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Probiotics beyond the farm:
Benefits, costs, and
considerations of using
antibiotic alternatives
in livestock

Kyle R. Leistikow1, Rachelle E. Beattie2

and Krassimira R. Hristova1*

1Department of Biological Sciences, Marquette University, Milwaukee, WI, United States,
2U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, United States
The increasing global expansion of antimicrobial resistant infections warrants

the development of effective antibiotic alternative therapies, particularly for use

in livestock production, an agricultural sector that is perceived to

disproportionately contribute to the antimicrobial resistance (AMR) crisis by

consuming nearly two-thirds of the global antibiotic supply. Probiotics and

probiotic derived compounds are promising alternative therapies, and their

successful use in disease prevention, treatment, and animal performance

commands attention. However, insufficient or outdated probiotic screening

techniques may unintentionally contribute to this crisis, and few longitudinal

studies have been conducted to determine what role probiotics play in AMR

dissemination in animal hosts and the surrounding environment. In this review,

we briefly summarize the current literature regarding the efficacy, feasibility,

and limitations of probiotics, including an evaluation of their impact on the

animal microbiome and resistome and their potential to influence AMR in the

environment. Probiotic application for livestock is often touted as an ideal

alternative therapy that might reduce the need for antibiotic use in agriculture

and the negative downstream impacts. However, as detailed in this review,

limited research has been conducted linking probiotic usage with reductions in

AMR in agricultural or natural environments. Additionally, we discuss the

methods, including limitations, of current probiotic screening techniques

across the globe, highlighting approaches aimed at reducing antibiotic usage

and ensuring safe and effective probiotic mediated health outcomes. Based on

this information, we propose economic and logistical considerations for

bringing probiotic therapies to market including regulatory roadblocks, future

innovations, and the significant gaps in knowledge requiring additional

research to ensure probiotics are suitable long-term options for livestock

producers as an antibiotic alternative therapy.

KEYWORDS

livestock, probiotic, antibiotic resistance,microbiome, regulation, Bacillus, environment
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/frabi.2022.1003912/full
https://www.frontiersin.org/articles/10.3389/frabi.2022.1003912/full
https://www.frontiersin.org/articles/10.3389/frabi.2022.1003912/full
https://www.frontiersin.org/articles/10.3389/frabi.2022.1003912/full
https://www.frontiersin.org/articles/10.3389/frabi.2022.1003912/full
https://www.frontiersin.org/journals/antibiotics
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frabi.2022.1003912&domain=pdf&date_stamp=2022-10-12
mailto:krassimira.hristova@marquette.edu
https://doi.org/10.3389/frabi.2022.1003912
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/antibiotics#editorial-board
https://www.frontiersin.org/journals/antibiotics#editorial-board
https://doi.org/10.3389/frabi.2022.1003912
https://www.frontiersin.org/journals/antibiotics


Leistikow et al. 10.3389/frabi.2022.1003912
Introduction

In 2015, the World Health Organization declared

antimicrobial resistance (AMR) a serious global public

heal th threat (World Heal th Organizat ion, 2015) .

Researchers worldwide were encouraged to focus on

improving awareness, understanding, and surveillance of

AMR in addition to developing mitigation measures to

reduce the use of antibiotic drugs for human and animal

health (World Health Organization, 2015). This reduction in

antibiotics use was, and is, intended to reduce the

dissemination of antibiotics into the environment. However,

to reduce antibiotic use, a transition to current antibiotic

alternative therapies or development of new alternative

antibiotic therapies is needed to combat the diseases

antibiotics currently treat (Baker et al., 2018). One such

alternative therapy is probiotics. Defined by the World

Health Organization as, “live microorganisms which when

administered in adequate amounts confer a health benefit to

the host” (FAO/WHO, 2001), probiotics have routinely been

suggested as antibiotic alternatives for a variety of human and

animal disease states and conditions (Santacroce et al., 2019;

Alayande et al., 2020; Al-Shawi et al., 2020; Green et al., 2020).

Research investigating antibiotic alternatives such as

probiotics has grown exponentially since the early 2000s

with a basic National Center for Biotechnology Information

(NCBI)PubMed search of the term “probiotics” returning just

212 results in 2000 compared to 2,254 results in 2015 and

5,286 results in 2021 alone (Figure 1A) and the term

“antibiotic alternative” seeing a similar increase in interest

with 463 results in the year 2000, 1,656 results in 2015, and

3,196 results in 2022 (Figure 1B).

One important consideration for antibiotic alternative

therapies including probiotics is the degree to which their

use reduces antibiotic resistance. However, this outcome is

rarely studied; instead, most research in this area focuses on

the ability of the antibiotic alternative to treat and prevent

disease (Defoirdt et al., 2011; Allen et al., 2013; Nair D et al.,

2018). Thus, the goal of this review is to provide a better

understanding of the benefits and consequences of using

probiotics as an antibiotic alternative therapy on AMR in

the environment. Because probiotics are used broadly across

human and animal medicine, we focus this review specifically

on the use of probiotics for livestock to prevent and treat a

variety of disease states or improve animal performance. We

pay special attention to less understood outcomes of probiotic

use including the pros and cons of using probiotics on the

animal gut microbiome, the impact of probiotic use in animal

agriculture on the environment, regulations governing the use

of probiotics worldwide, and the financial implications

of using probiotics versus antibiotic drugs in animal
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agriculture. Together, this review summarizes critical

research regarding the feasibility of using probiotics as an

antibiotic alternative and provides suggestions for future

research needed to fil l knowledge gaps surrounding

probiotic use and environmental AMR.

Research articles included in this review were sourced

using the search terms or a combination thereof found in

Figure 1C using both Google Scholar and NCBI’s PubMed

database. To be included, articles must have been published

primarily within the previous five years (2017–2022) with the

exception of reviews or regulatory guidance documents. Using

the outlined search terms and criteria, a total of 204 research

papers and governmental reports or publications were

selected (Figure 1C).
Probiotics as an antibiotic
alternative for animal agriculture

The discovery and subsequent industrial manufacturing of

antibiotic compounds revolutionized healthcare in the

20th century. However, despite their efficacy, overuse

and misuse of antibiotics has led to an increase in

bacterial AMR, a serious public health threat. According to

the World Health Organization, AMR accounted for an

estimated 700,000 deaths worldwide in 2019, a number that

is expected to surpass 10 million by 2050 if immediate

measures are not taken. In the United States alone, 2.5

million AMR infections resulted in an estimated annual

economic cost of more than $55 billion (Ahmad and Khan,

2019; Centers for Disease Control and Prevention

(U.S.), 2019).

In modern day livestock production, sub-therapeutic

doses of antibiotics have been applied to animal feeds to

both prevent diseases and improve growth performance;

however, bacteria have evolved a variety of unique strategies

to develop resistance to these compounds, and antibiotic-

resistant bacteria (ARB) emerged in the animal microbiome.

The bilateral movement of ARB occurs regularly between

livestock operations and human communities through air,

water, direct physical contact, and, perhaps most notably,

the food chain (Stanton, 2013). This transmission poses a

significant risk to human health and has been demonstrated in

a variety of ways including antibiotic residues making their

way into meat, unapparent carriage of ARB out of animal

facilities, and plasmid exchange from ARB in the microbiota

of food grade animals to common human pathogens (Ramatla

et al., 2017; Rousham et al., 2018). These concerns have

encouraged new efforts to investigate antibiotic alternative

therapies (Cheng et al., 2014; Sang and Blecha, 2015).

Antibiotic alternatives are broadly defined as any substance
frontiersin.org
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that can prevent or reduce the need for antimicrobial drugs –

these can include vaccines, phytochemicals, organic acids,

phage, and other non-disease-causing bacteria (Kumar

et al., 2021).

The first recorded use of live microorganisms in food

dates back to 2000 BCE when humans discovered how to

preserve milk and transform it into fermented dairy products

using unidentified bacteria and yeast (Ozen and Dinleyici,

2015). The intentional use of l ive microorganisms

(now termed probiotics) in livestock production began in

the 1970s and has been increasingly studied in a variety of

both veterinary and human health applications (Goldenberg

et al., 2015; Buntyn et al., 2016; Markowiak and Śliżewska,

2018; Rainard and Foucras, 2018; Vieco-Saiz et al., 2019).

In small ruminants, cattle, poultry, and swine, probiotics

improve animal health, immunity, and growth efficiency

(Abd El-Tawab et al., 2016; Alayande et al., 2020). The

mechanisms by which these outcomes are obtained are

largely strain dependent but can include the stabilization of

disturbed intestinal microbial communities, bacteriocin
Frontiers in Antibiotics 03
production and competitive exclusion of pathogens,

improving intestinal epithelium integrity and permeability,

modulation of fecal enzymatic activities, production of short-

chain and branched-chain fatty acids, modulation of the

immune system, and interaction with the gut-brain axis

through the regulation of endocrine and neurologic

functions (Plaza-Diaz et al., 2019). In this section, we detail

the mechanism of action of many common probiotics used

for livestock as well as the impact on the animal microbiome

and resistome.
Defining effective probiotics for
animal agriculture

Probiotics have been shown to simultaneously prevent and

treat a variety of diseases by controlling pathogens directly

through competitive interactions or indirectly by stimulating

the host immune response (Hossain et al., 2017; Raheem et al.,

2021). Probiotics have also been shown to improve animal
B

C

A

FIGURE 1

The number of publication search results returned from the National Center for Biotechnology Information (NCBI) PubMed repository using key
terms “probiotic” (A) and “antibiotic alternative (B) between years 1990 and 2021. A network of the most common search terms used for this
review is shown in (C). The size of the network nodes is representative of the number of papers containing the term with larger nodes
representing more papers included in this review. Linkages between nodes represent search terms combined to source papers for this review.
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performance; however, efficacy tends to be variable across

individual livestock operations and is often affected by

external factors such as weather or feed composition

(Talkington et al., 2017). The reproducibility required of

probiotics is further complicated by multiple potential

mechanisms of action (i.e., the molecular processes that

generate the desired effect) that are often not thoroughly

understood at the time of administration. At a minimum,

probiotics should provide both prophylactic and therapeutic

efficacy if they are going to assist in controlling ARB and

influence disease outcomes. Genetic information and

bioinformatic analyses could help ensure each probiotic

strain is safe and appropriately vetted for mobile genetic

elements harboring antibiotic resistance genes (ARGs),

virulence factors, and other pertinent traits related to the

strain’s functioning in vivo. It is estimated that by 2050, the

global demand for food will increase by 100-110% (Tilman

et al., 2011), and the livestock industry will rely heavily on

probiotics to not only combat antibiotic resistance, but also to

improve production efficiencies (Gilchrist et al., 2007).

Bacterial genera commonly utilized as probiotics include,

but are not limited to, Lactobacillus, Bifidobacterium,

Enterococcus, Streptococcus, Pediococcus, and Bacillus (

Fijan, 2014). While lactic acid producing probiotics, namely

those be longing to Bifidobacter ium, Enterococcus ,

Streptococcus, Pediococcus, and Lactobacillus genera, have

long been used in animal husbandry (Deng et al., 2021),

Bacillus species are gaining interest as probiotics for their

ability to produce an array of antimicrobials and immune

modulating signaling peptides and improved shelf life

stability owing to the spore forming ability of Bacillus.

Probiotic Bacillus species have been shown to modulate the

gut microbial composition of poultry and livestock to reduce

indicators of disease (Kim et al., 2019; Hernandez-Patlan et al.,

2019), improve nutrient digestibility and growth performance

(Park et al., 2020; Lewton et al., 2021; Tian et al., 2021), and

reduce the need for antibiotics (Luise et al., 2022). A thorough

review by Mingmongkolchai and Panbangred outlines the

Bacillus species currently used in the poultry and livestock

sectors (Mingmongkolchai and Panbangred, 2018).
Impact of probiotic use on the
animal microbiota

The intestinal microbiota of food producing animals

fluctuates throughout development (Wang et al., 2019;

Ngunjiri et al., 2019), and early bacterial colonization of the

gastrointestinal (GI) tract of swine and poultry has been

shown to play an important role in shaping microbial

composition and future host performance (Mach et al., 2015;
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Mancabelli et al., 2016). Microbial composition significantly

influences host health, immunity, nutrient digestion, and

feeding requirements (Clavijo and Flórez, 2018; Kumar

et al., 2019). Numerous studies have demonstrated that the

establishment of commensal and mutualistic probiotic

microorganisms may inhibit disease-causing bacteria found

in the same host microbial environment (Varankovich et al.,

2015). Metagenomic analyses have also revealed probiotic

supplementation increased the microbial diversity and

richness in the swine GI tract both in the presence and

absence of an enteric challenge in a variety of stages of

development (Zhang et al., 2017). When compared to an

antibiotic growth promoter, Wang and colleagues showed

supplementation with probiotic species Lactobacillus

plantarum PFM 105 increased production of short chain

fatty acids while antibiotics did not provide this benefit

(Wang et al., 2019). Shin et al. discovered that microbial

diversity, richness, and the relative abundance of Firmicutes

were higher in weaned piglets fed L. plantarum JDFM LP11

(Shin et al., 2019). Reviews by Azad (Azad et al., 2018) and

Valeriano (Valeriano et al., 2017) outline a variety of

opportunities Lactobacillus provides in the swine gut and

discuss the role of these bacteria in pig performance,

husbandry, and disease prevention.

In addition to Lactobacillus species, members of the

Bacillus subtilis group are some of the most commercially

important probiotics, used to produce vitamins, amino acids,

antibiotics, and industrial enzymes (Harwood et al., 2018).

They also produce a range of secondary metabolites, including

polyketides, terpenes and siderophores, as well as ribosomal

and non-ribosomally synthesized peptides (Caulier et al.,

2019). These metabolites can damage the cell wall, cell

membrane, impede intracellular processes, and disrupt

communication networks in competing microorganisms

(Tran et al., 2022), providing B. subtilis a competitive

advantage in complex communities seen in the GI tract of

livestock. Bacillus species have also been shown to beneficially

modify the animal microbiota. Pigs fed B. subtilis DSM 32540

showed decreased coliform abundance in the mesenteric lymph

nodes and reduced relative ileal abundance of multiple

bacterial families known to contribute to enteric swine

diseases (He et al., 2020). Broiler chickens fed Bacillus

amyloliquefaciens showed increased microbial alpha diversity

in the jejunum, ileum, and cecum resulting in improved

immune responses and epithelial barrier integrity (Wang

et al., 2021). However, these positive effects are not

universally observed across livestock operations. Using an

identical strain, probiotic effectiveness can be mitigated or

enhanced if applied at different doses or in the presence of

high or low metabolizable energy diet formulations (Krueger

et al., 2020). These variables may help to explain conflicting
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performance outcomes across studies investigating identical

probiotic strains.

Researchers continue to investigate the effect of probiotic

species on acute GI diseases; however, few longitudinal studies

have been conducted to determine whether the treatment of

such diseases using probiotics disrupts the microbiota in a way

that puts the animal at risk for future diseases (Schoster et al.,

2016; Zeineldin et al., 2019). Probiotic species such as

Lactobacillus plantarum, Enterococcus faecium, and Bacillus

subtilis are known to produce antimicrobial compounds with

broad efficacy; however, there has been little investigation into

the interaction of these probiotic derived compounds with the

native gut microbiota. It is possible that unintended

consequences such as competitive exchanges altering gut

homeostasis may occur following the application of probiotic

therapies. Therefore, bacterial competition also needs to be

considered when selecting probiotic strains as long-term

colonization (engraftment) is often a desirable outcome of

probiotic supplements (Arshad et al., 2021) (Figure 2).

Competitive outcomes in gut ecosystems depend on niche

differences and are historically contingent on the order in

which probiotic strains are introduced (Segura Munoz et al.,

2022). This theory might explain why probiotics administered to

gestational animals yield positive long term health outcomes for

the resulting progeny (Baker et al., 2013; Veljović et al., 2017).

Recent evidence suggests that engraftment may depend on the

pre-treatment microbiota composition, especially the absence of

closely related species. The resident microbiota influences

engraftment of incoming species, likely through competitive
Frontiers in Antibiotics 05
exclusion where newly-arriving species cannot coexist with

established species if they occupy exactly the same niche (and

are competing for identical resources) (Maldonado-Gómez et al.,

2016; Martıńez et al., 2018). These phenomena have also given

validity to the use of multi-strain probiotics (Lambo et al., 2021).

Though the mechanistic benefits associated with probiotics

are vast, the reproducibility of these interventions is largely

dependent on host physiology, diet and feeding frequency,

variation in sampling methodologies, and a myriad of other

environmental factors (Johnson et al., 2018; Fomenky et al.,

2018). Therefore, microbially derived small molecules, termed

postbiotics, are providing an alternative approach to probiotics

by both eliminating the perceived concern of administering live

bacteria and ensuring greater reproducibility by using a more

defined quantity of active compounds. Postbiotic compounds

have been shown to improve gut physiological processes and

even improve adaptive immunity (Villena et al., 2016; Villena

et al., 2018; Iida et al., 2019). Postbiotic compounds have been

shown to improve gut physiological processes and even improve

adaptive immunity. In addition to low toxicity concerns and

improved shelf life stability, many postbiotics have defined

chemical structures and mechanisms that make them highly

therapeutically attractive. However, the cost and expertise

required to determine metabolite structure and function is a

hinderance for many researchers interested in this technology;

therefore, despite an emerging interest in this application

strategy, little research has been conducted to understand the

impact of postbiotics on the animal microbiota. For a

comprehensive review on postbiotics, their beneficial effects on
FIGURE 2

Ecological principles driving effective probiotic strain colonization. To effectively colonize the host gastrointestinal tract, probiotic strains (blue
bacilli) must be administered to a naïve or depleted microbiome community (priority), produce antimicrobial products (yellow circles) to
outcompete resident microbial strains (competition), or possess an ability to inhabit a broad ecological range (coexistence) so as to not
compete with similar resident microorganisms (royal blue bacilli).
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the host, and their interaction with host cells please refer to

Zamojska (Zamojska et al., 2021), Nataraj (Nataraj et al., 2020),

and Teame et al (Teame et al., 2020).
Impact of probiotic use on the
animal microbiome and resistome

Extensive work has been conducted to identify how probiotics

employ mechanisms to regulate both commensal and pathogenic

bacterial populations, but insufficient attention has been given to

the impact probiotics have on the development of resistance in the

larger bacterial populations they intend to target (Willing et al.,

2018). Similar to other microorganisms, probiotic strains are not

exempt from intrinsic resistance or acquiring ARGs - a method

used by all bacteria to survive and increase their ecological fitness

(van Schaik, 2015). Given their shared microbial environment in

the GI tract, the risk of pathogenic microorganisms acquiring

ARGs from probiotic species and vice versa exists (Imperial and

Ibana, 2016; Li et al., 2020); therefore, probiotic efficacy may be

undermined by tolerance or resistance development in these

larger populations. Several physiological and biochemical

mechanisms have been established as drivers of this developing

resistance (Aslam et al., 2018). A summary of intrinsic and

acquired resistance in four genera frequently used as probiotics

is found in Table 1.

Multiple probiotic genera possess AMR phenotypes (Selvin

et al., 2020). Tetracycline resistance has been extensively studied

in Bifidobacterium, and genes synonymous with tetracycline

resistance have been detected in several species (Aires et al.,

2007; Ammor et al., 2008; Aires et al., 2009). Certain

Lactobacillus species commonly employed as probiotics have

exhibited intrinsic resistance to vancomycin, an antibiotic used

to treat clinical MRSA infections (Mater et al., 2008). Perhaps

more concerning are the findings of intra and inter genus

transmission of various antibiotic resistant determinants.

Previous work with Lactobacillus species have demonstrated
Frontiers in Antibiotics 06
that this microorganism can both transmit to and receive

ARGs from known human pathogens (Tannock et al., 1994;

Drago et al., 2011; Klein, 2011). In fact, a genus-wide assessment

of ARGs in Lactobacillus species revealed the majority of

genomic ARGs were flanked by mobile genetic elements with

potential for horizontal gene transfer (HGT) (Campedelli et al.,

2019). These findings provide evidence for regulatory authorities

to re-evaluate and potentially revise the safety assessment

guidelines for Lactobacilli entering the food chain as probiotics.
Do probiotics contribute to or
reduce antimicrobial resistance in
livestock?

Although the presence of ARGs and HGT capabilities in

probiotic species is concerning, additional data suggest the

carriage and transmissibility of ARGs discovered in probiotic

species is reduced based on gene location. For example,

Bifidobacterium are intrinsically resistant to mupirocin and

high concentrations of aminoglycosides (Gueimonde et al.,

2013). However, recent work by Duranti and colleagues

(Duranti et al., 2017) demonstrated that resistant probiotic

strains of Bifidobacterium did not always contain predicted

gene mobility, indicating these strains may not be able to

confer these intrinsic resistances to other bacterial species.

Similar to Duranti’s findings, Sato and Iino determined that

streptomycin and erythromycin resistant Bifidobacterium strains

were unable to transfer this resistance to neighboring bacteria

through traditional mobile genetic elements (Sato and Iino,

2010). Bozdogan and colleagues (Bozdogan et al., 2003)

identified that the presence of the aadD2 gene in Bacillus

clausii resulted in kanamycin, tobramycin, and amikacin

resistance, but this chromosomally located sequence was not

transferable by conjugation experiments. These findings have

also been investigated in vivo, where human participants showed

no lingering tetracycline resistance in stool samples after being
TABLE 1 Summary of intrinsic and acquired resistance in four major probiotic genera used for disease treatment and prevention in livestock
(Gueimonde et al., 2013; Li et al., 2020; Ferchichi et al., 2021).

Probiotic
Genus

Intrinsic Resistance Acquired Resistance Primary Transfer
Method of Resistance

Determinants

Bacillus Aminoglycosides, Chloramphenicol Macrolides, Tetracyclines Plasmid

Lactobacillus Vancomycin, Kanamycin, Gentamicin, Streptomycin,
Metronidazole, Nalidixic Acid

Chloramphenicol, Macrolides, Tetracyclines Plasmid, Transposon, Mobile
Genetic Element

Bifidobacterium Mupirocin, Aminoglycosides, Vancomycin, Kanamycin,
Gentamicin, Streptomycin, Metronidazole, Norfloxacin,
Polymyxin B, Nalidixic Acid

Macrolides Transposon

Enterococcus Vancomycin, Streptomycin, Cephalosporins, Aminoglycosides,
Erythromycin

Ampicillin, Chloramphenicol, Erythromycin,
Fluoroquinolones, Penicillin, Tetracyclines,
Aminoglycosides

Plasmid, Transposon, Mobile
Genetic Element
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administered Lactobacillus reuteri carrying a tetW plasmid

(Egervärn et al., 2010). This result may be attributed to

population diversity brought about by the probiotic, since this

selection for antimicrobial resistance is reduced when embedded

in a natural microbial community (Klümper et al., 2019).

Interestingly, B. subtilis possesses an ability to identify and

discriminate between closely related strains prior to initiating

gene transfer events (Stefanic et al., 2021) and targeted

antimicrobial production (Maan et al., 2022), suggesting social

interactions within this species can override mechanistic barriers

to horizontal gene transfer. Evidence also exists demonstrating

the administration of B. subtilis may help reduce ARG presence

by inhibiting pathogens, namely F18 enterotoxigenic Escherichia

coli, known to carry and transmit a variety of mobile genetic

elements harboring ARGs (Kim et al., 2019). It is worth noting

that sporulating microorganisms like Bacillus are among the

most prolific producers of antimicrobial compounds, in part

reflecting aspects of the sporulation process itself which requires

a significant portion of the population be sacrificed to provide

the nutrients required of sporulating cells. Therefore, the

competitive exclusion principle afforded by probiotics can also

serve as a mechanism to reduce AMR selection. Using pig fecal

microbial communities, Klümper and colleagues revealed that

certain communities imposed a fitness cost of maintaining

gentamicin and kanamycin resistant E. coli even in the

presence of increasing antibiotic concentrations (Klümper

et al., 2019).

Researchers and medical professionals continue to ask

whether antibiotic/probiotic combination therapies are

warranted (Kerna, 2018; Li et al., 2018; Wealleans et al., 2018),

but conducting this type of intervention requires probiotic

strains exhibit some level of resistance to the antibiotic they

are paired with. This strategy results in screening efforts

designed specifically to select for probiotics with AMR

phenotypes (Galopin et al., 2009; Hammad and Shimamoto,

2010). Furthermore, animals treated with these resistant

probiotics risk becoming a possible source of ARGs for human

consumers after ingestion of meat or dairy products (Forslund

et al., 2013; Hu et al., 2014; Huddleston, 2014; Woolhouse et al.,

2015; Montassier et al., 2021). Despite a multitude of animal

models revealing improved immunological outcomes after

probiotic administration, the impact of probiotics applied to

livestock on the consumer immune profile has yet to be fully

investigated (Patel et al., 2015). Human consumption of

probiotics has yielded a variety of positive clinical outcomes;

however, much less vetting is performed on probiotics intended

for livestock than those intended for human use. Additionally,

animals that consume probiotics inevitably excrete these

microorganisms into manure lagoons or pits. These pits are

often a primary source of fertilizer for neighboring crop

production systems and the contamination of such fertilizer

with ARGs frequently results in dissemination to recreational

waterways of surrounding local communities (Beattie et al.,
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2018). As such, there is a need to review existing studies and

to perform new research to ensure the safety of probiotics and

evaluate their impact on ARG prevalence and dissemination in

animal, human, and downstream environments.
Impact of probiotic use on
ecosystems and environmental
antimicrobial resistance

In recent years, substantial amounts of research have

focused on the impacts of antibiotics used for animal

agriculture on the downstream environment. Multiple

research and review articles clearly highlight the negative

repercussions of excessive antibiotic use across various

environments and the relative ease with which these drugs

disseminate from their point of origin (Berglund, 2015; Saima

et al., 2020; Larsson and Flach, 2022). A major goal of

transitioning to probiotics in animal agriculture is to reduce

the broader environmental consequences of antibiotic use.

Thus, a thorough understanding of the dissemination and

impact of animal fed probiotics and their capability to reduce

environmental AMR is necessary.
Terrestrial ecosystems

Soil microbiota are critical for terrestrial ecosystem health.

However, degradation of the soil microbiota is becoming more

common worldwide due in part to unsustainable agricultural

practices. To combat the loss of this critical resource, plant

growth promoting bacteria (i.e., soil probiotics) are being

incorporated into soils as a sustainable crop agriculture

practice. Probiotics targeted for soil health and/or plant

growth include multiple strains of Bacillus (Akinrinlola et al.,

2018; Hashem et al., 2019) and Pseudomonas (Anderson and

Kim, 2018) bacteria in addition to strains with the potential to

minimize the activity of pathogenic microorganisms such as

Bacillus and Lactobacillus spp (Tsuda et al., 2016; de Souza

Vandenberghe et al., 2017; Kiesewalter et al., 2021). These

probiotic bacteria are particularly beneficial in agricultural

soils that have been degraded by common practices including

chemical fertilization, tilling, and exposed soil surfaces (Jie et al.,

2002; Glick et al., 2012). When applied to agricultural soils or

crop cultivars, probiotic bacteria enhance plant growth through

multiple mechanisms including nutrient acquisition and

reduction of pathogens (Glick et al., 2012).

Common animal probiotic taxa including Bacillus spp. and

Lactobacillus spp. are also beneficial in terrestrial ecosystems

(Quattrini et al., 2018; Sansinenea and Bacillus, 2019; Tiwari

et al., 2019; Fan et al., 2021). If a portion of these probiotic

species applied to livestock survive the animal intestinal tract
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and are excreted, it stands to reason that manure from these

animals could then be applied to area cropland for an

additional probiotic benefit. However, to the best of our

knowledge, limited data are available regarding the excretion

rate or concentration of direct fed probiotics in animal feces.

Additionally, even if probiotic species known to benefit

livestock, soils, and plants are supplied, positive effects across

all groups may not occur as probiotic benefits are highly strain

specific (McFarland et al., 2018). Lastly, the ability of many

probiotic bacterial species to acquire and disseminate ARGs

suggests that supplying inadequately screened probiotics to

terrestrial environments may exacerbate the AMR issue further

rather than result in a reduction of resistance in

the environment.
Aquatic ecosystems

Aquatic ecosystems support a wide variety of habitats that

may be altered by anthropogenic contamination contributing to

the decline of water quality worldwide. Water quality is a

significant concern, especially in areas of intensive livestock

farming (Burkholder et al., 2007; Li et al., 2015; Jacobs et al.,

2019; Beattie et al., 2020). Runoff from agricultural fields has

been shown to contain elevated levels of livestock contaminants

including ammonia, nitrogen, and ARB (Sobsey et al., 2006;

Beattie et al., 2018; Le et al., 2018; Tang et al., 2020). In addition

to terrestrial livestock farming, aquaculture practices have been

implicated in increased AMR (Reverter et al., 2020). Pressure on

aquatic ecosystems from aquaculture practices is predicted to

increase significantly in the next 10 years as increasing demand

for food supplies necessitates a shift to fish and seafood

(Anderson et al., 2019; Chan et al., 2019). To mitigate the

consequences of expanding aquaculture, the application of

probiotics has been suggested to improve both water quality

and the growth and health of aquatic animals used for food

(Ibrahem, 2015).

Bacillus spp. and Lactobacillus spp. have been widely used as

probiotics in aquaculture for the removal of nitrogenous wastes

and biogeochemical cycling (Chauhan and Singh, 2019). Specific

species of these groups, such as B. subtilis, have been shown to

increase support of both water quality and digestion in fish and

shrimp aquaculture (Olmos et al., 2020). Other Bacillus spp.

have been shown to reduce stress, prevent disease, and enhance

growth in aquaculture systems (Kuebutornye et al., 2019). It

stands to reason that the application of common groups of

probiotics instead of antimicrobials for animal agriculture and

aquaculture may help mediate the spread of antimicrobial

resistance in the environment and may even help improve

water quality locally. However, limited downstream research

has been conducted to date to corroborate this assumed

positive benefit.
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Atmosphere ecosystems

Atmospheric ecosystems are a relatively new consideration in

the context of livestock pollution and AMR. However, recent

research has shown that ARB and ARGs can be transmitted on

airborne particles in areas near concentrated livestock farms

including those practicing methods aimed at reducing AMR

such as composting (Gao et al., 2018; Ma et al., 2019). These

airborne particles can disseminate ARB far beyond the point of

origin, potentially impacting health across the biosphere (de Rooij

et al., 2019). Reducing the application and necessity of antibiotics

in animal agriculture through the use of alternative therapies such

as probiotics may result in a reduction in ARB and ARGs in the

atmosphere; however, this area of research remains in early stages

and additional work is needed to draw conclusions.
Probiotic impact on environmental
antimicrobial resistance

One significant benefit of transitioning to antibiotic alternative

therapies such as probiotics is a reduction of antibiotic usage in the

clinic and veterinary medicine and thereby an assumed overall

reduction in AMR in areas including in the environment. However,

despite the frequent mention of this benefit in reviews and research

articles on the topic, critical gaps in knowledge remain (Figure 3).

Does the use of probiotics instead of antibiotics reduce the spread of

AMR? The answer to this vital question remains unclear. In human

medicine, probiotic cleaning protocols have been implemented to

replace antimicrobial and chemical protocols in hospitals in Italy

resulting in successful reduction in AMR (Caselli et al., 2019;

D’Accolti et al., 2019). However, to the best of our knowledge,

this is the only study clearly linking probiotic use to a reduction in

AMR across human and animal medicine and the environment.

Because probiotic species and strains have been shown to either

carry ARGs or have the ability to acquire resistance, significantly

more research in this area is necessary to ensure that the transition

to probiotic use from antibiotics actually results in a reduction

in AMR.
Worldwide regulation of probiotics
used for animal agriculture

The number of sequenced bacterial genomes has increased

exponentially over the last two decades (Land et al., 2015), revealing

extraordinary strain level genetic differences in probiotic species and

providing valuable data needed for comprehensive probiotic

evaluation prior to use. Despite a multitude of animal models

revealing improved immunological outcomes after probiotic

administration, the regulations regarding safety, efficacy, and
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sourcing differ substantially worldwide, causing consumer

confusion and potentially misleading or even harmful outcomes.

Additionally, less vetting is performed on probiotics intended for

livestock than those intended for human consumption which may

lead to the sale of probiotic strains containing transmissible ARGs

or other mobile genetic elements, increasing the risk of

environmental dissemination of ARGs and ARB. Here, we detail

the similarities and differences in the regulation of probiotics for

livestock in five regions across the globe with the highest reported

antibiotic usage for livestock and/or livestock exports (Van Boeckel

et al., 2015; European Medicines Agency, 2017; Van Boeckel

Thomas et al., 2017), focusing on factors which may improve or

contribute to AMR in the environment. Additionally, we note

which regions utilize the “precautionary principle” requiring

proof of safety prior to use and those that assume safety of new

products until otherwise proven unsafe. We end this section with a

“proof of concept” demonstrating the complexities of probiotic

sourcing and usage in the United States compared to other regions

using Bacillus subtilis as an example (Table 2).
United States

Probiotics used for livestock, also termed direct-fed

microbials in the United States, are regulated as feed
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ingredients at the federal level by both the Center for

Veterinary Medicine (a subsidiary of the U.S. Food and Drug

Administration) and the American Association of Feed Control

Officials (AAFCO) (Center for Veterinary Medicine, 1995;

Quigley, 2011). The AAFCO maintains a list of approved

microorganisms for use in animal feed; however, labeling of

feed that includes approved probiotic strains only requires the

scientific name of the bacterial species rather than specific strain

(Quigley, 2011). Probiotics used in feed for livestock in the

United States are not approved animal drugs and therefore

cannot be marketed with health, structure, or function claims

(Center for Veterinary Medicine, 1995). In most cases, probiotic

strains approved by AAFCO for use in feed have obtained

Generally Recognized as Safe (GRAS) status through scientific

review by a panel of experts; however, this practice has received

criticism in recent years resulting in a new bill now moving

through the United States Congress that would require the Food

and Drug Administration (FDA) to review all GRAS

submissions (Markey et al., 2022). Although the AAFCO

maintains an approved probiotic strain list, oversight and

testing of direct fed microbials in the United States varies

among regulatory agencies. Consumers might consider

verifying both probiotic species and concentration (live colony

forming units) contained within purchased probiotic products.

It should be noted that the AAFCO Official Publication is not a
FIGURE 3

The potential impact of probiotic dissemination on ecosystem health. Probiotic research has attempted to assess strain efficacy in livestock, soil,
plant, aquatic, and clinical environments, however few efforts have attempted to assess the impact of probiotics administered to livestock on
downstream ecosystem health and AMR dissemination. Here, we show critical knowledge gaps that remain outstanding surrounding probiotic
use (represented in the figure by blue bacilli) and the dissemination of environmental AMR.
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free publicly available document; membership in AAFCO or a

fee must be paid to gain access.

In the United States, regulatory oversight for probiotic

interventions has been historically inconsistent with multiple

regulatory bodies in charge of maintaining and ensuring

compliance efforts. The United States generally follows an

assumption of safety principle regarding new products in the

market. Controlled clinical data investigating the effects of

probiotics are often not available to help guide regulatory policy

(Metlay et al., 2006), and the variability in application strategies

across livestock, plant, and human subjects complicates regulatory

approval processes. The FDA, Environmental Protection Agency,

and U.S. Department of Agriculture recently launched a Unified

Website for Biotechnology Regulation to streamline information

about the three regulatory agencies charged with overseeing

agriculture biotechnology products (Commissioner O of the.

FDA, 2020). The website describes the federal review process for

certain biotechnology products and provides enhanced customer

service to innovators and developers to improve transparency,

predictability, coordination, and efficiency of the biotechnology

regulatory system (,). Additionally, in 2017, the United States

implemented the veterinary feed directive (VFD), designed to

regulate the use of antibiotics deemed medically important to

human medicine (Ferry, 2020). Preliminary data show a 38%

decline in domestic antibiotic sales according to a 2018 report by

the FDA (FDA C for VM, 2019), suggesting fewer antibiotics are

being used in the United States livestock sector.
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Canada

Viable microbial products (VMPs) such as probiotics may be

supplied to livestock as livestock feed (similar to direct-fed

microbials in the United States), veterinary drugs, or veterinary

biologics (Canadian Food Inspection Agency, 2022). The

Canadian Food Inspection Agency (CFIA) regulates the

manufacture, sale, and import of viable microbial products in

Canada including novel livestock feeds that incorporate

microorganisms and/or products derived from microorganisms.

To be included in livestock feed, microorganisms are required to

be listed in CFIA’s Feed Regulations (Schedule IV Part II);

however, this document is only available upon written request

(Canadian Food Inspection Agency, 2021). Microorganisms that

are not included in the Feed Regulations list of approved

microorganisms or possessing novel traits must be assessed for

safety and efficacy including strain identification, pathogenicity,

antimicrobial production, antimicrobial resistance, and specific

product specifications that demonstrate quality control (Food

Directorate of Health Products and Food Branch, 2022)

following the “precautionary principle” requiring proof of safety.

Once microorganisms have been deemed approved for use in

livestock feed, the safety and efficacy of the intended effect must be

supplied by the product manufacturer or owner. However,

evidence required for the benefits and use of VMPs in livestock

feed is relatively low at one controlled efficacy trial (Canadian

Food Inspection Agency, 2022). Increased usage of VMPs in
TABLE 2 Regulations governing probiotic use in animal feed in five regions across the globe.

Region Agricultural
Feed

Governing Body

Probiotic
Governing
Body (if

applicable)

Criteria Needed for Approval Taxonomic
Level for
Approval

Is strain
safety
data

required?

Is
product
safety
data

required?

Would Bacillus
subtilis be

approved for
use in animal

feed?

United
States of
America

U.S. FDA U.S. FDA,
AAFCO

safe history of use; assumption of safety
principle

species No Yes Yes

Canada CFIA CFIA strain identification, pathogenicity testing,
antimicrobial production, antimicrobial
resistance, safety, and efficacy with one
controlled trial

strain Yes Yes Not at the species
level

European
Union

EFSA EFSA whole genome study, functional capability
including antimicrobial production and
resistance, virulence, etc., three long and/or
short-term controlled safety and efficacy
studies

strain Yes Yes Not at the species
level

Brazil MAPA ANVISA
(human food
probiotics)

N/A: In development for agricultural
products

N/A N/A N/A N/A

China MARA MARA safety statement from manufacturer/
manufacturing facility

species or
strain
depending on
country of
origin

No No Yes, with safety
statement from
United States or
European Union
U.S. FDA, United States Food and Drug Administration; AAFCO, Association of American Feed Control Officials; CFIA, Canadian Food Inspection Agency; EFSA, European Food Safety
Authority; MAPA, Ministry of Agriculture, Livestock and Food Supply; ANVISA, Brazilian Health Regulatory Agency; MARA, Ministry of Agriculture and Rural Affairs.
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livestock feed is expected in Canada following the December 1,

2018 ruling limiting the availability of medically important

antimicrobials for veterinary use to prescription only (Health

Canada, 2018).
European Union

Countries that fall under European Union (EU) jurisdiction

follow guidance outlined by the European Food Safety Authority

for the regulation and authorization of probiotics for livestock

animals. Probiotics which provide a positive effect for the gut

microbiome of livestock animals are termed “zootechnical

additives” and are regulated as such. Zootechnical additives

require a minimum of three studies (short- or long-term)

demonstrating efficacy prior to market authorization

(European Commission, 2008). Extensive investigation into

the specific genome, functional capabilities, and safety of the

specific probiotic strain to be included in feed is required for

authorization and continued use. This includes identity testing,

antimicrobial resistance testing, and virulence testing among

others (European Commission, 2008). Additionally, products

containing the probiotic must be labelled following established

guidance (European Commission, 2008). The EU is well known

for applying the “precautionary principle” in regards to new

products; however, regulations governing the addition of

probiotics to feed are less stringent if the bacterial species of

interest has a known safe history of use with a qualified

presumption of safety (QPS) (Bernardeau and Vernoux, 2013),

a term generated in 2013 to obtain additional safety criteria for

all bacterial supplements. To be granted QPS status, a

microorganism must have a well-defined taxonomic identity,

an established safety record, a substantiated lack of pathogenic

properties, and a clearly defined intended use (European Food

Safety Authority, 2020). The EU banned in-feed antibiotic use

for livestock growth promotion in 2006, and follow up

surveillance efforts have identified significant reductions in

ARG prevalence in pigs sampled across Europe as a result

(Xiao et al., 2016).
Brazil

As the top beef exporter in the world (Zia et al., 2019),

Brazilian regulations may have a large impact on environmental

AMR as it relates to livestock agriculture. Products containing

probiotics are required to be registered with the health authority

(Ministry of Agriculture, Livestock and Food Supply, MAPA, for

animal products) (Fonseca and United States Department of

Agriculture- Foreign Agricultural Service, 2019). However,

detailed information regarding actual use and sourcing

requirements of probiotics in agriculture is difficult to access

and often behind a paywall. Recently, however, the National
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Health Surveillance Agency (ANVISA) of Brazil published the

“Guide for Procedural Instruction for Probiotic Assessment

Request for Food Use,” as a template to help companies

register probiotic strains intended for use in food and food

products sold in Brazil. The scope of ANVISA’s evaluation

includes verification of the identity of the probiotic, and a

review of claims regarding the safety and potential benefits of

the probiotic strain. It is assumed this guide will soon be used to

evaluate probiotics for animal agriculture in the country as well;

however, there is no timeline on its implementation. Therefore,

more information on the state of probiotics in Brazilian

agriculture is necessary for a full assessment.
China

Animal feed containing probiotics that is sold in China must

be registered with the Ministry of Agriculture and Rural Affairs

(MARA) as does the product manufacturing facility (United

States Department of Agriculture, 2020). Significant trust and

reliance are placed on probiotic product manufacturers and

manufacturing facilities to ensure strain safety and efficacy;

therefore, MARA determines safety at the product level, not

the probiotic strain level. Furthermore, probiotic safety

statements from regions such as the United States and the EU

normally suffice for sale in China. However, as a major importer

and exporter of agricultural products worldwide, more

clarification on the regulations governing probiotic use in

livestock from China would be beneficial.
The importance of probiotic strain
identity and sourcing – a proof of
concept in the United States

Bacillus subtilis is one of the best studied bacterial species

in the field of microbiology, serving as a model for investigating

antimicrobial and enzyme production, cell signaling cascades,

and the effects of host microbe interactions. For these reasons,

the United States Food and Drug Administration (U.S. FDA) has

classified this species as safe for human consumption. Though

the potential benefits associated with Bacillus are well

documented (Caulier et al., 2019; Plaza-Diaz et al., 2019), the

reproducibility of these interventions largely depends on the

Bacillus species and strain used (Luo et al., 2019; Wieërs et al.,

2020). Bacillus strains are remarkably diverse and shaped both

by their environment and their ability to acquire genes from

closely related species (Earl et al., 2007; Earl et al., 2012).

Therefore, due to this species’ diverse ecological range, it is

perhaps not surprising that strain specific genetic elements have

evolved. Work by Steinke et al. demonstrated that

phylogenetically related B. subtilis strains share common
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secondary metabolite biosynthetic gene clusters (Steinke et al.,

2021) despite being sampled from different environments. In

contrast, work by the Kovácsa Lab discovered that non-

ribosomal peptide production varied among B. subtilis strains

co-isolated from the same soil samples due, in part, to missing

core genes and nonsense mutations (Kiesewalter et al., 2020).

Furthermore, use of DNA/protein homology search programs

such as NCBI BLAST to ‘identify’ secondary metabolite genes/

gene clusters and thereby to predict their metabolic products

stems from genome annotation issues whereby homology

between genes and operons is wrongly interpreted as

indicating identical functionality (Klimke et al., 2011). In fact,

lipopeptides produced by Bacillus can exhibit multiple

environmentally driven structural configurations with yet to be

determined mechanisms of action (Théatre et al., 2021).

Obtaining basic in vitro data related to the identification, gut

survival and colonization ability, pathogenicity, toxicity and

other safety measures at the strain level, not just species level,

is necessary for a potential probiotic (Bernardeau and Vernoux,

2013; Hoffmann et al., 2014; Food and Agriculture Organization

of the United Nations, 2016). Bahaddad and colleagues proposed

a comprehensive process for identifying and screening Bacillus

probiotics in monogastric systems (Bahaddad et al., 2022);

however, we would like to emphasize the importance of

sourcing these strains to ensure both safety at the host level

and at the microbial level. Advances in imaging (Son et al., 2015)

and analytical (Schindelin et al., 2012) technologies can be used

to determine how bacteria adapt and mutate in real time and

reveal how the behavior and evolution of probiotics change

under antibiotic pressure, when interacting with other gut

microflora, and when in direct contact with pathogens (Baym

et al., 2016; Zheng et al., 2017). For a thorough review on

microbiome transfer opportunities and implications within

livestock species we encourage the reader to refer to Brugman

et al (Brugman et al., 2018).

Despite efforts to improve our understanding of the B.

subtilis genome and its plasticity in different environments

(Brito et al., 2018; Wu et al., 2021), this knowledge has not

been adopted by key governmental bodies regulating

probiotic products. According to the U.S. FDA, B. subtilis

are generally recognized as safe for human consumption.

However, as strain level information becomes more

accessible, and the risk of antibiotic resistance increases,

claiming safety at the species level may not be sufficient

(Elshaghabee et al., 2017). One approach would be to

evaluate each strain recommended for GRAS certification

for the presence and mobility of antibiotic resistance genes

prior to commercialization. This analysis and review process

could reduce transmission of ARGs thereby protecting public

health. It should be noted that specific probiotic species are

not required to obtain GRAS status to be included on the

AAFCO list for use in animal feed; differences between
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United States regulations and other regions in this review

are detailed in Table 1.
Economic feasibility of probiotics
used for disease treatment and
prevention in livestock

With increased federal regulations surrounding antibiotic

use such as the 2017 United States “Veterinary Feed Directive,”

and the 2006 European Union “Ban on Antibiotics Used for

Livestock Growth Promotion,” probiotics are experiencing a

renaissance. Both farmers and veterinarians are investigating

how these therapies can benefit their production systems and

practices (Cameron and McAllister, 2019). There is strong

evidence to suggest that probiotic supplementation improves

the immune response, overall health and performance of

livestock, and we encourage the reader to reference Buntyn et

al (Buntyn et al., 2016) for a more comprehensive review of these

outcomes. Moreover, the value of probiotics is beginning to

expand beyond their common mechanisms. Researchers now

recognize their ability to mediate viral, fungal, and parasitic

infections (Hsu et al., 2018; Saracino et al., 2021; Zuckermann

et al., 2022), mitigate the negative effects of heat stress (Jiang

et al., 2021), and reduce environmental ammonia and methane

emissions generated from livestock and poultry manure

(Prenafeta-Boldú et al., 2017; Such et al., 2021). Probiotic

strains with these capabilities may then be subsequently

applied as fertilizer in adjacent crop fields where they might

even improve terrestrial and aquatic ecosystem processes as

described earlier.

However, probiotic application is not equally feasible across

production systems. Probiotic microorganisms are typically

delivered as powders, pastes, or capsules by way of animal feed or

drinking water. If water is used, chlorination, temperature, minerals,

flow rates, ionophores, and antibiotics must be considered to avoid

killing or reducing the effectiveness of the probiotic (Krehbiel et al.,

2003). If animal feed is the primary carrier, it is important the

microorganisms survive feed processing, especially pelleting, and

that the viability of said probiotic is maintained during prolonged

feed storage (Krehbiel et al., 2003). Price is another consideration

veterinarians and producers debate when determining the

appropriate intervention strategy. A 2019 review of Iowa’s swine

industry revealed average annual cash expenses associated with a

single production site amounted to roughly $730,000 annually

(Plastina, 2019). Profit margins for these producers are largely

determined by feed conversion ratios, calculated by the relative gain

of individual animals with respect to feed intake. An evaluation of

probiotic’s ability to successfully and reproducibly improve

performance metrics could help farmers understand potential

profit margins from probiotic use.
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Conclusions and areas for
future research

Bringing a probiotic to market is an extremely complex

process involving the evaluation of product safety, efficacy,

acceptability, and practicality (Kurt et al., 2019). Most

probiotics are marketed to address very specific issues as

opposed to the broad-spectrum activity of conventional

antibiotics; therefore, it is likely multiple probiotic strains and/

or interventions would be needed for the treatment of different

infections (Ghosh et al., 2019). Probiotics, despite their potential,

will not displace the need for new classes, and sub-classes, of

antibiotics (Nwokoro et al., 2016). To effectively utilize

probiotics in the feed market and to ensure reproducibility, it

is important to understand both the precise mode of action in

the gut and to investigate the secondary effects downstream in

the surrounding environment. One critical area of research

inhibiting a full assessment of the potential for probiotics to

reduce environmental AMR is the lack of experimental research

investigating the levels of antibiotic residues and resistant

bacteria in the environment following a switch to probiotic

therapy. Researched aimed at filling this data gap could help

determine the effectiveness of probiotics as an antibiotic

alternative therapy aimed at reducing environmental AMR.

As the global population increases, the animal agriculture

sector will need to consider new sustainable practices to keep pace

in feeding the world. One possible option would be to perform

more rigorous safety assessments on probiotics intended for

livestock similar to those required for human probiotic

supplements. Additionally, developing global standards for

probiotic screening may be beneficial given the increasing

frequency and scale with which animals and animal by-products

are internationally bought and sold (Chatellier, 2021). Strain and

product level safety information is already a requirement of many

countries across the globe prior to probiotic commercialization.

As ‘big data’ and machine learning algorithms become more

commonplace, developing models intended to predict probiotic

outcomes may also be considered in addition to laboratory

screening methods to identify unique probiotic features that

enhance real world efficacy and reproducibility (Westfall et al.,

2021; McCoubrey et al., 2022). This information can then be used

to search for and screen new probiotic strains.

Lastly, broader screening for probiotics may find the positive

effects are not confined to a small number of bacterial

species and genera. Innovative probiotic screening measures

without selection bias are under development such as recent

work by Li et al. who investigated the dynamic shifts of the swine

gut microbiota in an effort to identify novel probiotic

microorganisms (Li et al., 2020). Novel probiotics are required

to pass safety and efficacy assessments by the FDA prior to

commercial production, but evaluation of the ability of the

probiotic strain to exacerbate, disseminate, or contribute to the
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evolution of AMR may be an additional consideration.

Nevertheless, as sequencing technologies improve and the cost

associated with whole genome and microbiome related studies is

reduced, investigations into the long-term effects of currently

approved probiotic therapies on the animal microbiota and

microbiome are possible and can be considered, particularly in

livestock species where performance improvement and disease

eradication tactics are urgently needed.
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Such, N., Csitári, G., Stankovics, P., Wágner, L., Koltay, I. A., Farkas, V., et al.
(2021). Effects of probiotics and wheat bran supplementation of broiler diets on the
ammonia emission from excreta. Anim. Open Access J. MDPI. 11 (9), 2703. doi:
10.3390/ani11092703

Talkington, K., Hoelzer, K., and Wong, N. (2017). “Alternatives to antibiotics
in animal agriculture.pdf,” in The pew charitable trusts. (Philadelphia, USA: The
Pew Charitable Trusts).

Tang, H., Li, C., Xiao, X., Shi, L., Cheng, K., Wen, L., et al. (2020). Effects of
short-term manure nitrogen input on soil microbial community structure and
diversity in a double-cropping paddy field of southern China. Sci. Rep. 10 (1),
13540. doi: 10.1038/s41598-020-70612-y

Tannock, G. W., Luchansky, J. B., Miller, L., Connell, H., Thode-Andersen,
S., Mercer, A. A., et al. (1994). Molecular characterization of a plasmid-borne
(pGT633) erythromycin resistance determinant (ermGT) from lactobacillus reuteri
100-63. Plasmid. 31 (1), 60–71. doi: 10.1006/plas.1994.1007
frontiersin.org

https://doi.org/10.1159/000106091
https://doi.org/10.1016/j.ijpharm.2022.121568
https://doi.org/10.3389/fmed.2018.00124
https://doi.org/10.3201/eid1202.050078
https://doi.org/10.1111/jam.13690
https://doi.org/10.1038/s41564-021-00920-0
https://doi.org/10.3390/foods7100167
https://doi.org/10.1186/s12934-020-01426-w
https://doi.org/10.1128/AEM.03137-18
https://doi.org/10.1186/s40545-016-0085-3
https://doi.org/10.1007/s00203-019-01757-2
https://doi.org/10.3920/BM2014.0103
https://doi.org/10.3389/fvets.2020.00123
https://doi.org/10.3389/fvets.2020.00123
https://doi.org/10.1016/j.jff.2015.02.022
https://doi.org/10.1016/j.jff.2015.02.022
https://doi.org/10.1093/advances/nmy063
https://doi.org/10.1017/S1751731116001415
https://doi.org/10.1016/j.foodres.2018.01.074
https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/bamn/BAMN11_Probiotics.pdf
https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/bamn/BAMN11_Probiotics.pdf
https://doi.org/10.3389/fimmu.2021.616713
https://doi.org/10.3389/fvets.2018.00251
https://doi.org/10.3390/antibiotics6040034
https://doi.org/10.1038/s41467-020-15735-6
https://doi.org/10.1098/rspb.2018.0332
https://doi.org/10.3390/pathogens4010001
https://doi.org/10.3390/pathogens4010001
https://doi.org/10.1007/978-981-13-5862-3_11
https://doi.org/10.1080/14787210.2019.1645597
https://doi.org/10.3389/fphar.2021.714198
https://doi.org/10.1016/j.ijfoodmicro.2009.12.014
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1111/evj.12524
https://doi.org/10.1038/s41396-022-01208-9
https://doi.org/10.1016/j.jgar.2020.02.007
https://doi.org/10.1371/journal.pone.0220843
https://doi.org/10.1371/journal.pone.0220843
https://doi.org/10.1038/nrmicro3567
https://doi.org/10.1016/j.tim.2012.11.002
https://doi.org/10.1038/s41467-021-23685-w
https://doi.org/10.1038/s41467-021-23685-w
https://doi.org/10.1128/mSystems.00057-21
https://doi.org/10.3390/ani11092703
https://doi.org/10.1038/s41598-020-70612-y
https://doi.org/10.1006/plas.1994.1007
https://doi.org/10.3389/frabi.2022.1003912
https://www.frontiersin.org/journals/antibiotics
https://www.frontiersin.org


Leistikow et al. 10.3389/frabi.2022.1003912
Teame, T., Wang, A., Xie, M., Zhang, Z., Yang, Y., Ding, Q., et al. (2020).
Paraprobiotics and postbiotics of probiotic lactobacilli, their positive effects on the
host and action mechanisms: A review. Front. Nutr. 7, 570344. doi: 10.3389/
fnut.2020.570344
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