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Antibiotic resistance is a major danger to public health that threatens to claim the

lives of millions of people per year within the next few decades. Years of necessary

administration and excessive application of antibiotics have selected for strains that

are resistant to many of our currently available treatments. Due to the high costs

and difficulty of developing new antibiotics, the emergence of resistant bacteria is

outpacing the introduction of new drugs to fight them. To overcome this problem,

many researchers are focusing on developing antibacterial therapeutic strategies

that are “resistance-resistant”—regimens that slow or stall resistance development

in the targeted pathogens. In this mini review, we outline major examples of novel

resistance-resistant therapeutic strategies. We discuss the use of compounds that

reduce mutagenesis and thereby decrease the likelihood of resistance emergence.

Then, we examine the effectiveness of antibiotic cycling and evolutionary steering,

in which a bacterial population is forced by one antibiotic toward susceptibility to

another antibiotic. We also consider combination therapies that aim to sabotage

defensive mechanisms and eliminate potentially resistant pathogens by combining

two antibiotics or combining an antibiotic with other therapeutics, such as

antibodies or phages. Finally, we highlight promising future directions in this

field, including the potential of applying machine learning and personalized

medicine to fight antibiotic resistance emergence and out-maneuver

adaptive pathogens.
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1 Introduction

The use of antibiotics is central to the practice of modern medicine but is threatened by

widespread antibiotic resistance (Centers for Disease Control and Prevention (U.S.), 2019).

Antibiotics are a selective evolutionary pressure—they inhibit bacterial growth and

viability, and antibiotic-treated bacteria are forced to either adapt and survive or

succumb to treatment. The stress of antibiotic treatment can enhance bacterial

mutagenesis leading to de novo resistance mutations (Figure 1A), promote the
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acquisition of horizontally transferred genetic elements that confer

resistance, or trigger phenotypic responses that increase tolerance to

drugs (Davies and Davies, 2010; Levin-Reisman et al., 2017;

Bakkeren et al., 2019; Darby et al., 2022; ). Additionally, antibiotic

treatment can select for the proliferation of pre-existing mutants

already in the population (Figure 1B). Historically, the introduction

of new clinical antibiotics has been closely followed by the

identification of resistant bacterial isolates, making it clear that

bacteria are remarkably capable of adapting to new treatments

(Abraham and Chain, 1940; Davies and Davies, 2010). In this

review, we describe therapies that inhibit the genetic changes

underlying antibiotic resistance and target existing resistance

mechanisms. These “resistance-resistant” strategies hold the key

to preserving antibiotic efficacy for years to come.
2 Inhibiting bacterial evolvability to
prevent antibiotic resistance
development

The ability of bacteria to evolve in response to stresses, including

those caused by antibiotics, is central to antibiotic resistance

development. Therefore, limiting bacterial evolvability either by

decreasing the stress causing the mutagenesis or by dampening the

mutagenic response to the stressor is one approach to preventing de

novo resistance mutations (Figure 1A).
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2.1 Dampening mutagenic stressors

Antibiotic treatment can perturb bacterial metabolism and

increase production of reactive metabolic byproducts (RMB), such

as reactive oxygen species (ROS). These reactive metabolites are well

known for their ability to damage macromolecules, such as DNA and

proteins, and they can be mutagenic (Markkanen, 2017; Seixas et al.,

2022; Wong et al., 2022). Although even sub-lethal doses of

antibiotics are sufficient to increase mutagenesis that leads to

increased minimum inhibitory concentrations, scavenging these

reactive metabolites could prevent this effect (Kohanski et al., 2007;

Kohanski et al., 2010).

Pribis and colleagues found that a small subpopulation of

ciprofloxacin-treated Escherichia coli generate ROS which leads to

mutagenic DNA repair and subsequent resistance development in this

subpopulation (Shee et al., 2011; Pribis et al., 2019). To combat this

problem, they treated E. coli with the antioxidant edaravone to reduce

ROS levels, which ultimately reduced the number of resistance

mutants that arose and preserved ciprofloxacin’s killing efficacy

(Pribis et al., 2019). It must be acknowledged, however, that

hindering RMB generation could reduce antibiotic efficacy. In

contrast to the results of Pribis and colleagues, another group found

that treating E. coli with RMB scavengers and ciprofloxacin,

kanamycin, or mecillinam reduced the antibiotics’ killing effects

(Wong et al., 2022). More research into the mechanisms of RMB

involvement in antibiotic killing is necessary to determine whether
A

B

FIGURE 1

(A). Antibiotic treatment increases metabolic stress (such as ROS) and leads to the activation of mutagenic stress-response pathways, resulting in de
novo resistance mutations. The result is a higher number of antibiotic-resistant bacteria surviving antibiotic treatment (as shown on the antibiotic-
containing media plates). To prevent these de novo resistance mutations and therefore limit resistance development, a compound can be administered
to reduce the level of metabolic stress. Alternatively, mutagenesis can be reduced by inhibiting proteins important for activation of the mutagenic stress-
response pathways. (B). Antibiotic treatment selects for members of the population harboring pre-existing resistance-conferring mutations or genes.
These resistant bacteria can be targeted by a second antibiotic or by using a variety of adjuvants—non-antibiotics that can be combined with antibiotic
therapy to limit resistance development. Such adjuvants include enzyme or efflux pump inhibitors as well as bacteriophages that selectively target
bacteria resistant to the antibiotic.
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prescribing antibiotics along with compounds to limit these stressors

could be a valuable resistance-resistant strategy.
2.2 Inhibiting mutagenic stress responses

In contrast to lessening the stressors, bacterial evolvability can be

reduced by inhibiting the evolution-driving pathways that respond to

these stressors (Figure 1A) (Galhardo et al., 2007; Ragheb et al., 2019;

Merrikh and Kohli, 2020). Given that many antibiotics can either

directly (e.g., fluoroquinolones) or indirectly (e.g., antibiotics that

stimulate RMB production) damage DNA integrity, one major

pathway that allows bacteria to respond to antibiotic treatment and

guard against deleterious DNA breaks is the SOS response (McKenzie

et al., 2000; Maslowska et al., 2019; Podlesek and Bertok, 2020). This

DNA repair process can involve the activation of mutagenic DNA

polymerases that lack proofreading activity (Baharoglu and Mazel,

2014), potentially leading to resistance-conferring mutations

(Podlesek and Bertok, 2020).

It has been hypothesized that SOS response inhibitors could

limit adaptive mutagenesis and curb resistance development

(McKenzie et al., 2000; Maslowska et al., 2019; Podlesek and

Bertok, 2020). Cirz and colleagues found that SOS-deficient E.

coli were unable to evolve resistance against ciprofloxacin or

rifampicin (Cirz et al., 2005). Similarly, nanobodies or phages

that prevent the cleavage of LexA, a repressor that undergoes

proteolysis in response to DNA damage to induce the SOS

response , b lock DNA repair and ant ibiot ic res is tance

development (Lu and Collins, 2009; Maso et al., 2022). Other

members of the SOS pathway have also been implicated as

potential targets for inhibition along with antibiotic treatment in

order to limit resistance mutations (Yakimov et al., 2021). Beyond

targeting SOS response proteins, Ragheb and colleagues found that

inhibiting Mfd, a DNA translocase found to increase mutagenesis

and antibiotic-resistance development, could decrease the

likelihood of resistance-conferring mutations (Ragheb et al.,

2019). Although the regulation of enzymes responsible for

mutagenesis varies across organisms, combining antibiotic

therapy with the inhibition of conserved evolutionary drivers,

like error-prone DNA polymerases, has immense potential to aid

in the fight against antibiotic resistance development.
3 Evolutionary steering through
sequential treatment and
treatment cycling

Developing antibiotic resistance often involves trade-offs for

bacteria—resistant cells gain a fitness advantage in the presence of

drug treatment but suffer a fitness defect when the selective

pressure of the drug is removed (Lipsitch et al., 2000; Bergmiller

et al., 2017). Furthermore, the genetic changes that a bacterium

incurs to resist one drug can make it more susceptible or resistant

to other antibiotics than the original wild-type cell in phenomena
Frontiers in Antibiotics 03
called collateral sensitivity and collateral resistance, respectively

(Figure 2) (Szybalski and Bryson, 1952; Imamovic and Sommer,

2013; Lázár et al., 2013). Thus, subsequent administration of a

different antibiotic—or adjuvant such as a bacteriophage

(Chaudhry et al., 2017; Bull et al., 2019; Burmeister et al., 2020)

—could exploit the resistant population’s weaknesses and lead to

its eradication (Imamovic and Sommer, 2013; Kim et al., 2014;

Roemhild et al., 2022).

Treatment cycling, also called sequential treatment, is a strategy

that aims to capitalize on collateral sensitivities (Figure 2C). The goal

is to kill the majority of bacteria with an initial antibiotic treatment

and “trap” any bacteria that do develop resistance into collaterally

sensitive genotypes, therefore making the second treatment more

effective (Nichol et al., 2015; Nichol et al., 2019). Sequential treatment

regimens have been used empirically in the clinic for decades, mainly

in the context of switching from an intravenous antibiotic to a

different oral antibiotic (Paladino et al., 1991; McMullan et al.,

2016); but to our knowledge, the effectiveness of treatment cycling

regimens in preventing clinical resistance has not yet been

studied systematically.

Laboratory evolution experiments have shown that the

success of a given cycling regimen depends on several factors,

including the properties of each specific antibiotic, the duration

of treatment before switching, a given bacterium’s genome, and

the difficulty of acquiring a resistant genotype (Bal et al., 2010;

Mouton et al., 2011; Chevereau et al., 2015; Baym et al., 2016;

Barbosa et al., 2019; Batra et al., 2021). As an example of the latter

factor, a single nucleotide mutation may be sufficient to confer

resistance to an antibiotic like rifampicin, but other resistance

genes, like acquisition of the tetracycline efflux pump, TetA, may

require the opportunistic uptake of a larger genetic element

(Perron et al., 2015). Furthermore, most of our understanding

of bacterial responses to antibiotics is founded on in vitro

experiments. In the host, antibiotic concentrations fluctuate

between doses, and bacteria face additional selective pressures

that have unknown consequences for their fitness and evolution

(Yang et al., 2017; Manktelow et al., 2020). Altogether, these

variables emphasize the fact that collateral effects are not

guaranteed and must be considered probabilistic events that

complicate the predictability of evolutionary trajectories

(Nichol et al., 2019; Burmeister et al., 2020).

To ensure that treatment cycling is effective in practice, we need

robust data sets and deep learning to predict the pleiotropic effects of

resistance mutations and determine the least risky treatment

regimens (Lopatkin and Collins, 2020; Anahtar et al., 2021).

Collateral sensitivity has also been explored in the context of

multidrug-resistant cancers, and advances from that body of

research may provide insights on bacterial multidrug evolution, or

vice versa (Vendramin et al., 2021). Alternatively, rather than

switching antibiotics in sequence, there is evidence that adding a

second antibiotic or administering combination therapies from the

start might be more effective, as we discuss in the following section

(D’Agata et al., 2008; Mouton et al., 2011; Barbosa et al., 2019; Angst

et al., 2021).
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4 Dual antibiotic therapy to prevent
resistance emergence

4.1 Combining traditional antibiotics

Antibiotic treatment can select for pre-existing resistance

mutations, but combining one antibiotic with another, or with an

adjuvant that has a different target, can limit such selection

(Figure 1B) (Wright, 2016). It is much less likely for a bacterium

to simultaneously resist two treatments with different targets than it

is to develop resistance toward monotherapy (Maron et al., 2022).

Some examples of antibiotic combinations that have been shown to

inhibit resistance development include ciprofloxacin plus amikacin

against Pseudomonas aeruginosa , streptomycin plus para-

aminosalicylic acid against Mycobacterium tuberculosis, and

daptomycin plus rifampicin against methicillin-resistant

Staphylococcus aureus (Bamberger et al., 1986; Fasching et al.,

1987; Mouton, 1999; Garrigós et al., 2010; Mitchison and Davies,

2012; Worthington and Melander, 2013). Unfortunately, while

many studies on antibiotic combinations focus on killing efficacy

and synergy between combinations, few directly examine how these

combinations affect resistance development (Deresinski, 2009;

Samonis et al., 2012; Roemhild et al., 2022; Wang et al., 2022).

Though counterintuitive, it has been shown that the combination of

two antibiotics that suppress each other’s activity can actually

hinder the development of resistance against either drug (Chait

et al., 2007; Singh and Yeh, 2017; Liu et al., 2020). For example, the

combination of daptomycin and rifampicin is less effective at killing

S. aureus than treatment with either drug alone; however, this

suppressive antibiotic combination prevents the emergence of

rifampicin resistance because cells that do develop rifampicin

resistance can resume growth and become more sensitive to

daptomycin than the wild-type cells (Stein et al., 2016; Liu et al.,
Frontiers in Antibiotics 04
2020). These unexpected fitness dynamics indicate that the success

of suppressive antibiotic combinations will hinge on the prevention

of resistance evolution (Singh and Yeh, 2017; Liu et al., 2020).
4.2 Dual-mechanism compounds

Drawing inspiration from the potential success stemming from

administering a combination of antibiotics, single compounds

featuring two distinct antibacterial mechanisms that act

synergistically have been developed. Several compounds have been

developed in which two antibiotics (most commonly one

fluoroquinolone and one DNA or protein synthesis inhibitor) are

connected by either a cleavable or non-cleavable linker, and

compounds based on these designs are currently undergoing

clinical trials (Bremner et al., 2007; Pokrovskaya and Baasov, 2010;

Ma and Lynch, 2016; Jubeh et al., 2020; Theuretzbacher, 2020).

Additionally, Pentobra, which consists of the aminoglycoside

tobramycin functionalized with an antimicrobial peptide, has been

shown to better permeate bacterial membranes than tobramycin

alone. This allows Pentobra to kill bacteria that normally resist

aminoglycosides through poor uptake (Schmidt et al., 2015). Like

studies of traditional antibiotic combinations, studies of these dual-

mechanism compounds usually focus on killing efficacy rather than

directly investigating their ability to prevent resistance development.

Additionally, until recently, such two-pronged compounds often

worked well against Gram-positive bacteria but failed against

Gram-negative species (Gupta and Datta, 2019; Theuretzbacher,

2020). Excitingly, Irresistin-16 features one moiety that targets

folate metabolism and another that targets membrane integrity;

together, these moieties act to decrease survival of both Gram-

negative and Gram-positive pathogens all while leaving no

detectable resistant mutants (Martin et al., 2020).
A

B DC

FIGURE 2

(A).The strategies of treatment cycling and sequential treatment aim to capitalize on the collateral effects of resistance mutations. In this schematic, a
population of cells undergoes a first treatment and then, to eradicate the resistant survivors, a second treatment is applied. Based on the mutations
incurred during the first treatment, the cells may be more sensitive or resistant to the second treatment. (B–D). Example mechanisms that may underly
collateral effects for a Drug 1 whose uptake is proton motive force (PMF)-dependent and a Drug 2 that can be expelled from the cell via an endogenous
efflux pump. (Figure adapted from Pál et al., 2015.) (B). Cells that resist Drug 1 specifically—by mutating Drug 1’s target, perhaps—will have similar
susceptibility to Drug 2 as wild-type cells. (C). Cells that resist Drug 1 by decreasing PMF will also have decreased PMF-dependent efflux as a
consequence, thereby increasing their sensitivity to Drug 2. (D). Cells that resist Drug 1 by overexpressing or acquiring an efflux pump that can also expel
Drug 2 will be collaterally resistant.
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5 Combining antibiotics with adjuvants

Instead of combining two antibiotics, an antibiotic can be

combined with an adjuvant that has a different target or prevents

selection for resistant bacteria. Aside from preventing de novo

resistance mutations, another significant area of research is

developing treatments that specifically address known resistance

mechanisms such as antibiotic deactivating- or destroying-enzymes

and multidrug efflux pumps (Amaral et al., 2014; Markley and

Wencewicz, 2018). Additionally, combining traditional antibiotics

with biologics such as antibodies and phages has shown great

potential for preventing resistance development (Mariathasan and

Tan, 2017; Torres-Barceló et al., 2022).
5.1 Counteracting enzymes that
deactivate or destroy antibiotics

Some bacteria have enzymes that confer resistance by deactivating

certain antibiotics (Blair et al., 2015; Wright, 2016; Markley and

Wencewicz, 2018). While the antibiotic alone can kill members of the

population lacking these enzymes, combining the antibiotic with

inhibitors of these enzymes allows it to kill resistant bacteria as well

(Wright, 2016; Liu et al., 2018; Markley and Wencewicz, 2018). The

most successful example of this strategy is the combination of b-
lactam antibiotics with b-lactamase inhibitors (Zhanel et al., 2013;

Coleman et al., 2014; Brown and Wright, 2016; Wright, 2016).

However, more research is needed before inhibitors of other

antibiotic-inactivating enzymes can be used in the clinic. Park and

colleagues found that anhydrotetracycline (aTc) binds to the active

site of tetracycline destructases, thereby sparing some tetracycline

from these enzymes. Treating E. coli expressing the tetracycline

destructase Tet(56) with aTc significantly increased susceptibility to

tetracycline (Park et al., 2017). Further research into the structures of

these enzymes and the mechanisms by which they destroy or

deactivate antibiotics may lead to the development of additional

inhibitors that can preserve the efficacy of our antibiotic arsenal.
5.2 Inhibiting multidrug efflux pumps

In some cases, instead of deactivating or destroying an antibiotic,

bacteria simply use efflux pumps to reduce the antibiotic’s

intracellular concentration (Amaral et al., 2014; Li et al., 2015).

Some efflux pump-encoding genes can be acquired through

horizontal gene transfer, but several bacterial species naturally

express a repertoire of efflux pumps that provide resistance to

multiple antibiotics. Therefore, inhibiting efflux pumps to prevent

the bacteria from escaping antibiotic attack is a promising strategy.

Despite many compounds that are able to inhibit efflux pumps, this

strategy has not been applied clinically because many of these

inhibitors are toxic to humans (Ferrer-Espada et al., 2019). To

combat this toxicity, Ferrer-Espada and colleagues found that

antimicrobial peptides that increase the membrane permeability of
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P. aeruginosa increased the effectiveness of efflux pump inhibitors,

which in turn increased the bacteria’s susceptibility to all antibiotics

tested (Ferrer-Espada et al., 2019). This increased effectiveness should

mean that a lower, and hopefully more clinically safe, dose of efflux

pump inhibitor could be given to great effect. Additionally, it was

recently reported that increasing the expression of multidrug efflux

pump genes acrAB in E. coli reduces the expression of mutS, which is

involved in DNA mismatch repair, and promotes spontaneous

mutagenesis (El Meouche and Dunlop, 2018). These findings

suggest that strategies to reduce acrAB expression can potentially

limit mutagenesis and resistance development.
5.3 Antibody-antibiotic conjugates for
enhanced targeting and efficacy

The conjugation of an antibiotic to a monoclonal antibody limits

the number of bacteria that survive treatment compared to treatment

with the antibiotic alone (Lehar et al., 2015; Kajihara et al., 2021;

Cavaco et al., 2022). If fewer bacteria survive the treatment, then there

are fewer bacteria left to develop and spread resistance (Bakkeren

et al., 2019). This approach’s increased killing of the pathogen plus its

ability to spare the microbiota from antibiotic exposure make it a

promising resistance-resistant strategy. Often in an infection,

pathogens are able to persist inside phagocytic or even non-

phagocytic host cells while avoiding being digested (Helaine et al.,

2010; Mariathasan and Tan, 2017; Peyrusson et al., 2020). In

combined antibody-antibiotic therapy, an antibody carrying the

antibiotic binds to a pathogen and opsonizes it for phagocytosis by

immune cells. Once in the acidic internal environment of the

phagocyte, the antibiotic will be cleaved off of the antibody and

allowed to attack the pathogen, making it less able to persist inside the

phagocyte (Dubowchik et al., 2002; Lehar et al., 2015; Cavaco et al.,

2022). As mentioned before, a major benefit of this approach is that

by targeting pathogens of interest with highly specific antibodies, the

host microbiota should be spared from antibiotic exposure, reducing

the likelihood of selecting for resistant mutants among commensal

bacteria (Zurawski and McLendon, 2020). One pitfall of this approach

is that designing and producing these conjugates remains very

difficult because of the specific characteristics required for the

antibody, antibiotic, and linker to each have maximum efficacy

(Beck et al., 2017; Wei et al., 2018). Additionally, just as

monoclonal antibodies designed to target pathogens for

phagocytosis rely on at least partial immune system functionality

(ter Meulen, 2007), antibody-drug conjugates may not be effective for

immunocompromised patients.
5.4 Phage therapy to force pathogens
toward antibiotic susceptibility

The combination of phage therapy with antibiotics has shown

promise in reducing resistance development (Torres-Barceló et al.,

2022). Bacteriophages specifically infect certain species or strains of

bacteria and ultimately kill them through cell lysis (Lin et al., 2017).
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The range of bacteria that a given phage can infect is limited by the

receptors available on the bacterial cell surfaces (de Jonge et al., 2019).

With phage mining/hunting efforts and the development of modern

genetic engineering techniques, the potential repertoire of phages that

could be used against pathogens has greatly expanded (Chen et al.,

2019; Gauthier et al., 2022). As with the other combination therapies

mentioned, phage therapy and antibiotic therapy present two distinct

selective pressures to the pathogen. Among the defenses that bacteria

employ to resist being killed by phages (Egido et al., 2022), the most

relevant are mutations that either remove or change the structure of

the cell-surface receptor a given phage must bind in order to infect the

bacterium. The result of this selection is that the population shifts

toward decreased expression of the normal receptor on their surfaces.

Then, if this receptor is important for the bacteria’s defense against

antibiotics, their antibiotic susceptibility will be increased. In this way,

phage therapy that targets surface proteins important for antibiotic

resistance can shift the population toward antibiotic susceptibility and

vice versa. For example, using phages that dock onto efflux pump

components can select for mutants with defects such as non-

functional multidrug efflux pumps, preventing them from expelling

their usual antibiotic substrates (Chan et al., 2016; Gurney et al.,

2020). Additionally, combined antibiotic-phage therapy can select for

bacteria that only survive treatment by incurring mutations that

reduce their fitness in the absence of treatment (Zhang and

Buckling, 2012). Antibiotic-phage therapy has even shown promise

in the clinic—an example is the successful treatment of a patient with

an aortic arch prosthesis infected by P. aeruginosa (Chan et al., 2018).

The phages targeted the multidrug efflux pumps of P. aeruginosa,

making the pathogen more susceptible to treatment with

ciprofloxacin and ceftazidime (Chan et al., 2018; Hatfull et al.,

2022). These examples highlight the fascinating potential for phages

and antibiotics together to prevent antibiotic resistance and effectively

cure infections that are difficult to treat with either approach alone.

However, the use of bacteriophages has some limitations. First,

unlike broad-spectrum antibiotics, many phages can only infect a few

species or even a few strains of bacteria, making it difficult to

effectively utilize phage therapy before identifying the infection’s

causative agent (Loc-Carrillo and Abedon, 2011; Göller et al., 2021).

This problem can be mitigated by prescribing a cocktail of several

phages each with specificities for different bacteria (McVay et al.,

2007; Kutateladze and Adamia, 2010; Loc-Carrillo and Abedon,

2011). Additionally, lysogenic phages integrate their DNA into the

host’s genome and may transfer virulence or antibiotic-resistance

genes to susceptible pathogens and commensal bacteria. Therefore, it

is recommended that researchers focus on lytic phages that kill

bacteria without integrating their DNA in order to prevent

horizontal transfer of these harmful genes (Skurnik et al., 2007;

Colomer-Lluch et al., 2011; Loc-Carrillo and Abedon, 2011).

Finally, there are concerns that phages could cause unwanted

immune responses. One study showed that phage therapy can

increase serum levels of inflammatory markers (Oechslin et al.,

2017; Liu et al., 2021). Additionally, the patient’s immune system

can make antibodies against phages (Sunagar et al., 2010; Jun et al.,

2014; Liu et al., 2021), but one study showed that production of such
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antibodies likely begins after the phages have already exerted their

killing effects (Eskenazi et al., 2022). Phage therapy research has

gained traction in the past decade after being largely overlooked in the

20th century (de Jonge et al., 2019). Progress on this front can

potentially illuminate strategies to improve the efficacy and

overcome current limitations of phage therapy.
6 Future directions

We have discussed the promise as well as the challenges of several

resistance-resistant therapeutic strategies including treatment cycling,

combinations of two antibiotics, and combinations of antibiotic

treatment with compounds that limit bacterial evolvability,

resistance-conferring enzyme and efflux pump inhibitors,

antibodies, and phages. In all, the goal of these strategies is to

maximize killing of the pathogen population while minimizing

resistance development. While these strategies have shown great

promise in the lab, most of them require far more research before

they can be applied in the clinic.

To overcome present limitations in formulating resistance-

resistant therapeutic regimens, new technologies are being

developed to improve informed treatment decision-making. For

example, based on patient microbiomes and personal medical

histories, machine learning algorithms are able to predict the

likelihood of resistance development against a given antibiotic

(Stracy et al., 2022). This approach may also predict horizontal

gene transfer events from the host microbiome which can result in

drug resistance (Andersson et al., 2020). Additionally, it has been

suggested that shifting antibiotic-discovery pipelines toward more

narrow-spectrum agents could help prevent resistance by sparing the

microbiota and reducing selective pressure toward resistance

development (Brown and Wright, 2016). There is also an exciting

move toward rational drug design that anticipates resistance

evolution and can hinder both wild-type and resistant cells (Manna

et al., 2021). As we learn more about how antibiotic tolerant and

persistent bacteria survive treatment and discover more efficacious

methods of detecting these phenotypic variants in infections, we can

leverage this information to select more appropriate combinations of

therapeutics that can stall resistance evolution and achieve successful

treatment outcomes (Singh and Yeh, 2017; Roemhild et al., 2022).

Further research into optimizing the strategies outlined here in

animal models and humans will help alleviate the antibiotic-

resistance crisis and prevent many deaths due to antibiotic-

resistant bacteria.
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Torres-Barceló, C., Turner, P. E., and Buckling, A. (2022). Mitigation of evolved
bacterial resistance to phage therapy. Curr. Opin. Virol. 53, 101201. doi: 10.1016/
j.coviro.2022.101201

Vendramin, R., Litchfield, K., and Swanton, C. (2021). Cancer evolution: Darwin and
beyond. EMBO J. 40, e108389. doi: 10.15252/embj.2021108389

Wang, N., Luo, J., Deng, F., Huang, Y., and Zhou, H. (2022). Antibiotic combination
therapy: A strategy to overcome bacterial resistance to aminoglycoside antibiotics. Front.
Pharmacol. 13. doi: 10.3389/fphar.2022.839808

Wei, B., Gunzner-Toste, J., Yao, H., Wang, T., Wang, J., Xu, Z., et al. (2018). Discovery
of peptidomimetic antibody–drug conjugate linkers with enhanced protease specificity. J.
Med. Chem. 61, 989–1000. doi: 10.1021/acs.jmedchem.7b01430

Wong, F., Stokes, J. M., Bening, S. C., Vidoudez, C., Trauger, S. A., and Collins, J. J.
(2022). Reactive metabolic byproducts contribute to antibiotic lethality under anaerobic
conditions. Mol. Cell 82, 3499–3512.e10. doi: 10.1016/j.molcel.2022.07.009

Worthington, R. J., and Melander, C. (2013). Combination approaches to combat
multi-drug resistant bacteria. Trends Biotechnol. 31, 177–184. doi: 10.1016/
j.tibtech.2012.12.006

Wright, G. D. (2016). Antibiotic adjuvants: Rescuing antibiotics from resistance.
Trends Microbiol. 24, 862–871. doi: 10.1016/j.tim.2016.06.009

Yakimov, A., Bakhlanova, I., and Baitin, D. (2021). Targeting evolution of antibiotic
resistance by SOS response inhibition. Comput. Struct. Biotechnol. J. 19, 777–783.
doi: 10.1016/j.csbj.2021.01.003

Yang, J. H., Bhargava, P., McCloskey, D., Mao, N., Palsson, B. O., and Collins, J. J.
(2017). Antibiotic-induced changes to the host metabolic environment inhibit drug
efficacy and alter immune function. Cell Host Microbe 22, 757–765.e3. doi: 10.1016/
j.chom.2017.10.020

Zhanel, G. G., Lawson, C. D., Adam, H., Schweizer, F., Zelenitsky, S., Lagacé-Wiens, P.
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