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Soundscape analysis has become integral to environmental monitoring,
particularly in marine and terrestrial settings. Fish choruses within marine
ecosystems provide essential descriptors for environmental characterization.
This study employed a month-long sequence of continuous underwater
recordings to generate 24-h spectrograms, utilizing Principal Component
Analysis (PCA) specifically adapted to analyze fish choruses. The
spectrograms were constructed using a frequency range from 0 to 5 kHz,
represented by 1,025 spectral points (frequency bin width 5 Hz) on a linear scale.
A preliminary spectral subsampling reduced the frequency components to
205 spectral points. PCA was then applied to this subsampled data, selecting
7 principal components (PCs) that explained 95% of the variance. To enhance
visualization and interpretation, we introduced “acoustic maps” portrayed as
heatmaps. This methodology proved valuable in characterizing the structure of
the observed environment and capturing pertinent diel patterns of fish
choruses. Additionally, these PCA components can be analyzed using
acoustic maps to reveal hidden dynamics within the marine acoustic
environment. The dimensionality reduction achieved by PCA not only
streamlined data handling but also enabled the extraction of spectral
information pertinent to fish choruses and the temporal dynamics of the
soundscape. In conclusion, our methodology presents a versatile framework
extendable to diverse biological choruses and ecoacoustic studies. The
straightforward, easily interpretable analysis leverages computations derived
from 24-h spectrograms, offering novel insights into the daily dynamics of
biological. Choruses and contributing to future advancements in ecoacoustic
research.
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1 Introduction

In recent years, a variety of approaches have been employed to study and characterize
ecosystems for both conservation and biodiversity monitoring purposes, with techniques
such as Passive Acoustic Monitoring (PAM) gaining recognition for their utility
(Desjonquères et al., 2020; Sugai et al., 2019; Ross et al., 2023). PAM, which leverages
the use of hydrophones or microphones in a specific area, facilitates the collection of
extensive, long-duration audio recordings (Gibb et al., 2019). These recordings capture
animal vocalizations and other intrinsic acoustic components of the environment (Cauchy
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et al., 2023), serving as valuable resources for studying specific
species behavior, tracking biodiversity changes, and identifying
potential ecosystem threats (Stowell and Sueur, 2020).

One specific phenomenon of significant importance is the study
of fish choruses, which represent some of the most impressive
occurrences in nature (Siddagangaiah et al., 2022). Fish choruses,
characterized by their collective vocalizations, can serve as indicators
of critical activities such as feeding, spawning, and mating, thus
offering a relevant proxy for ecosystem studies (Kim et al., 2023).
Consequently, the use of PAM for studying these specific choruses
is essential.

However, the extensive data generated by long-term PAM
recordings present a significant challenge for researchers. For
comprehensive studies, recordings can stretch across several
months or even years (Sánchez-Gendriz and Padovese, 2017a;
Smith et al., 2020), resulting in the daunting task of extracting
valuable information from the complex audio data. The questions
regarding intermediate processing and visualization of pertinent
information remain open.

To address these challenges, researchers have developed or
adapted methods from various areas, implementing a group of
descriptors or variables collectively referred to as Acoustic
Indices (Buxton et al., 2018; Bradfer-Lawrence et al., 2019).
Despite the burgeoning interest in Acoustic Indices, the utility of
classical computational approaches, notably Principal Component
Analysis (PCA), has also shown promise in this domain, as
evidenced by recent scholarly contributions (Benocci et al., 2021;
Symes et al., 2022).

Accordingly, this paper delves into the nuanced application of
PCA, specifically tailored to the analysis of daily spectrograms, for
the exploratory data analysis of extensive PAM datasets. Our
objective is to demonstrate the efficacy of PCA in unveiling complex
patterns within long-duration acoustic recordings, thereby advancing
the methodological toolkit available for ecoacoustic research.

The objective of this research is to leverage daily spectrograms
from month-long underwater Passive Acoustic Monitoring (PAM)
to demonstrate the efficacy of PCA in the analysis and interpretation
of fish choruses. The methodologies developed in this study aim to
empower researchers to efficiently reduce the dimensionality of
extensive PAM datasets, thereby simplifying the analysis of
complex acoustic environments. By customizing these techniques,
the scope of analysis can be broadened to include biological choruses
from a varied spectrum of species across both aquatic and terrestrial
environments. Ultimately, employing these methodologies holds the
potential to enhance ecosystem understanding and significantly
reinforce conservation initiatives in critical environments.

Section 2 presents the experimental framework, detailing the
dataset utilized, the process for computing daily Power Spectral
Density (PSD) matrices, and the methodology for manual
annotations of fish chorus timings. Section 3 delves into the PCA
methodology applied to daily spectrograms, exploring two distinct
approaches for spectral data reduction.

In Section 4, we discuss the results and analyses stemming from
the transformation of daily spectrograms into energy-related time
series, including their conversion into acoustic maps. This section
highlights the utility of these transformations in identifying long-
term patterns, diurnal fluctuations, and the effects of specific events
on the acoustic landscape.

Additionally, Section 4 compares the spectral characteristics of
original fish choruses with those reconstructed post-PCA
application, and similarly, contrasts the original long-term
spectrograms with their PCA-reconstructed counterparts. The
manuscript concludes with Section 5 summarizing the overall
considerations, limitations of the current study, and potential
directions for future research.

2 Materials and methods

2.1 Data collection

The data presented in this study was collected in an ecologically
relevant area named Xixova´-Japu´ı State Park (XJSP), located in the
southwest of the Santos Estuarine System (São Paulo State, Brazil).
The park encompasses a marine area inside the Santos Bay and an
adjacent inland region of tropical rainforest. Situated in the vicinity
of Santos Harbour, the largest port in Brazil, the conservation unit is
within a region severely affected by environmental impacts and port
activities Araujo et al. (2013). Specifically, the data presented in our
study was collected underwater, in the marine area of the
conservation unit, as illustrated in Figure 1.

A custom-made autonomous passive monitoring system Caldas-
Morgan et al. (2015) was deployed at the monitoring site. The
autonomous system continuously recorded underwater sound from
February 4 to 4 March 2015. The recording was carried out at a
11.025 kHz sampling rate (fs), with 16-bit resolution, and was
continuously stored in a local SD card, inWAVfiles of 15-min durations.

2.2 Computation of daily power spectral
density (PSD) matrices

In order to obtain a time-spectral representation of the entire
collected dataset, daily PSD matrices were computed for each
monitored day. It is worth noting that this procedure entails a
significant volume of data reduction, enabling quick visualization of
large datasets while retaining relevant information about the
monitored site, which will be discussed in the following sections
with more details.

The procedure used to calculate the daily PSD matrices is
explained as follows: for each WAV file recorded on a specific
day (from 04/02/2015 to 04/03/2015), a respective PSD matrix was
computed using the Welch method Welch (1967) with a 1-s
Hamming window, 1,025 frequency points, 50% overlap, and
60-s temporal signal segments. Subsequently, all PSD matrices
pertaining to the same day were concatenated, thus producing
daily PSD matrices Pulgar-Pantaleon et al. (2023).

2.3 Annotation of fish chorus timings

Daily Power Spectral Density (PSD) matrices were utilized both
for the calculation of Sound Pressure Levels (SPL) for each respective
day and for facilitating the visualization of 24-h spectrograms
Sánchez- Gendriz and Padovese (2017b). SPL, indicative of a
sound signal’s energy, can be deduced from the PSD matrices
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based on Parseval’s theorem. This theorem posits that the total
energy of a signal can be represented equivalently in the time or
frequency domain. Consequently, by aggregating the daily PSD
matrices over specific frequency bands, a time series representing
the energy within those bands is generated. This series serves as a
proxy for identifying events localized within certain spectral ranges,
such as fish choruses.

Previous investigations have identified four distinct fish
choruses (Ch1, Ch2, Ch3, and Ch4) characterized by regular
daily occurrences, primarily at dawn and dusk periods Sánchez-
Gendriz and Padovese (2016), Sánchez-Gendriz and Padovese
(2017b). To ascertain the onset, peak, and cessation of each
chorus type, manual labeling was conducted through the
spectrogram’s visual examination and the SPL time series for
designated frequency bands. Specifically, the 0.3–1 kHz band was
applied for Ch1 annotations; the 0.3–1.5 kHz band for Ch2 and Ch4;
and the 1.5–2.0 kHz band for Ch3 annotations. These temporal
markers were meticulously noted on the SPL plots Sánchez-Gendriz
and Padovese (2017b).

The selection of different frequency bands for manual annotation
was based on the distinct and specific spectral characteristics of each
type of chorus. These differences in spectral concentration allowed for
the discrimination of chorus types, as previously noted in the literature
and illustrated in the long-term spectrograms presented in this study.
The meticulous annotation of fish chorus timings serves as a reference
for subsequent analyses, enabling a comparative evaluation of the
outcomes derived from the PCA methodology delineated in this study.

2.4 PCA for spectral dimensionality
reduction of 24-h spectrograms

To achieve efficient data representation while maintaining
relevant temporal and frequency information, spectral
dimensionality reduction was applied to the analyzed data.

Firstly, spectral downsampling was performed at a ratio of 1:
5, reducing the original 1,025 frequency bins to 205 points. Next

were selected the frequency bins within the 200–2,000 Hz range,
which represent chorus activities as illustrated in Section 3.1,
resulting in 67 spectral points. PCA was then applied to the
spectrally subsampled data within this frequency band. The
number of principal components was chosen to capture 95%
of the variance.

PCA was utilized to compress the spectral dimensions of the
24-h spectrograms, facilitating subsequent analysis and visualization.
This reduction was achieved by concatenating daily spectrograms and
treating the frequency dimensions as features projected onto the
principal component space, with time bins serving as individual
instances. The spectrograms were constructed with 1,025 frequency
points and 1,440 time points per day, corresponding to a 1-min
resolution.

This methodological approach effectively reduces the
dimensionality of the spectrogram data while preserving the
essential spectral characteristics that define the temporal patterns
of fish choruses. The effectiveness of this approach will be
demonstrated in the subsequent section.

To reconstruct the spectrograms, we performed an inverse PCA
transformation, projecting the data back from the principal
component space to the original frequency space. Given the
spectral downsampling performed initially, linear interpolation
was employed during reconstruction to restore the frequency
resolution to its original state. This interpolation step ensures
that the visual and analytical resolution of approximately 5 Hz is
maintained, thereby preserving the fidelity of the spectral
information. The reconstructed spectrograms retain the key
features of the original data, enabling a detailed analysis of the
temporal and spectral patterns of fish choruses.

2.5 Acoustic heatmaps construction

Acoustic heatmaps, also known as Acoustic Maps, were
developed utilizing the PCA derived from the 24-h spectrograms.
These maps are intended to augment the visual representation and
aid in the identification of dynamic acoustic patterns within the
analyzed soundscape.

The creation of Acoustic Maps entailed several steps: Initially,
for each principal component (PC) extracted at a 1-min temporal
resolution, a corresponding 24-h time series was constructed. To
achieve temporal smoothness and enhance interpretability, a
moving average filter was subsequently applied to these time
series, adhering to the methodology described in Sanchez-
Gendriz (2021).

These filtered time series were then arranged into a two-
dimensional (2D) array to form a heatmap matrix, where each
row represented a 1-min interval within the 24-h cycle, and each
column corresponded to a day within the study period. To further
improve the readability of the Acoustic Maps, horizontal
interpolation was performed on the heatmap matrix. This step is
especially beneficial for datasets encompassing a relatively short
duration, as it significantly enhances the visual continuity of the data
representation. In the context of this study’s 29-day dataset,
horizontal interpolation was instrumental in refining the visual
quality of the maps, a point that will be detailed in the
following sections.

FIGURE 1
Map highlighting the location of the recording point at XJSP,
situated within the Santos Estuarine System (São Paulo State, Brazil).
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3 Results and discussion

3.1 Long-term spectrogram vizualization

We used the annotated timings for each of the four chorus types
across individual days to create a map of the acoustic activity. For
ease of identification, choruses were labeled sequentially based on
their occurrence in time. Therefore, we used the labels Ch1, Ch2,
Ch3, and Ch4 to denote these continuous sound events. Figure 2
provides a twofold representation: a) An Acoustic Map showcasing
the activity of the choruses. Notably, the Acoustic Map in Figure 2A
has a unique characteristic: each time series, representing a specific
chorus, spans a 24-h duration with a 1-min time resolution. If
chorus i occurs, it adopts a value of i, and during non-occurrences,
the value is 0. By using different colors for each chorus and a
separate colormap for periods with no chorus activity, we can
superimpose the time occurrence of all four chorus types onto
the same Acoustic Map. b) In Figure 2B, a depiction of a 24-h
spectrogram with annotations for the four chorus types, is shown. A
keen observation from the sample days in Figure 2B shows that
chorus Ch1 and Ch2 overlap in their time and frequency band
concentration, but they vary significantly in their spectral shape. In
contrast, while Ch2 and Ch4 exhibit similar spectral patterns, they
differ in their time of occurrence. Ch3 stands apart both in terms of
its spectral content and its temporal proximity to the end of Ch2.

Long-term spectrograms have been instrumental in
characterizing soundscapes in both terrestrial and marine
environments Guan et al. (2015); Sankupellay et al. (2015),
especially when monitoring fish communities Carric¸o et al.
(2020). Even though spectrograms transform audible information
into a visual domain, the inherent data reduction is worth noting.
Aural analysis of a 24-h sound file is a lengthy process, while 24-h
spectrograms allow for rapid exploration, often with minimal
training required for the recognition of prolonged sound events
like fish choruses.

For instance, Figure 3 illustrates a 7-day spectrogram derived
from our dataset. A recurring pattern of fish choruses is evident. In
the top panel, the spectrogram covers a frequency band from 0 to
5 kHz. The bottom panel presents annotations of notable fish
choruses demarcated by rectangular boxes. Here we illustrate the
long-term spectrogram, showing the annotations of choruses on the
spectrograms. For that we will illustrate as representation 7 days of
the data. Extended long-term spectrograms covering 28 complete
days are included as (Supplementary Figure S1–Original spectrograms,
Supplementary Figure S2–PCA reconstructed spectrograms).

As part of the visualization pipeline, for representing values in
spectrograms, heatmaps, and spectral information, we have transformed
the magnitude numerically using AdB = 20 log10(A). This logarithmic
transformation is a standard practice in acoustics to effectively represent
the wide dynamic range of sound pressure levels, making it easier to
visualize and interpret variations in acoustic signals.

3.2 Applying PCA to daily spectrograms

In this section, we present the results obtained from applying
PCA to the spectral dimension of long-term spectrograms.
Following spectral downsampling at a ratio of 1:5, we retained
205 frequency components from the original 1,025 frequency
bins. Based on prior analysis (Section 3.1), we focused on the
frequency range from 200 to 2,000 Hz, resulting in 67 spectral
components, as this range contains relevant acoustic activity.

PCA was then applied to the spectrally subsampled spectrograms.
As illustrated in Figure 4, seven principal components were selected
based on the cumulative variance criterion, accounting for 95% of the
variance in the original data. This approach effectively reduces the
dimensionality of the spectrogram data while preserving the essential
spectral characteristics that define the temporal patterns of fish
choruses, as demonstrated in Section 3.2.2. The spectral contribution
of each component is detailed in the Supplementary Material.

FIGURE 2
Acoustic activity map based on annotated timings of four chorus types, labeled Ch1, Ch2, Ch3, and Ch4, across individual days. (A) Acoustic Map
spanning 24 h with 1-min resolution: each time series denotes a chorus type, adopting values of i during its occurrence and 0 otherwise. Different colors
represent each chorus type, with a separate colormap indicating periods of inactivity. (B) 24-h spectrogram highlighting the four chorus types. Choruses
Ch1 and Ch2 overlap in terms of time and frequency, yet exhibit distinct spectral shapes. Although Ch2 and Ch4 present similar spectral patterns,
they manifest at different times. Ch3, with its distinct spectral content, appears close to the end of Ch2.
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The principal components are initially illustrated as Acoustic
Maps. Subsequently, we provide a visualization of 7 days of
reconstructed spectrograms obtained from a representative period
and compare them with the original spectrograms.

Additionally, we have included Supplementary Figure S3, which
illustrates the contribution of each individual PC. This figure was
obtained by performing an inverse PCA using each specific PC
represented in the figure. The figure also includes the contributions
of the combined seven Principal Components (1:7 PCs). It is
important to note that while the spectral contribution of
individual PCs can be challenging to interpret, they provide
valuable insights when combined. The individual components show
patterns that are a linear combination of the energy concentrated in the
frequency bins of the original spectrograms. These patterns, while not
corresponding to contiguous frequency ranges, capture different
aspects of the spectral characteristics. The individual temporal
patterns of each PC can be representative of the dynamics of the
soundscape, as previously illustrated in Figure 5 and further
complemented by the results presented in Supplementary Figure S3.

3.2.1 Acoustic maps of principal components
The application of PCA to soundscape analysis is not merely a

statistical reduction but an insightful exploration into the biophony
of the studied marine ecosystem. Although we cannot directly label
each Principal Component (PC) with specific fish activities, they
encapsulate significant acoustic patterns related to the dynamics of
the marine environment. These components are projections of the
data into the space of greatest variance, allowing us to capture the
critical aspects of the soundscape.

To analyze and interpret these components, we created
acoustic heatmaps, which we propose as a complementary
visualization tool. The acoustic heatmaps, presented in Figure 5,

unravel the temporal evolution and intricate dynamics captured
within the time series of PCs. Each PC revealed through PCA
provides a distinct perspective on the acoustic characterization of
the marine environment.

For instance, the pronounced energy observed in component
1 during nighttime hours suggests a robust pattern of nocturnal or
crepuscular activity. Such activity may reflect the ecological behaviors of
marine organisms, particularly those associated with vital functions like
feeding or spawning in fishes, which are often timed to occur in reduced
light conditions Smejkal et al. (2018); Fortes-Silva et al. (2010).

It is important to note that PCs are obtained as linear
combinations of the spectral information presented in the
original spectrograms, after downsampling and selecting the
frequency band of interest. These PCs can be understood as a
reduced latent space that not only holds the spectral information
(as we can project back and obtain approximations of the original
spectrograms), but also serves as a valuable complementary
visualization tool for characterizing the acoustic environment.

In contrast, components 2, 3, and 6, which exhibit pronounced
activities at sunrise, might represent a diurnal chorus, where
different species are possibly taking advantage of the lower levels
of light to communicate for mating or territorial purposes. The
sunrise as well as sunset periods often mark a transition in the
oceanic soundscapes Buscaino et al. (2016). Thus, these particular
PCs encapsulate with notable precision the significance of sunrise in
the soundscape under study.

The weighted components heatmap, which aggregates the
contribution of individual PCs, serves as a composite representation,
encapsulating the overall soundscape. It accentuates the dominant
sound patterns and minimizes less significant noise, allowing for a
clearer interpretation of the soundscape’s behavior over the
studied period.

FIGURE 3
A 7-day spectrogram derived from our dataset. The top panel captures the 0–5 kHz frequency band, and the bottom panel highlights fish chorus
annotations enclosed in rectangular boxes.
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The complementarity of the PCs underscores the multifaceted
nature of marine acoustic environments. When interlaced with
long-term spectrograms, these acoustic maps enrich exploratory
data analysis (EDA) and facilitate a more nuanced visualization of
soundscape dynamics. They act as a Supplementary Material,
augmenting traditional spectrogram analysis by highlighting
temporal patterns that may otherwise be obscured.

In summary, the use of PCA to generate acoustic maps is a well-
suited methodological framework for characterizing the acoustic
signatures of marine environments. This technique stands to
significantly improve our understanding and monitoring of

complex terrestrial and aquatic ecosystems. The insights obtained
from these maps are invaluable, offering implications for ecological
surveillance and the advancement of acoustic monitoring
technologies in these demanding contexts.

3.2.2 Reconstructing spectrograms from PCA
The reconstruction of spectrograms using PCA is a powerful

example of dimensionality reduction without significant loss of
critical information, which has profound implications for the
design and operation of communication systems, particularly in
the context of environmental monitoring.

FIGURE 4
This figure illustrates the cumulative percentage of variance explained by each principal component. The red dashed line indicates the threshold at
which 95% of the variance is explained, corresponding to seven principal components. Each bar represents the percentage of variance explained by an
individual principal component, demonstrating the diminishing returns of additional components beyond the seventh.

FIGURE 5
Acoustic maps of principal components.
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The visual comparison of the PCA-reconstructed spectrograms
with the original in Figure 6 underlines the efficacy of PCA in
capturing and representing the essential features of the soundscape.
Even with a reduction from 1,025 spectral points to just 7 principal
components, the PCA reconstruction retains the core spectral
characteristics and temporal events observed in the original data.
This fidelity in reconstruction is remarkable, as it suggests that the
bulk of the information conveyed in the original spectrogram is
encapsulated within these few components.

For communication systems, especially those deployed for long-
term environmental monitoring or across extensive arrays of
acoustic sensors, this dimensionality reduction is invaluable. It
means that the systems can store and transmit the most relevant
information without the overhead of excessive data size. In practical
terms, this could lead to more efficient use of bandwidth and storage,
faster transmission of data, and potentially lower energy
requirements for sensor operation—critical factors in remote or
large-scale monitoring operations where resources are at a premium.

Moreover, the ability to reconstruct the original spectrogram
from a handful of components has significant implications for the
real-time analysis and interpretation of acoustic data. Systems
could be designed to process and analyze data more quickly,
identify key acoustic events or changes in the environment with

greater speed, and respond to potential incidents or anomalies in a
timely manner.

In the context of ecological monitoring, this means that researchers
can maintain a high-resolution window into the soundscape while
managing the data deluge that often accompanies continuous
monitoring. For communication systems, particularly in underwater
environments where bandwidth is limited, employing PCA for data
reduction could enablemore nuanced and detailed acoustic information
to be captured and analyzed than would otherwise be feasible.

3.2.2.1 Comparison of original and PCA-
reconstructed spectra

The detailed comparison of original and PCA-reconstructed spectra
for various chorus types, as depicted in Figure 7, provides compelling
evidence for the robustness of the PCA method in preserving the
integrity of spectral features during dimensionality reduction.

For Chorus 1, the congruence between the original and PCA-
reconstructed spectra is particularly notable in the contour of the
frequency range where the main energy is concentrated. This
indicates that PCA retains the fundamental frequency
components that characterize this type of chorus.

The Chorus 2–3 graph facilitates a nuanced comparison between
two chorus types within the same frequency domain. The

FIGURE 6
Comparison of principal components along with representative long-term spectrograms.
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reconstruction not only preserves the unique peaks of each chorus but
also delineates the subtle differences between them. The peaks of
Chorus 2 are accurately matched in the PCA reconstruction,
demonstrating the method’s capacity to discern variations within
similar frequency ranges. Chorus 3, despite its close frequency range
to Chorus 2, is distinctly represented, underscoring PCA’s ability to
differentiate and reconstruct overlapping acoustic events.

In the case of Chorus 4, with its complex spectral profile
characterized by multiple peaks, the PCA reconstruction closely
mirrors the original’s variations, indicating that even the finer details
of a chorus’s frequency signature are captured.

The fidelity with which the PCA reconstructions replicate the
original spectra is critical for multiple reasons. Firstly, it shows that
PCA does more than reduce data dimensionality—it effectively
encapsulates the essence of acoustic events. Secondly, by preserving
the unique characteristics of each spectrum, PCA ensures that the
ecological or environmental information within the acoustic signals is
conserved. This preservation is vital for applications where spectral
features are used for the identification, classification, or monitoring of
biological or environmental occurrences.

Regarding communication systems, PCA’s capacity to conserve
essential spectral characteristics with fewer components can lead to
more efficient data compression and transmission protocols. Such
efficiency is especially crucial when managing extensive datasets or
transmitting data across channels with limited bandwidth, scenarios
common in remote underwater monitoring systems.

In summary, the PCA methodology demonstrates a substantial
reduction in data dimensionality while preserving essential patterns
and variations within acoustic data. This balance of efficiency and
effectiveness is highlighted by the close resemblance between the
original and PCA-reconstructed spectrograms, which underscores
the technique’s suitability for sophisticated environmental sensing
and communications. The visual representations generated by PCA
serve as an intuitive gateway to complex data, broadening the
accessibility of ecological research across various domains.
Ultimately, the ability of PCA to distill complex soundscapes into
a few informative components promises significant advancements in
ecoacoustics and the evolution of next-generation communication
systems designed for intricate and data-intensive environments.

4 Conclusion

In conclusion, this research elucidates the efficacy of
employing Principal Component Analysis (PCA) for spectral
dimensionality reduction and the visualization of environmental
soundscapes using 24-h spectrograms. Our analysis demonstrates
that even a limited set of seven principal components, derived from
an initial dataset of 1,025 spectral points, is sufficient to accurately
reconstruct original spectrograms, preserving both temporal and
spectral integrity. This approach not only serves as a robust
technique for reducing data complexity but also emerges as a
valuable visualization tool, enhancing our understanding of
acoustic dynamics over prolonged periods.

The creation of Acoustic Maps has proven to be of significant
value, particularly for the analysis and visualization of fish choruses.
While the focus of this study has been on underwater acoustic data,
the methodologies developed here are versatile and show promise
for application in a broader range of aquatic and terrestrial ecosystems.
Further exploration into the utilization of these methods in diverse
environments suggests a wide spectrum of potential applications.

The implications of our findings for the development of
communication and monitoring systems are particularly
noteworthy. By demonstrating that a few principal components
can convey the bulk of necessary information, we propose a scalable
solution for environmental monitoring systems. Such systems could
leverage the dimensionality reduction capabilities of PCA, leading to
efficient data storage, transmission, and real-time analysis in various
settings, including those that require extended deployment of
acoustic sensor arrays.

This study contributes to the growing field of ecoacoustics and
opens the door to the development of advanced, data-efficient
communication systems tailored for the complex and data-rich
landscapes of environmental monitoring.
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FIGURE 7
Comparison of selected spectrum for chorus types and mean spectrum from PCA reconstructed spectrograms.
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