AUTHOR=Sánchez-Gendriz Ignacio , Luna-Naranjo D. , Guedes Luiz Affonso , López José D. , Padovese L. R. TITLE=Exploring fish choruses: patterns revealed through PCA computed from daily spectrograms JOURNAL=Frontiers in Antennas and Propagation VOLUME=2 YEAR=2024 URL=https://www.frontiersin.org/journals/antennas-and-propagation/articles/10.3389/fanpr.2024.1400382 DOI=10.3389/fanpr.2024.1400382 ISSN=2813-4680 ABSTRACT=
Soundscape analysis has become integral to environmental monitoring, particularly in marine and terrestrial settings. Fish choruses within marine ecosystems provide essential descriptors for environmental characterization. This study employed a month-long sequence of continuous underwater recordings to generate 24-h spectrograms, utilizing Principal Component Analysis (PCA) specifically adapted to analyze fish choruses. The spectrograms were constructed using a frequency range from 0 to 5 kHz, represented by 1,025 spectral points (frequency bin width 5 Hz) on a linear scale. A preliminary spectral subsampling reduced the frequency components to 205 spectral points. PCA was then applied to this subsampled data, selecting 7 principal components (PCs) that explained 95% of the variance. To enhance visualization and interpretation, we introduced “acoustic maps” portrayed as heatmaps. This methodology proved valuable in characterizing the structure of the observed environment and capturing pertinent diel patterns of fish choruses. Additionally, these PCA components can be analyzed using acoustic maps to reveal hidden dynamics within the marine acoustic environment. The dimensionality reduction achieved by PCA not only streamlined data handling but also enabled the extraction of spectral information pertinent to fish choruses and the temporal dynamics of the soundscape. In conclusion, our methodology presents a versatile framework extendable to diverse biological choruses and ecoacoustic studies. The straightforward, easily interpretable analysis leverages computations derived from 24-h spectrograms, offering novel insights into the daily dynamics of biological. Choruses and contributing to future advancements in ecoacoustic research.