaken by this study can

be used in further studies to improve AMR prediction performance

and accuracy and help alleviate the burden of AMR in the

clinical setting.
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