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Paul Ehrlich has rightly been called the father of antibiotics. His seminal studies demonstrated three
important principles about the use of antibiotics. The first was the concept of selective toxicity that
underpins all our therapeutic choices. He also observed while he was developing the compound
that became salvarsan, that continued exposure to the compound resulted in the emergence of
resistance: the organism could no longer be killed. A complementary observation was that an agent
with a different chemical structure and mode of action could kill the resistant organism (Ehrlich,
1909). Ehrlich received a Nobel Prize for this work upon which we all still stand (Fleming, 1929). In
the subsequent years SalmanWaxman also received aNobel Prize for his discovery of streptomycin,
Gerhard Domagk for his work on prontosil, and Fleming, Florrie and Chain for their pioneering
work on the isolation of penicillin and enabling its production in large quantities. These and other
notable awards indicate the critical contribution that antibiotics have made in the development
of modern medicine. In the 1950s and 60s the discovery of the penicillin nucleus and the ability
to chemically modify it opened a door to limitless possibilities to change the pharmacology and
spectrum of activity and to transform treatment. This was an antibiotic golden age.

Discoveries continued apace, with the development of more active compounds with a wider
spectrum of activity but, few new chemical classes were created. At the turn of the Millennium, it
started to become apparent that a problemmaybe growing, that of widespread antibiotic resistance.
The specter of completely resistant organisms and a return to the pre-antibiotic age started to
exercise the minds of not only physicians who had battled the problem in individual patients
for many years, but of policymakers. A series of reports were made by national and international
organizations of which the O’Neill report painted a dark future if we did not invest in preserving
the antibiotics we have and devising new ones (O’Neill, 2016). The costs to health systems, it
was predicted, could be $50bn per year. That there is a challenge in the sphere of antibiotics is
universally acknowledged by international bodies, governments, and individual practitioners across
a range of disciplines. Antibiotic resistance is rising globally at a time when the therapeutic pipeline
is not providing new compounds. We urgently need to understand the problem and to identify
solutions from a wide.

This brief summary of 100 years of antibiotic history lays out the agenda for those involved in
antibiotic research today: understanding the epidemiology, the mechanisms of resistance and their
transmission effective means of control, more rapid means of diagnosis and finding you antibiotics.

We have reason to be positive though as we have a promising toolset available to us with
which to address the issue. Fred Sanger’s invention of genome sequencing means that we now
have unprecedented power to identify and track resistant organisms in the human population and
we may also use that tool to understand the mechanisms of resistance (Sanger et al., 1977). The
development of the polymerase chain reaction and similar techniques allow us to amplify microbial
nucleic acids rapidly and make a diagnosis of identity and antibiotic resistance (Mullis, 1994). This
is particularly valuable for organisms that are slow or difficult to grow such asmycobacteria (Telenti
et al., 1993).
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The rapid improvement in technology that has occurred
means that we can investigate whole collections of organisms
(Mutreja et al., 2011). By sequencing of large numbers of strains
and their resistance genes, careful bioinformatic analysis allows
us to understand multiple mechanisms of resistance, to track
the transmission of resistant organisms and resistance genes
across the globe (Török et al., 2013). Computer scientists are
teaching us how to harness “big data” to address antibiotic
development and resistance We can now start to understand
the interconnectedness of pathogens, their interaction with
human and intermediate hosts and fomites connections between
human and animal populations demonstrating the importance
of seeing antibiotics, their discovery, testing and implementation
in a holistic setting: the one health environment (Ellabaan
et al., 2021). We can now track organisms and the resistance
determinant whether chromosomal or on mobile genetic
elements with unprecedented clarity and in real time. This
allows us to unravel complex transmission pathways and to
understand the timeframe over which it occurs allowing plans
and interventions to control transmission at local, national
and international level (Parcell et al., 2017, 2020). Yet the
scale of this challenge is enormous as we can conceive of
each antibiotic-pathogen-human interaction of being a unique
biological problem. As our new tools become available to answer
old questions, we are increasingly recognizing that the new data
come with more questions. Mathematics and computer science
are contributing models that can test theories about resistance
emergence and transmission (Ellabaan et al., 2021).

A whole panoply of diagnostic and epidemiological tools is
needed to detect and track the evolution of resistant pathogens
and, as has been recently demonstrated, the emergence of novel
pathogens that affect every aspect of medicine and have a
profound impact on antibiotic treatment and resistance (Santis
et al., 2022). The global coronavirus pandemic has demonstrated
the importance of effective defenses against infection. Not only
was coronavirus a challenge but secondary pneumonias required
additional antibiotic treatment. Thus, after the optimism of
the 1980s when the assumption was that infectious diseases
were a thing of the past, we now know through our genomic
tracking that we are at risk of losing the use of antibiotics
for many everyday infections. The threat of rising resistance
has prompted many national and international reports. We are
now starting to understand the human toll of resistance with
an estimated 750,000 additional deaths due to resistant sepsis
(Collaborators et al., 2022). Beyond that we see the economic
toll on health services and support for those damaged by sepsis.
Many pharmaceutical companies who developed and delivered
novel antibiotics have left the market. Undoubtedly, this is a
result of the success of antibiotics as patients take only a relatively
short course and are, usually, fully cured needing no long-term
prescription. This contrasts with, for example, anti-hypertensives
where prescriptions are usually life-long. Given the up to 10
billion costs of bringing a new drug to market, these figures do
not stack up financially. Alternative approaches to supporting
antibiotic drug development must be found such as extending
patent protection and regulatory waivers. Academia has an
important role to play in innovation supported by institutions

supporting spin-out or licensing deals that are realistic. The
development of non-governmental organizations such as the TB
Alliance and the Global Antibiotic Research and Development
Partnership can drive and deliver new products (Spigelman and
Gillespie, 2006; Piddock, 2021).

To rapidly plug the gap in the pipeline we may need to
repurpose existing antibiotics and there is a growing research
interest in using existing antibiotics in new combinations to
address problematic organisms such as Acinetobacter baumanii
(O’Donnell et al., 2021). There is, however, a pressing need
to develop novel classes. An exciting area of innovation
is to find antibiotic producing organisms from the marine
environment. To achieve this, we will require new genomic
tools to predict antibiotic producing organisms or genes likely
to encode antibiotic production genes in organisms that are
often difficult to grow or un-cultivatable. Genetic methodologies
by selecting resistant mutants can help us understand the
mechanism of action of novel compounds. Natural products
from traditional medicines may prove to be another promising
source of novel compounds harnessing modern techniques for
compound separation (Bailey et al., 2019). These discoveries will
need to be subject to structural analysis so that activity and
spectrum can be optimized as it was once for the penicillins.

Developing new methodologies to speed the pre-clinical and
clinical assessment of new antibiotics is a priority if we are to
reduce the overall cost of the process and speed the time from
discovery to implementation. Better in vitro and animal models
that better mimic the pathology of infection can be used to
select optimized compounds combinations and dosage that may
progress to the clinical stage of testing (Bonnett and Davies, 2015;
Bonnett et al., 2017; Kloprogge et al., 2019; Maitra et al., 2021).
There is a growing interest in developing innovative clinical trials
methodologies such as multi-arm multi-stage trials that enable
multiple compounds to be assessed in early phase clinical trials
simultaneously can be used to eliminate compounds with little
change of success and to select compounds and regimens for
the later more expensive large-scale phase three clinical studies
(Boeree et al., 2017). With better mathematical modeling linked
with innovative computer simulations it may be possible to
model the natural history of infection in an individual end-organ
or patient (Bowness et al., 2018). This would open the possibility
of developing a virtual clinical trial that could test different
combinations and dosages before patients are recruited. Some
early examples of such approaches have already been published
and this will be an important area of future research (Pitcher
et al., 2020a,b).

We are increasingly recognizing the complexities of
organizing effective antibiotic treatment. Uncontrolled access
to antibiotics result in a rapidly increasing tide of resistance
whereas in countries where access is tightly controlled resistance
rates are lower. This emphasizes the global nature of antibiotic
use and resistance: rising resistance in one place will inevitably
produce resistance everywhere in our connected environment.
Thus, we need to understand the detail of the drivers of antibiotic
resistance. This includes, for example, health seeking behavior
by individuals, the attitudes of health care providers about
prescribing or dispensing antibiotics (Asiimwe et al., 2021).
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It is not merely a simple infection prescription problem, but
the result of complex interactions between disease, patient, the
environment, personal choices, wealth and opportunity among
other factors that drive the prescription of antibiotics. It is,
thus, by understanding the sociology of this clinical interaction
that we will be able to develop effective antibiotic stewardship
procedures that serve the needs of the individual patient and the
larger community. How we organize, resource, and incentivise
effective control is an open question that we must solve if we are
to protect the new antibiotics that we hope to see developed.

To use the antibiotics that we have better we need to improve
treatment outcomes to ensure prescriptions result in cure and
that organisms are not able to develop resistance. This requires a
detailed understanding of the way in which resistance mutations
arise, survive and are transmitted overcoming the physiological
barriers inherent in the process (Hjort et al., 2020; Roemhild
et al., 2022). Such understanding would also support choices in
the early stages of antibiotic development where compounds with
a large physiological cost might be chosen against one with a
lesser barrier. Better treatment will be aided by new methods
to understand the pharmacokinetics of antibiotic to maximize
the dose at the site of the infective lesion and novel testing
methodologies are being adapted to monitor the effectiveness of
antibiotic treatment in real-time. The development or enhanced
pharmacological knowledge is of little benefit if we are unable
to transmit the information to practitioners in a way that is
appropriate for those clinicians with a heavy workload and this
could, for example, include formularies supported by electronic
tools and decision algorithms.

There is a paradox in practice: organisms divide very rapidly
but our drug susceptibility testing results generally take at least
24 h to generate a result if they are not compromised by previous

antibiotics. Better and more rapid drug susceptibility testing
methodologies are an urgent priority. Recent reports indicate that
it may be possible to obtain results in as little as thirty minutes
which would have a transformative effect on clinical practice if
the tools are available at affordable price and that the diagnostic
system is adapted to the rapidity of the results (there is little point
producing a very rapid result if the health care workers do not act
on it) (Baltekin et al., 2017).

Although these developments give us unprecedented
insight into resistance biology, such opportunities demand
new epidemiological methodologies, analysis tools and
clinical systems to optimize the impact on our research
and to operationalise the methods in day-to-day practice.
Understanding how antibiotics are used by physicians, other
care givers, veterinarians, and the attitudes of patients and users
is critical for using antibiotics effectively and controlling the
emergence of resistance.

It is undeniable that the unrivaled legacy of early pioneers who
developed antibiotics and that we have all benefited from is under
threat. Yet there are significant reasons for optimism. We have
started to recognize the problems and to research to understand
how we can overcome it. This will require multi-disciplinary
research across a spectrum of scientific, clinical, mathematical,
sociological and veterinary and many other disciplines. New
tools in genomics, mathematics computer science and chemistry
among others mean that we well place to make progress and
inaugurate a second antibiotic golden age.
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