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The rapid evolution of wireless communication technologies necessitates
innovative solutions to meet the increasing performance requirements of
future networks, particularly in terms of spectral efficiency, energy efficiency,
and computational efficiency. Reconfigurable Intelligent Surfaces (RIS) and Non-
Orthogonal Multiple Access (NOMA) are emerging as promising technologies to
enhance wireless communication systems. This paper explores the dynamic
partitioning of RIS elements in NOMA systems using Deep Reinforcement
Learning (DRL) to optimize resource allocation and overall system
performance. We propose a novel DRL-based framework that dynamically
adjusts the partitioning of RIS elements to maximize the achievable sum rate
and ensure fair resource distribution among users. Our architecture leverages the
flexibility of RIS to create an intelligent radio environment, while NOMA enhances
spectral efficiency. The DRL model is trained online, adapting to real-time
changes in the communication environment. Empirical results demonstrate
that our approach closely approximates the performance of the optimal
iterative algorithm (exhaustive search) while reducing computational time by
up to 90 percent. Furthermore, our method eliminates the need for an offline
training phase, providing a significant advantage in dynamic environments by
removing the requirement for retraining with every environmental change. These
findings highlight the potential of DRL-based dynamic partitioning as a viable
solution for optimizing RIS-aided NOMA systems in future wireless networks.
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1 Introduction

Wireless communication has witnessed a significant transformation, from its origins
with radio waves to the upcoming era of 6G technology. This progression began with basic
radio communications and advanced through successive generations, each marking a leap
in enhancing global connectivity. The introduction of 4G was a major advancement,
delivering high-speed data transmission and setting the stage for the widespread adoption of
mobile broadband. The current generation, 5G, is revolutionizing the field with its promise
of very high speeds and minimal delay, enabling advancements like the Internet of Things
(IoT) and the development of smart urban environments. Looking ahead, 6G is expected to
further expand the horizons of connectivity and foster innovations on a large scale Giordani
et al. (2020).

The constant quest for improved communication services, combined with the rapid
evolution of wireless technologies, has propelled the continuous exploration and
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development of advanced wireless communication strategies. In this
context, non-orthogonal multiple access (NOMA) has been
identified as a key technology poised to enhance the efficiency of
future wireless systems, thanks to its capacity to cater to distinct
operational needs Makki et al. (2020). As we witness an exponential
increase in global communication demands, the adoption of
advanced multiple-access technologies like NOMA
becomes essential.

Recently, reconfigurable intelligent surfaces (RISs) have
emerged as an innovative technology in the field of advanced
communication systems, offering notable advantages such as cost
efficiency and the ability to create intelligent radio environments
Basar et al. (2019); Liu et al. (2021). Their ability to modify the
communication channel and environment in an eco-friendly and
cost-effective manner has garnered significant attention,
establishing RISs as a strong alternative to extensive multiple-
input multiple-output (MIMO) systems and a key component in
the next-generation of communication systems Khaleel and Basar
(2021). RISs facilitate the modulation of signals in an energy-
efficient way at a reduced cost, thereby playing a crucial role in
securing and optimizing multi-user communication Huang
et al. (2019).

However, the dynamic nature of wireless networks necessitates
advanced strategies for the efficient allocation and partitioning of
RIS elements, especially in multi-user environments. Addressing
this need, Deep Reinforcement Learning (DRL) offers a promising
approach by enabling systems to learn optimal partitioning
strategies through interaction with the environment, without
relying on predefined models or extensive offline training phases.
This research builds upon our previous work Gevez et al. (2024),
extending the exploration of RIS-aided NOMA systems through the
application of DRL to optimize RIS partitioning for two users.

1.1 Literature review

To provide a comprehensive understanding of the significant
advancements and persistent challenges in Reconfigurable
Intelligent Surface (RIS)-aided NOMA systems, we review the
existing literature. This review highlights key developments,
innovative solutions, and areas requiring further exploration
within the domain. By examining the current state of the art, we
aim to identify the gaps that our research seeks to address, thereby
contributing to the ongoing discourse and advancement of RIS-
aided NOMA technologies.

Non-Orthogonal Multiple Access (NOMA): NOMA is primarily
categorized into code-domain NOMA (CD-NOMA) and power-
domain NOMA (PD-NOMA). CD-NOMA uses unique sparse
spreading sequences for signal multiplexing across non-
orthogonal frequency bands, effectively reducing user interference
Liu and Yang (2021). Recent studies have explored new approaches
in CD-NOMA to further improve spectral efficiency and reduce
interference. For instance, Zhang X. et al. (2021) introduced an
advanced sparse code design that significantly enhances the
performance of CD-NOMA systems in dense user environments.
Similarly, Kim et al. (2022) proposed a new coding scheme that
improves the decoding accuracy in high-interference scenarios,
making CD-NOMA more robust for practical applications.

Conversely, PD-NOMA, which enjoys more widespread
application, allows the simultaneous sharing of time and
frequency resources among users by differentiating signals
based on their power levels Islam et al. (2017). Using
successive interference cancellation (SIC), this method
enables the differentiation of signals by their power intensity,
allowing the coexistence of multiple users within the same non-
orthogonal radio frequencies. Recent advancements in PD-
NOMA have focused on optimizing power allocation
strategies to enhance security and efficiency. For example, Liu
J. et al. (2022) proposed a new power allocation scheme that
improves the security of PD-NOMA systems against
eavesdropping attacks while maintaining high spectral
efficiency. Additionally, Wang T. et al. (2023) developed an
adaptive power control algorithm that dynamically adjusts
power levels based on real-time channel conditions,
significantly improving overall system performance.

However, the traditional application of SIC in PD-NOMA
requires a shared power strategy, which could inadvertently
expose signals to potential security breaches. To address this,
Chen Q. et al. (2023) developed an enhanced SIC mechanism
that incorporates dynamic power adjustment to mitigate security
risks without compromising system performance. Furthermore,
Huang Y. et al. (2023) introduced a hybrid SIC approach that
combines machine learning techniques with traditional SIC to
predict and mitigate interference more effectively. These recent
contributions highlight the continuous evolution of NOMA
technologies in enhancing the efficiency, security, and robustness
of wireless communication systems.

1.1.1 Reconfigurable Intelligent Surfaces (RISs)
Reconfigurable Intelligent Surfaces (RISs) have gained

prominence as a cost-effective and energy-efficient solution to
enhance wireless environments. Recent surveys, particularly those
by Basar et al. (2023), clearly outline the development of RISs within
6G wireless communication technologies. These comprehensive
reviews highlight RISs’ key advancements, showing their potential
to overcome current challenges in signal efficiency, connectivity, and
system performance.

Building on these insights, Wu et al. (2023) explore the
integration of RIS with machine learning algorithms, showing
how intelligent surfaces can adapt dynamically to changing
wireless environments to optimize performance. Furthermore,
Tang et al. (2022) provide an in-depth analysis of the potential
of RIS to significantly enhance the capacity and reliability of wireless
networks, especially in dense urban settings.

Recent studies also explore the application of RIS in millimeter-
wave (mmWave) and terahertz communication systems. For
example, Li et al. (2022) discuss the use of RIS to overcome the
high path loss and signal blockage issues inherent in mmWave and
terahertz bands, showcasing substantial improvements in signal
strength and coverage. Additionally, Yang et al. (2023) investigate
the deployment strategies of RIS in heterogeneous networks,
highlighting their ability to facilitate seamless connectivity and
robust performance in multi-tier network architectures.

Such scholarly efforts highlight RIS technology as a key
development in the evolution of future wireless networks, setting
a new standard for research and application in the field Basar et al.
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(2023); Wu et al. (2023); Tang et al. (2022); Li et al. (2022); Yang
et al. (2023).

1.1.2 Machine learning (ml) in wireless
communications

Machine learning (ML), particularly deep learning (DL) and
DRL, has shown great potential in optimizing wireless
communication systems. These approaches enable systems to
learn and adapt to changing environments, enhancing
performance without the need for manual configuration. For
example, DL has been utilized for tasks such as user clustering,
which significantly reduces computational demand and enables
optimal power distribution through sequential decoding (Cui
et al., 2018).

Recent advancements have further explored the integration of
traditional ML models with DL techniques. Gao et al. (Mar. 2021)
combined Gaussian mixture models with K-means clustering to
effectively align interference and manage increasing network traffic.
This hybrid approach has proven beneficial in dynamically adapting
to fluctuating network conditions.

DRL has emerged as a particularly powerful tool in this domain,
offering advanced methods for optimizing complex wireless
communication tasks. For instance, Yang et al. (2021) applied
DRL to optimize phase configurations in a NOMA framework
supported by RIS, significantly enhancing spectral efficiency.

Recent studies have delved deeper into DRL’s applications in
wireless communications. Wang et al. (2022) explored the use of
DRL for resource allocation in heterogeneous networks,
demonstrating its ability to achieve near-optimal performance
with reduced computational overhead. Furthermore, Zhang et al.
(2023b) investigated DRL-based dynamic spectrum access, showing
substantial improvements in spectrum utilization and interference
management.

Moreover, Li et al. (2023) developed a robust DRL framework to
manage the inherent uncertainties in wireless environments,
enhancing the reliability and efficiency of communication
systems. Additionally, Sun et al. (2023) proposed a multi-agent
DRL approach for cooperative spectrum sharing, which significantly
improves network throughput and reduces latency.

Recent research by Chen R. et al. (2023) focused onDRL for real-
time beamforming in massive multiple-input multiple-output
(MIMO) systems, achieving notable gains in energy efficiency
and signal quality. Another study by Huang L. et al. (2023)
introduced a joint DRL framework for simultaneous optimization
of power allocation and interference management in ultra-
dense networks.

These advancements highlight the important role of ML,
particularly DRL, in evolving next-generation wireless
communication systems, driving significant improvements in
efficiency, adaptability, and overall performance.

1.1.3 RIS-NOMA Integration
The study of different phase adjustment strategies in RIS-aided

NOMA systems reveals a balance among reliability and system
complexity, proposing a simplified phase selection method for
random phase shifting to improve signal reception Ding et al.
(2020). Recent research by Chen et al. (2021) further explores
optimized phase adjustment algorithms, demonstrating

substantial improvements in signal reception and overall system
performance.

Furthermore, a partitioning algorithm designed to boost
spectrum efficiency by improving the ergodic rate for all users,
while ensuring fairness, has been put forward Khaleel and Basar
(2022). Recent advancements by Zhao et al. (2022) have refined this
algorithm, enhancing spectrum efficiency and user fairness in more
dynamic network environments.

Additionally, a new simultaneously transmitting and reflecting
(STAR)-RIS-aided NOMA scheme has been introduced. This
scheme utilizes the unique capabilities of STAR-RIS to manage
incident signals by either transmitting or reflecting them, thus
integrating a NOMA framework to cater to diverse user needs
through innovative signal management Zuo et al. (2021).
Building on this, Zhang et al. (2023a) presented an advanced
STAR-RIS design that further optimizes the balance between
transmission and reflection, achieving higher spectral efficiency
and better user experience.

Recent studies have also focused on integrating ML techniques
with RIS-NOMA systems. Wang X. et al. (2023) proposed a ML-
based optimization framework for RIS-NOMA, which dynamically
adjusts system parameters to maximize performance. Another
significant contribution is from Xu et al. (2023b), who
introduced an adaptive ML-based framework for optimizing the
placement and configuration of RIS in NOMA systems, achieving
improved performance metrics in terms of both throughput and
latency. This approach has shown significant potential in enhancing
system adaptability and efficiency.

In conclusion, the integration of ML techniques with RIS-
NOMA systems represents a significant advancement in the field
of wireless communications. By leveraging the adaptability and
efficiency of ML algorithms, these systems can dynamically
optimize parameters to improve performance, spectral efficiency,
and energy consumption. The continuous evolution of RIS-NOMA
integration, driven by innovative ML-aided approaches, promises to
significantly enhance the capabilities and robustness of future
wireless communication networks.

1.2 Motivation

Integrating NOMA with RIS presents a promising solution to
address the limitations of traditional communication systems, such
as increased processing times. Despite these efforts, traditional
allocation approaches face challenges, especially in large-scale
systems, where they can lead to increased processing times. Our
preceding research Gevez et al. (2024) ventured into a novel
technique for distributing RIS elements, harnessing supervised
learning to refine the partitioning of RIS and mitigate
interference among users in non-line-of-sight (NLOS) scenarios.
This initiative represents a significant step towards optimizing
communication systems for the future, ensuring more efficient
and effective utilization of RIS in enhancing wireless connectivity.

Building on our previous work, which utilized supervised
learning for RIS partitioning, this study introduces a novel DRL-
based framework. Our approach dynamically adjusts RIS
partitioning to optimize resource allocation and enhance system
performance. The proposed framework significantly improves upon
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previous methodologies by eliminating the offline training phase,
thus enhancing adaptability to real-time network changes.

The enhancements detailed in this work are rooted in a deep
understanding of the dynamic nature of wireless networks and the
critical role of RIS in maximizing NOMA system performance. The
contributions of our current study are characterized by several key
advancements:

• Introduction of a DRL-based framework for the dynamic
optimization of RIS partitioning between two users,
marking a significant evolution from the static and semi-
static allocation strategies prevalent in our earlier work.

• Removal of the offline training phase, a critical improvement
that addresses one of the major limitations identified in earlier
literature. This modification not only simplifies the
deployment process but also enhances the model’s ability to
adapt to real-time changes in network conditions.

• Demonstration of the model’s ability to achieve near-optimal
partitioning of RIS elements, thereby significantly enhancing
both the sum achievable rate and fairness of the system. The
real-time adaptability of our approach ensures near-optimal
system performance even under rapidly changing conditions.

• Provision of a detailed analysis that underscores the practical
implications of employing DRL for the dynamic partitioning
of RIS in NOMA systems. The findings from this study
contribute to the broader discourse on the deployment of
intelligent technologies in future wireless networks, paving the
way for further innovation.

Table 1 contextualizes our work within the landscape of
machine-learning-assisted RIS-aided NOMA literature focusing
on sum rate optimization. Gevez et al (2024) used supervised
learning for RIS partitioning, achieving significant improvements
but requiring extensive offline training. Yang et al (2021) applied
deep reinforcement learning (DRL) for phase configuration, yielding
moderate gains with complex implementation. Gao et al (Mar. 2021)
used K-means clustering for interference management, resulting in
high sum rate gains but facing scalability issues. Recent works such
as Amin et al (2023) employed DRL for energy-efficient resource
allocation, achieving moderate improvements but with centralized
control limitations. Additionally, Guo et al (2023) investigated DRL
for resource allocation in device-to-device (D2D) communication,
showing high sum rate improvements in a multi-RIS environment.

Xu et al (2024) explored DRL for secure mobile edge computing,
achieving moderate improvements with a focus on security
enhancement. Our work, using the DRL-based dynamic RIS
partitioning, achieves near-optimal sum rate improvements
without the need for offline training, providing significant real-
time adaptability advantages over traditional methods.

The results indicate that our DRL-based approach achieves
near-optimal sum rate improvements without the need for offline
training, providing significant real-time adaptability advantages
over traditional methods. This study enhances the understanding
of the applicability and effectiveness of DRL in optimizing RIS-aided
NOMA systems, setting a new benchmark for future research and
practical implementations.

Our work employs a Deep Q-Network (DQN) for dynamic RIS
partitioning, achieving near-optimal sum rate improvements
without the need for offline training. This real-time adaptability
is crucial for dynamic environments. Unlike other studies, our
approach eliminates the offline training phase, enhancing
practical deployment.

In summary, this paper addresses a crucial aspect of enhancing
RIS-aided NOMA systems and represents an improvement over our
previous contributions. By focusing on the dynamic and efficient
partitioning of RIS elements through DRL, we present a model that
combines theoretical innovation with practical applicability, setting
a new standard for the deployment and operation of advanced
wireless communication systems.

By addressing the limitations of previous methods and
providing a scalable, efficient solution, our research significantly
advances the field of RIS-aided NOMA systems. This study
enhances sum rate and fairness and ensures adaptability to
changing network conditions, positioning our work as a
substantial contribution to the literature.

This paper is organized as follows: Section 1 delves into the
system model, detailing the architecture and key components of our
uplink-NOMA communication setup. Section 2 provides an
analytical analysis of outage probability, establishing a theoretical
framework for assessing system reliability. In Section 3, we introduce
our novel DRL scheme, discussing its methodology, strategy, and the
unique benefits it offers for dynamic RIS partitioning. Section 4
presents numerical results derived from comprehensive simulations,
showcasing the effectiveness of our DRL-based approach in
comparison to traditional methods. We conclude in Section 5
with a discussion on the implications of our findings for the

TABLE 1 Comparison of machine-learning-assisted RIS NOMA studies focusing on sum rate.

Study ML technique Optimization goal Sum rate improvement Remarks

Gevez et al. (2024) Supervised Learning RIS Partitioning Significant Offline Training Required

Yang et al. (2021) DRL Phase Configuration Moderate Complex Implementation

Gao et al. (2021) K-means Clustering Interference Management High Scalability Issues

Amin et al. (2023) DRL Energy Efficient Resource Allocation Moderate Centralized Control

Guo et al. (2023) DRL Resource Allocation for D2D Communication High Multi-RIS Environment

Xu et al. (2023b) DRL Secure Mobile Edge Computing Moderate Security Enhancement

Our Work DRL (DQN) Dynamic RIS Partitioning Near-Optimal No Offline Training, Real-time
Adaptability
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future of wireless communication systems, emphasizing the
advancements made through the application of DRL in
optimizing RIS-aided NOMA systems. Throughout, we highlight
our contributions to the field and suggest directions for
future research.

2 System model

In this part of our study, we introduce the architecture of our
uplink-NOMA communication setup, which includes transmissions
from two single-antenna users to a single-antenna Base Station (BS).
This model operates within a quasi-static, frequency-flat Rayleigh
fading channel environment. Rayleigh fading is chosen in this work
because it effectively models the multipath propagation effects
encountered in Non-Line-of-Sight (NLOS) outdoor
environments, such as those found in sporting events. This
makes it particularly suitable for evaluating the performance of
wireless communication systems in realistic, dynamic environments
like outdoor sports venues Goldsmith (2005).

The scenario is set within a two-dimensional, 20 m by 20 m
outdoor area, with both users located at ground level, as illustrated in
Figure 1. While the RIS and the first user (U-1) are fixed in position,
the second user (U-2) has the liberty to move around a predefined
zone. Information about deployment positions and their

corresponding RIS partitioning schemes are stored in a
dedicated database.

To illustrate a practical example of an outdoor scenario
involving one static and one mobile user with a partitioned RIS,
consider an outdoor sporting event. In this scenario, a static
broadcasting unit (U-1) is stationed at a fixed location to manage
real-time event coverage and communication with the central BS.
Simultaneously, a mobile user (U-2), such as a camera drone,
navigates the event area to capture and stream live footage. The
RIS is strategically partitioned into two sections to dynamically
optimize the signal reflection towards both the static and mobile
users. This setup demonstrates the applicability of our model in real-
world dynamic environments, where the RIS can adaptively enhance
communication performance for both fixed and moving entities,
ensuring robust and efficient data transmission. To determine the
precise locations for U-2’s various points, sophisticated positioning
techniques are employed, following the guidance of references such
as Witrisal et al. (2016).

Despite the practical challenges in obtaining perfect Channel
State Information (CSI), it remains a common assumption in studies
concerning RIS-aided NOMA, including notable references like
Zhang et al. (2022); Liu Y. et al. (2022); Zhang Z. et al. (2021).
The acquisition of CSI is assumed to be feasible through
methodologies proposed in literature, notably Wei et al. (2021)
and Noh et al. (2022). Our communication process transmits single-

FIGURE 1
System scheme for a two-user uplink scenario in an outdoor environment. (This figure is generated using AI.)
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carrier signals from users to the BS via a single hybrid-RIS. The RIS
comprises N � N1 +N2 reflective elements, where N1 and N2

represent the number of elements allocated for U-1 and U-2,
respectively. To address the power variance between users
necessary for NOMA, our system utilizes an innovative RIS
partitioning approach, ensuring both users transmit at the same
power level. This partitioning strategy is illustrated in Figure 2.

A DRL model is harnessed to find the best partitioning strategy
that optimizes both the network throughput and fairness among
users. For baseline comparison, the optimal iterative algorithm for
dynamic RIS partitioning, as detailed in Khaleel and Basar (2022),
employs an exhaustive search method to find the best allocation of
RIS elements. This method systematically evaluates all possible
partitioning configurations to maximize the sum rate and ensure
fairness among users. While this approach guarantees finding the
optimal solution, it is computationally intensive and time-
consuming, especially as the number of RIS elements increases.
With precise CSI, the RIS is adeptly configured, aligning N1 active
reflectors towards U-1 andN2 passive elements towards U-2, which
forms the basis for the BS’s received signal formula.

In consideration of these factors, the signal that is received at the
BS can be described in Eq. 1 as follows:

y � ��
Pt

√ ∑2
i�1

��
α

√
hT
i θacthBS + gTi θpasgBS( )xi

+ ��
α

√
zθacthBS + n0,

(1)

Here, hi � [h1i , . . . , hN1
i ]T and gi � [g1

i , . . . , g
N2
i ]T, along with

hBS � [h1BS, . . . , hN1
BS ]T and gBS � [g1

BS, . . . , g
N2
BS ]T, denote the

Rayleigh fading channel coefficients connecting the ith user with
the nth1 and nth2 elements of the RIS’s active and passive segments, and
the links to the BS, correspondingly. Furthermore, xi signifies the
modulated signal transmitted by the ith user, possessing a unit power
(E[|x|2] � 1), Pt refers to the transmission power of the users, and α
indicates the gain factor for the RIS’s actively reflecting elements.
Additionally, z � [z1, . . . , zN1 ]T represents the noise vector from the
active component’s amplification of the RIS, where zn1 is the noise
contribution from the amplifier at the nth1 element of the RIS,
obeying a CN (0, σ2z) distribution. Moreover, n0 is the additive
white Gaussian noise sample (AWGN) at the BS, with a
distribution of CN (0, N0), θact � diag(ejϕ1 , . . . , ejϕN1 ) ∈ CN1×N1

and θpas � diag(ejξ1 , . . . , ejξN2 ) ∈ CN2×N2 are phase adjustment
matrices for the RIS, where ejϕ

n1 � e−j∠(h
n1
1 h

n1
BS) and ejξ

n2 �
e−j∠(g

n2
2 g

n2
BS) introduce phase shifts by the RIS’s nth1 and nth2

elements, respectively.
A user benefiting from both coherent alignment and

amplification exhibits significantly greater strength compared to
another user coherently aligned without amplification, as seen in the
scenario where the passive side supports the user. Thus, the SINR for
the first and the second user is given in Eq. 2, which is at the top of
this page.

γ1 �
Pt | ��

α
√ ∑N1

n1�1|hn11 ‖hn1BS| +∑N2
n2�1g

n2
1 θn2pasgn2

BS|2( )
Pt | ��

α
√ ∑N1

n�1h
n1
2 θn1acthn1BS +∑N2

n2�1|gn2
2 ||gn2

BS‖2( ) + σ2
zα∑N1

n1�1|θn1acthn1BS|2 +N0

,

γ2 �
Pt | ��

α
√ ∑N1

n1�1h
n1
2 θn1acthn1BS +∑N2

n2�1|gn2
2 ||gn2

BS‖2( )
σ2zα∑N1

n1�1|θn1acthn1BS|2 +N0

.

(2)

In light of the SINR calculations obtained, the data transmission
rate for the ith user can be determined by Ri � log2(1 + SINRi), and
the overall achievable sum rate is expressed in Eq. 3 as follow

Rsum � ∑2
i�1

Ri � ∑2
i�1

log2 1 + SINRi( ). (3)

3 Analytical analysis of outage
probability

This section presents an analytical exploration of the outage
probability to validate the reliability of outcomes obtained from
parametric simulations. Leveraging the central limit
theorem—which posits that the average of a large number of
samples approximates a normal distribution—it can be deduced
that with a substantial number of reflective elements, the cumulative
channel effects tend towards a Gaussian distribution. For notational
ease, we transform parts of the SINR formula by introducing
auxiliary variables such as K � ��

α
√ ∑N1

n1�1|hn11 ||hn1BS|,
L � ∑N2

n2�1g
n2
1 θn2pasgn2

BS, M � ��
α

√ ∑N1
n1�1h

n1
2 θn1acthn1BS, O � ∑N2

n2�1|gn2
2 ||gn2

BS|,
P � θn1acthn1BS, and Q � N0. This leads to the updated SINR
expressions as in Eqs 4 and 5 for both users as follows:

γ1 �
Pt|K + L|2

Pt|M + O|2 + σ2zα∑N1
n1�1|Q|2 + P

, (4)

γ2 �
Pt|M + O|2

σ2zα∑N1
n1�1|Q|2 + P

. (5)

The adaptation of SINRs for user U-2 to a Gamma distribution,
as depicted in Figure 3 with the reflective element count at 128 and
the transmission power Pt at eight dBm, results from the squared
sum of channel products |K + L|2 and |M + O|2, adhering to a chi-
squared distribution with two degrees of freedom. Figure 3,
generated using the MATLAB fitting tool, provided the
parameters necessary for subsequent analysis, thereby ensuring
the accuracy and reliability of our methodology.

The Gamma distribution’s parameters, namely, the shape (a)
and scale (b), with estimated values for a � 12.871 and b � 20.275,
and their respective standard errors 0.005682 and 0.009129,
facilitate the simulation of data or statistical inferences about the

FIGURE 2
Illustration of RIS partitioning with active and passive elements.
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population’s parameters. Notably, the Gamma distribution is
constrained to positive values, as indicated by 0<y<∞, with the
estimated mean and variance being 260.959 and 5,291.19,
respectively.

We particularly examine U-2, which is serviced by the passive
component of the RIS. The outage probability (Pout,2) is determined
using Pout,2 � P(SINR2 < 2Rth/BW − 1), where the SINR is below the
threshold Rth (bits per second), ensuring U-2’s quality of service
(QoS) across a bandwidth (BW). The formula for the cumulative
distribution function (CDF) is described in Eq. 6:

Pout,2 � P
Pt|M + O|2

σ2zα∑N1
n1�1|Q|2 + P

< v⎛⎝ ⎞⎠, (6)

where v � 2Rth/BW − 1. This equation is effectively represented as the
CDF of a random variable G, hence P(G<g) � FG(g), where FG(g)
symbolizes the CDF of G. The variable G signifies the difference
between Pt|M + O|2 and σ2zα∑N1

n1�1|Q|2v, which introduces
complexity due to its representation as a difference of chi-squared
distributions. However, through the application of characteristic
functions (CFs), evaluating such distributions is made possible.
The main challenge lies in calculating the probability density
function (PDF) of the difference between non-central and central
chi-squared distributions, as this PDF involves an infinite series
incorporating Whittaker functions, related to the confluent
hypergeometric function. The CF of G is derived on Eq. 7 as:

ΨG ω( ) � 1

1 − 2jωσ2( )n/2 exp jωμ2

1 − 2jωσ2
( ), (7)

where G sums squares of n independent Gaussian variables Ai,
each with mean μi and variance σ

2. By adjusting μ and σ to the mean
and variance of the summation terms, we obtain the CF of G.

Considering the uncorrelated nature of the Gaussian variables, we
express |M + O|2 in terms of their real and imaginary parts, as
[R(M) +R(O)]2 + [I(M)]2, whereR(·) andI(·) extract the real
and imaginary components, respectively. With the sum of
independent variables, the characteristic functions of these
components are multiplied, leading to Eq. 8 as:

ΨG w( ) � ΨPt |M+O|2 w( )Ψ(−σ2zα∑S

s�1 |Q|
2v) w( ), (8)

substituting μi and σ i for the mean and variance of their
respective terms. The Gil-Pelaez inversion theorem then allows
for calculating the CDF of the differential chi-squared variables
in Eq. 9 as:

FG g( ) � 1
2
− ∫∞

0

I e−jwgΨG w( ){ }
wπ

dw, (9)

where FG(g) denotes the CDF of G and ΨG(w) its CF.
Utilizing the CDF for the difference between chi-squared
variables enables the computation of the outage probability for
the communication system.

4 Deep reinforcement learning scheme

In our system model, we incorporate a dynamic DRL
approach tailored for real-time application. This DRL model
is specifically designed to conduct online partitioning of the RIS,
enabling the system to adapt instantaneously to variations in the
communication environment. Unlike traditional methods that
rely on offline training and static partitioning strategies, our
model leverages the inherent adaptability of DRL to assess and

FIGURE 3
Fitting the SINR distribution for the secondary user with a probability distribution.
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modify the RIS configuration on the fly. This online partitioning
is crucial for operational efficiency, particularly in scenarios
where user positions and channel conditions are subject to
frequent changes. By employing online partitioning, our DRL
model ensures that the RIS can dynamically adjust the allocation
of its reflecting elements to users, thereby optimizing the signal
reflection properties in real time and maintaining the robustness
of the NOMA communication system.

This model’s online partitioning capability is essential for
maintaining operational efficiency in scenarios marked by
continuous changes in user positions and channel conditions. It
ensures that the RIS can dynamically adjust its reflecting elements
across users, optimizing signal reflection properties in real time and
upholding the integrity of the NOMA system’s functionality.

A key aspect of our DRL model is its ability to match the
performance of iterative algorithms and supervised learning
schemes in configuring RIS partitioning while reducing
computational complexity and operational time. This efficiency
does not come at the expense of significantly outperforming
these conventional methods in metrics such as fairness or total
sum rate; rather, the DRL framework achieves a performance level
on par with these methodologies, supplemented by the critical
advantages of enhanced real-time adaptability. This efficiency and
adaptability represent an important advancement in operational
efficiency and computational economy.

The model makes achieving optimal partitioning strategies not
just a theoretical possibility but a practical reality, streamlined and
viable within the stringent demands of dynamic system
environments. By reducing computational demands with the
capacity for real-time system adaptation, our DRL approach
manages the trade-offs between performance, efficiency, and
complexity.

4.1 DRL strategy

DRL is an advanced machine learning approach that combines
artificial neural networks with a reinforcement learning architecture.
This enables autonomous agents to learn optimal behaviors within
complex environments by interacting with the environment,
observing the outcomes of their actions, and adapting their
strategies to maximize a numerical reward signal. At the core of
DRL is the agent-environment interaction, where the agent performs
actions, and the environment responds with new states and rewards as
depicted in Figure 4. These components are mathematically
formulated as the state space, action space, and reward function.

Implemented within the MATLAB Deep Learning Toolbox The
MathWorks, Inc (2023), DRL utilizes MATLAB’s computational
tools to streamline the development and training of neural networks
that approximate the policy and value functions—the central
mechanisms by which the agent assesses its current policy and
estimates the expected outcomes of its actions. The toolbox provides
a framework for defining the problem’s specific DRL components,
such as custom observation and action spaces, and for integrating
them with neural network layers and training algorithms. By using
these tools, it is possible to efficiently construct and train DRL agents
for a wide array of applications, leveraging MATLAB’s optimization
routines and GPU-accelerated computing capabilities to handle the
extensive computations involved in the training process.

The environment in DRL is modeled as a Markov Decision
Process (MDP), where the transition between states is determined by
the actions of the agent. The state is represented as a multi-
dimensional array or a custom data structure that reflects the
agent’s perception of the environment. A well-designed state
representation is crucial for the agent’s ability to learn the
optimal policy. When the agent selects an action based on its

FIGURE 4
DRL Agent-Environment interaction.
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policy, the environment reacts by transitioning to a new state and
returning a reward. This reward is a scalar value that signals the
agent about the effectiveness of the action. MATLAB’s toolbox
facilitates the definition of this action-reaction mechanism,
allowing the simulation of the environment’s dynamics through
the step function in our environment. The step function contains all
wireless communication configurations of our scenario defined
in Section 2.

In this study, we selected the DQN algorithm with two hidden
layers each with 256 hidden units to address the dynamic
partitioning of RIS elements in NOMA systems. The DQN
algorithm is well-suited for environments with discrete action
spaces, which align with the nature of RIS element partitioning
tasks. Unlike algorithms such as Deep Deterministic Policy Gradient
(DDPG), which are designed for continuous action spaces, DQN
efficiently handles the discrete decision-making required in our
context Lillicrap et al. (2015). DQN is known for its high sample
efficiency, meaning it can learn effective policies with fewer
interactions with the environment.

This efficiency is crucial for our application, where the cost of
environment interactions can be high in terms of time and
computational resources. The DQN algorithm has demonstrated
stability and reliable convergence properties in various applications
Mnih et al. (2015). This stability is essential for ensuring that the
DRL model can consistently find near-optimal solutions for RIS
partitioning without significant fluctuations or instability during
training. Preliminary experiments and literature review indicated
that DQN performs well in scenarios similar to ours Hessel et al.
(2018). The empirical evidence supports its ability to achieve high
performance in terms of maximizing the sum rate and ensuring fair
resource allocation among users.

4.1.1 State Space
The state space S is a reflection of the system’s multi-

dimensional nature, comprising the current and past transmit
power levels, the proximities between U-2 and the RIS, and the
allocation of RIS elements. Formally, the state at any time step t is
represented in Eq. 10 as:

st � Pt, Pt−1, d
U2,RIS
t , dU2,RIS

t−1 , Nt[ ], (10)

where Pt indicates the transmit power at time t, and Nt signifies the
number of RIS elements focused towards U-1. The inclusion of both
current and historical data ensures that the agent has the contextual
awareness needed to make informed decisions. The terms dU2,RISt and
dU2,RISt−1 represent the current and past distances between U-2 and the
RIS, respectively. The inclusion of these distances is important; dU2,RISt

affects the real-time signal reflection properties, whereas dU2,RISt−1
provides historical context that helps the DRL agent infer the
mobility pattern of U-2. Together, they enable the agent to make
more informed decisions regarding the RIS element allocation,
ensuring that the dynamic adjustments are both responsive to
current conditions and anticipatory of future system state transitions.

4.1.2 Action Space
To navigate through S, we delineate an action space A, crucial

for the system’s dynamic response. The action at at time t
determines the forthcoming partitioning of the RIS:

at � Nt+1[ ], (11)
where Nt+1 is the count of RIS elements allotted to U-1 for the next
time step. This approach ensures the RIS’s continuous evolution in
alignment with the users’ needs.

4.1.3 Reward Function
The reward function R guides the DRL agent towards a

balanced policy, emphasizing the importance of fairness.
Ensuring equitable treatment of all users necessitates the strategic
allocation of reflecting elements (N1 and N2) to each, considering
the interference caused by the sub-surfaces allocated to others.
Consequently, the objective function in our proposed method
leverages Jain’s Fairness Index (JFI) presents in Eq. 12, aligning
with our DRL strategy’s reward mechanism as detailed in Khaleel
and Basar (2021):

JFI � max
N1 ,N2

1
2
∑2

i�1
�Ri( )2

1
2
∑2

i�1
�R
2
i

,

s.t.∑2
i�1

Ni � N, Ni ∈ 1, . . . , N − 1( ){ }
(12)

where �Ri signifies the average ergodic rate obtained from
numerous random channel realizations, and Ni represents the
number of reflecting elements dedicated to the ith user. This
approach underlines the core principle of our DRL strategy:
optimizing system fairness and efficiency by dynamically
adjusting the RIS element allocation in response to the real-time
communication environment. The immediate reward rt which is
presented in Eq. 13, is based on JFI, promoting an equitable
allocation of resources:

rt � f JFI( ), (13)
where the index is a calculated metric of fairness based on the
users’ data rates. This incentivizes not only throughput
maximization but also the sustenance of fairness across the
NOMA landscape.

The DRL agent employs a policy network parameterized by
weights θ, which is iteratively refined through interactions with the
environment. The network is tasked with deducing a mapping from
observed states to actions that can potentially amplify the
cumulative reward.

4.1.4 Policy Optimization
The learning process aims to find the optimal policy,

mathematically modeled as a gradient ascent on expected
rewards which is presented in Eq. 14 as follows:

θ* � argmax
θ

E ∑T
t�0

γtrt⎡⎣ ⎤⎦, (14)

where γ stands as the discount factor, adding a foresight dimension
by quantifying the importance of future rewards, and T denotes the
temporal span of the decision-making horizon.

Empirical simulations corroborate the DRL scheme’s
effectiveness, showcasing its capability to swiftly adapt to
environmental changes while fostering fairness among the users.
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Through this adaptive mechanism, we achieve a balance between
system responsiveness and operational integrity, demonstrating the
viability of DRL in managing the demands of RIS-aided
NOMA systems.

5 Simulation results

In this section, we present the results of our computer
simulations aimed at evaluating the effectiveness of DRL-based
partitioning within the established uplink NOMA
communication system framework. This study extends our
communication model to incorporate DRL as the principal
mechanism for partitioning RIS, diverging from traditional
approaches. Our analysis compares the DRL-based partitioning
strategy against an iterative algorithm and the supervised
learning-based method detailed in the literature.

The simulations are conducted at an operational frequency of
1.8 GHz, representative of sub-6 GHz frequencies commonly used in
current wireless communication systems. The choice of reflective
elements for the RIS (NRIS = 128, 256, and 512) aligns with these
operational frequencies, providing a practical context for evaluation.
Channel parameters include quasi-static frequency-flat Rayleigh
fading channels with a path loss model based on free-space
propagation. The channel gains follow a Rayleigh distribution,
and the path loss is calculated using the Friis transmission
equation. Specifically, the path loss exponent is set to 2, reflecting
typical urban outdoor environments. The small-scale fading is
modeled as a zero-mean complex Gaussian random variable with
unit variance, simulating the multipath effect commonly
encountered in urban scenarios. Additionally, the system assumes
a constant noise power setting of −90 dBm, derived from a
bandwidth of 20 MHz and a noise figure of 10 dB. For a
comprehensive overview of the system setup, the reader is
referred to Section 2.

Our simulation methodology employs 104 random channel
realizations to ensure robustness and reliability in the
comparative analysis. This approach enables a comprehensive
assessment of the partitioning strategies, focusing on the
advancements and performance improvements introduced by the
application of DRL over the iterative algorithm and the previously
employed supervised learning technique. The comparative analysis
is critical for elucidating the relative strengths and potential
limitations of each partitioning method, contributing valuable
insights into the ongoing advancement of RIS-NOMA
communication systems.

Our neural network within the DRL model employs a multi-
layered neural network characterized by fully connected layers
designed to process an input with five distinct features. The
network architecture is composed of two hidden layers, each
consisting of 256 neurons, with rectified linear unit (ReLU)
activation functions facilitating the introduction of non-linearity,
enabling the model to capture complex relationships within the data.
In our neural network design, the input layer comprises three
neurons, each representing the transmit power, the number of
reflecting elements, and the distance in meters. The output layer
consists of a single neuron, corresponding to the one-dimensional
action space in our reinforcement learning framework. This output

neuron determines the number of reflecting elements required for a
single user. Consequently, the number of elements allocated to the
other user is simply the total number of reflecting elements minus
the number allocated to the first user. This framework is versatile
and can be applied to any RIS design with varying numbers of
reflecting elements and transmit power levels. This configuration
results in a total of approximately 100.2K learnable parameters,
encompassing the weights and biases across all layers, which are
iteratively adjusted during the training process. The sequential
composition of these layers forms a robust framework for the
DRL algorithm to dynamically optimize the partitioning of RIS
elements between two users in a NOMA system, with the network’s
depth and breadth calibrated to capture the intricacies of the wireless
environment and user interactions.

Table 2 presents the parameters and hyperparameters used for
the DRL simulation employing the DQN algorithm. The agent
options include a discount factor of 0.99, which ensures future
rewards are appropriately weighted, aiding in the long-term
optimization of the system. The execution environment is set to
CPU, providing a balance between computational efficiency and
resource availability. A batch size of 64 is chosen to stabilize the
learning process, while an experience buffer length of 10,000 allows
the agent to learn from a diverse set of past experiences, enhancing
the robustness of the policy.

The critic optimizer utilizes the Adam optimizer with a learning
rate of 0.01, which facilitates efficient and adaptive learning rates
during training. The gradient decay of 0.9 helps in maintaining the
momentum of gradients, preventing oscillations and aiding in faster
convergence. The neural network consists of 256 hidden neurons
per layer, providing sufficient capacity to model complex
relationships in the data, which is crucial for accurately
approximating the Q-values in the DQN algorithm. These
carefully chosen parameters collectively ensure that the DRL
model is both efficient and effective, optimizing the RIS
partitioning strategy to improve system performance.Figure 5
illustrates the progression of the episodic reward over time
through 750 episodes of partitioning training using the DRL

TABLE 2 Simulation parameters and hyperparameters for DRL-based
partitioning.

Parameter Value

Discount Factor 0.99

Execution Environment CPU

Batch Size 64

Experience Buffer Length 10,000

Critic Optimizer Adam

Learning Rate 0.01

Gradient Decay 0.9

Number of Hidden Layers 2

Neurons per Hidden Layer 256

Number of Input Neurons 5

Number of Output Neurons Varies with N (128, 256, 512)
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framework for the RIS with 128 reflecting elements. Notably, there is
significant variance in the early episodes, where a peak is observed,
indicating a possible exploration of the action space or initial
adjustments of the model’s parameters. As training progresses,
the reward stabilizes, demonstrating the model’s convergence
towards an optimal policy. The trend shows a clear decrease in
variability and an increase in the consistency of the episodic reward,
suggesting that the DRL model is learning effectively over time.

JFI, which ranges from 0 to 1, is a key component of the reward
function to ensure fair resource allocation among users. During the
initial exploration phase of the DRL algorithm (episode Q0), the agent
explores various actions to learn the environment and understand the
impact of different RIS partitioning strategies. The high reward values
observed in this phase, though seemingly exceeding 1, result from an
additional scaling factor applied to the JFI or from cumulative rewards
over multiple steps, not from JFI alone. This exploration can sometimes
yield high cumulative rewards, indicating that the agent has identified
potentially optimal actions early in the training process.

Higher reward values are better as they signify better system
performance in terms of sum rate and fairness. As training
progresses, the agent shifts from exploration to exploitation,
focusing on actions that consistently yield higher rewards,
ensuring the agent converges towards an optimal strategy that
maximizes the system’s performance. In summary, the episode
reward values for episode Q0 indicate the potential of the agent
to find effective actions early on, possibly due to cumulative rewards
or scaling factors. As training progresses, the reward values stabilize,
guiding the agent towards an optimal solution, aligning with the
objectives of our DRL framework.

In Figure 6, the cumulative rewards over ten separate
simulations for the same RIS configuration are depicted as

uniform bars with a dashed line indicating the mean of the
episodic rewards. The small error bars suggest low variance,
which is indicative of consistent performance across these
simulations. The consistency here confirms the reliability of the
DRL approach under various initial conditions, showing the model’s
robustness.

The training performance metrics from the MATLAB Deep
Learning Toolbox provide further insight into the effectiveness of
the learning session. An episodic reward of 0.9887, very close to the
average reward of 0.98842, indicates that the agent is performing at a
stable level by the end of the training session. The Episode Q0 value,
standing at 1.013, is particularly noteworthy. The “Episode
Q0 value” refers to the initial Q-value at the start of an episode
in reinforcement learning, which quantifies the expected returns
(rewards) from taking the best possible action in the initial state of
the episode. It is a reflection of the quality of the state-action values
being learned, suggesting that the agent has developed a strong
prediction capability for expected returns. This means that right
from the beginning of an episode, the agent is well-informed about
the potential rewards of its actions, demonstrating an effective
learning and decision-making process.

Collectively, these results and training metrics underscore a
successful training session, where the DRL model demonstrates
both convergence to an effective policy and stability across multiple
simulations, with performance metrics confirming the agent’s
capacity to learn and predict the optimal actions within the
defined environment.

Table 3 provides a detailed comparison of the time efficiency
associated with different partitioning strategies for a RIS-NOMA
communication system, specifically comparing a supervised
learning model, a DRL Model, and an Iterative Algorithm across

FIGURE 5
Convergence of the DRL algorithm over training episodes.
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three scenarios characterized by varying numbers of RIS elements
(N = 128, 256, 512). A significant highlight from this comparison is
the substantial reduction in the offline phase time observed in the
DRL Model, which does not report an offline phase time, suggesting
a significant efficiency improvement in the model’s training and
deployment process.

For the supervised learning model, the offline phase time
increases with the number of RIS elements: 275.478 s for N =
128, escalating to 821.709 s forN = 256, and reaching 4,162.601 s for
N = 512. This exponential increase underscores the scalability
challenge inherent in the supervised learning approach as the
complexity of the system grows.

In contrast, the DRL Model bypasses the traditional offline
phase entirely, indicating an inherent efficiency in adapting to
system changes dynamically. This model exhibits online training
times of 201 s forN = 128, increasing modestly to 255 s forN = 256,
and 273 s for N = 512. These figures translate into total training
times of 3.35, 4.25, and 4.55 min, respectively, showcasing a
significantly streamlined process compared to the supervised
learning model.

The Iterative Algorithm, while not directly comparable due to its
different operational paradigm (lacking a distinct offline training
phase and online training time), shows elapsed run times that
increase with the number of RIS elements, from 1.969,608 s for

FIGURE 6
Cumulative rewards over separated simulations.

TABLE 3 Performance comparison.

Model/Algorithm N Pt
(dBm)

Elapsed run time
(seconds)

Offline phase time
(seconds)

Online training
time (seconds)

Total training time
(seconds)

128 275.478 1.396 359.250

Supervised Learning Model
Gevez et al. (2024)

256 8 0.061 821.710 83.772 905.484

512 4,162.601 147.993 4,246.370

128 N/A 201.000 201.00

DRL Model (this work) 256 8 0.051 N/A 255.000 255.00

512 N/A 273.000 273.00

128 1.970 N/A N/A N/A

Iterative Algorithm Khaleel and
Basar (2021)

256 8 5.567 N/A N/A N/A

512 18.936 N/A N/A N/A
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N = 128 to 18.936,179 s forN = 512. However, this approach’s lack
of an offline phase or delineated training times presents a different
set of operational efficiencies and constraints.

This comparison elucidates the substantial time efficiency
advantages offered by the DRL Model, particularly in the context
of offline phase reduction. Such efficiency not only enhances the
model’s practical applicability but also positions DRL as a

superior method for managing the complexities associated
with optimizing RIS partitioning in high-dimensional
communication systems. The DRL Model’s ability to operate
without the need for an extensive offline phase underscores its
potential for real-time adaptive system optimization, setting a
new benchmark for performance and efficiency in RIS-NOMA
system management.

FIGURE 7
Comparison of achievable user rates and overall ergodic sum rates using the trained DRL model versus an iterative algorithm. Analysis includes U-2
(A) within the training area (U-2 at x � 13, y � 13), and (B) beyond the training area (U-2 at x � 8, y � 8).
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The analysis begins with an evaluation of the ergodic sum rate
across various transmit power levels (Pt). Specifically, Figure 7A
compares the DRL model’s performance with the sum algorithm,
revealing its capability to closely emulate the optimal ergodic sum
rate trajectories produced by our baseline. This comparison
highlights the effectiveness of the DRL in optimizing RIS
partitioning in real-time scenarios and delves into user fairness in
power allocation. Building upon this, Figure 7B incorporates the
supervised learning scheme into the comparative landscape,
showing a parallel in performance scalability with increasing Pt

across all methods.
Progressing to Figure 8, the DRL model’s robustness and

scalability are demonstrated through its performance across
diverse system configurations. An enhancement in sum rate
performance is observed with an increase in training point
coordinates—from the initial position at x � 8, y � 8, 2 m
away from the nearest training area, to the final position at
x � 13, y � 15, directly within the training area—and an
increase in the number of reflecting elements. This spatial
progression in the training points underscores the significance of
location in the context of training efficacy.

In the environment of Orthogonal Multiple Access (OMA)
systems, the findings suggest that DRL models can match with
Supervised Model especially as the number of reflecting elements is
increased, which is of particular relevance in scenarios where OMA
is employed and labeled data may not be readily available. The
consistently upward trend in sum rate with increasing transmission
power Pt across all models and configurations reaffirms the expected
positive correlation between transmission power and improved
signal quality, aligning with established principles in the field of
wireless communications Ding et al. (2022).

In Figure 9, the discourse transitions to an examination of the
sum achievable rate for varying Pt levels, contrasting hybrid
approaches with fully passive strategies. Figure 10 elucidates
the outage probability under various conditions for both the
DRL and supervised learning models, with part (a) considering
the ideal case of perfect SIC (Ep � 0) and Figure 10B accounting
for SIC errors (Ep ≠ 0). Achievable rate thresholds in the
calculation of outage probability are set to 6.5, 7.5, and
8.5 Mbps/Hz for 128, 256, and 512 reflecting elements,
respectively. In Figure 10A, the DRL model exhibits
commendable alignment with the supervised learning model,
showcasing its capability to emulate the performance of the
latter. This outcome is further underscored by the proximity
of both models to the theoretical outage probability curve, which
is expounded upon in Section 3. Such closeness indicates that the
DRL model not only learns optimally in a perfect SIC scenario
but also confirms the theoretical underpinnings that govern
system behavior.

Figure 10B extends the analysis into a realistic domain where
SIC is imperfect, manifesting a slight divergence from the theoretical
ideal. Despite this, the DRL model demonstrates resilience by
approximating the performance of the supervised learning model,
signifying its robustness and adaptability in complex environments.

Moreover, Figure 10 illustrates the comparison between the
theoretical outage probability, derived from our mathematical
analysis in Section 3, and the empirical results obtained from the
DRL-based and iterative algorithms. The relevance of the
mathematical analysis of the outage probability in Section 3 is
paramount as it provides a foundational framework that validates
our empirical findings. By leveraging the central limit theorem to
approximate the cumulative channel effects towards a Gaussian

FIGURE 8
Comparison of total rates for varying numbers of reflective elements and training points.
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distribution, we establish a robust theoretical basis for assessing
SINR under various conditions.

The theoretical curves shown in Figure 10 align closely with the
empirical data, particularly under ideal conditions (perfect SIC).
This close alignment demonstrates the robustness of our theoretical
framework and its ability to predict system performance accurately.
The DRL model’s performance, which closely matches the
theoretical predictions, underscores its efficacy in achieving near-
optimal outage probabilities even in practical scenarios.

Overall, the comparative analysis between the theoretical
expectations and the empirical results obtained from the DRL
and supervised learning models, as depicted in Figure 10,
provides compelling evidence of the DRL model’s potential to
revolutionize future communication systems. The DRL model’s
ability to approach the supervised learning model under both
perfect and imperfect SIC conditions establishes it as a promising
paradigm for ensuring communication reliability in the face of
operational challenges.

Our results indicate that while DRL significantly reduces overall
computational and time complexities, its online training time is
substantially higher than that of supervised learning approaches,
presenting a trade-off between real-time adaptability and training
duration. For instance, the online training time for DRL is 201 s for
N � 128 RIS elements, compared to 1.3962 s for the supervised
learning model. In highly dynamic environments, where user
positions and channel conditions frequently change, DRL’s real-
time adaptability is advantageous despite the longer online training
phase, allowing the system to start responding early and
continuously improve performance. Conversely, in low-dynamic

environments, the extended online training time may not be
justifiable, making a long offline training phase of supervised
learning more efficient. These models can respond almost
instantaneously within the trained scenarios but may require re-
training for significant changes. Dynamic changes necessitating
DRL adaptation include user movement, varying user demands,
and environmental changes, with DRL optimizing resource
allocation in real-time. The continuous learning of DRL ensures
the system provides adaptability and service improvement even
before reaching optimal performance. Thus, DRL is more suitable
for dynamic environments requiring real-time adaptability, while
supervised learning is efficient in static environments with
infrequent changes, guiding the development of robust RIS-aided
NOMA systems.

While our proposed DRL-based dynamic RIS partitioning
framework shows significant promise, several limitations should
be acknowledged. The assumption of perfect CSI is common but
challenging to achieve in practice, and any imperfections can affect
performance. Additionally, the scalability of our model to larger
systems with multiple users and RIS elements remains an area for
further investigation, as increased complexity could impact
efficiency. Furthermore, although the framework eliminates the
offline training phase, the online training time required,
particularly in dynamic environments, may pose constraints on
real-time applicability. Addressing these limitations through
advanced DRL algorithms, robust methods for handling
imperfect CSI, and real-world implementations will be essential
for the practical deployment and success of DRL-based dynamic RIS
partitioning in future wireless communication networks.

FIGURE 9
Comparison of achievable total rates for hybrid versus entirely passive NOMA systems.
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6 Conclusion

In this paper, we have presented a novel DRL scheme to
optimize the performance of RIS-aided NOMA systems. This
scheme not only offers a dynamic and efficient approach to
closely approximate the performance of optimal iterative

algorithms but also significantly reduces computational and time
complexities. By eliminating the offline training phase—a major
limitation identified in our previous work on supervised
learning—we have successfully demonstrated the potential of
DRL in enhancing the real-time adaptability of RIS
configurations to changing environments and user demands. The

FIGURE 10
Comparative analysis of outage probability for U-2 utilizing the trained model versus an iterative algorithm, under diverse Quality of Service (QoS)
requirements and sizes of RIS. The comparison contemplates: (A) scenarios with perfect SIC, and (B) scenarios accounting for errors in SIC (Ep).
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proposed DRL framework marks a significant step forward in the
practical application and deployment of RIS-aided communication
systems, potentially transforming future wireless networks with its
robustness and responsiveness to the evolving
communication landscape.
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