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The impact of corn silage supplementation and post mortem aging on the

antioxidant status in longissimus thoracis et lumborum (LTL) muscle was

assessed using micro-spectroscopic techniques. A total of 30 Braford steers

were utilized in the study. Of these, 15 animals were supplemented with corn

silage for 120 days, while the remaining animals were fed exclusively on pasture.

LTL steak samples were aged for 2, 7, 14, and 21 days at a temperature of 2 ± 1°C,

under conditions of darkness and vacuum. Several colorimetric assays were

employed to evaluate the antioxidant capacity of both enzymatic and non-

enzymatic origin, as well as the levels of protein and lipid oxidation. The content

of heme pigment was determined by a spectrophotometric assay, while the

fluorescence fingerprint of beef was evaluated by fluorescence spectroscopy

excitation-emission matrices (FEEM). Additionally, the muscle microstructure

was analyzed via scanning electron microscopy (SEM). The results

demonstrated that the finishing system did not exert any discernible influence

on the rates of lipid oxidation, antioxidant capacity, or muscle microstructure.

However, the carbonyl content and total myoglobin exhibited higher levels in the

corn silage-supplemented animals. Conversely, during aging period, data

revealed that lipid degradation proceeded at a faster rate than protein

oxidation, accompanied by a notable enhancement in antioxidant capacity

within the hydrophilic meat extracts. In contrast, the lipophilic extracts

demonstrated a reduction in both enzymatic and non-enzymatic antioxidant

capabilities with the progression of post mortem aging. The aforementioned

alterations were accompanied by a reduction in the muscle microstructure

during the aging process. The results demonstrate that finishing steers with or

without corn silage over 120 days results in comparable and satisfactory beef

quality after 21 days of vacuum aging. It can be concluded that 21 days of storage
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compensates the antioxidant status obtained by feeding strategies in fresh meat.

Furthermore, SEM and FEEM techniques allowed for a precise evaluation of the

microstructure and oxidative status, suggesting that these methods could be

employed in future assays.
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Introduction

The oxidative stability of post-mortem muscle is dependent on

the composition and concentration of substrates, as well as the

balance of pro- and antioxidants, which is influenced by a number

of endogenous and exogenous factors. This encompasses a range of

catalysts, including iron, oxygen, light, temperature, and

microorganisms, as well as antioxidants present in muscle tissue,

including vitamin E, provitamin A, vitamin C, glutathione, and

antioxidant enzymes (Huff Lonergan et al., 2010; Bekhit et al., 2013;

Domıńguez et al., 2019, 2022). In vivo, cellular defense mechanisms

against oxidative stress include enzymatic scavenging of reactive

species, sequestration of prooxidant metals by nutrients or

transport and storage proteins, attenuation of cellular damage by

expression of heat shock proteins, and consumption of free radicals

by antioxidant molecules acting as a proton or electron donors

(Nimse and Pal, 2015). Conversely, during the post-mortem

conversion of muscle into meat, circumstances may be established

that permit a shift in the equilibrium between antioxidant and pro-

oxidant capabilities, thereby increasing the likelihood of oxidative

damage (Huff Lonergan et al., 2010; Bekhit et al., 2013; Sabow

et al., 2016).

It is important to highlight that lipids and proteins in meat are

the primary targets of oxidative stress processes, which result in

irreversible chemical modifications that reduce the nutritional

value, shelf life, and sensory qualities of the meat. These

modifications make meat undesirable for human consumption

(Haak et al., 2008; Lund et al., 2008; Huff Lonergan et al., 2010;

Bekhit et al., 2013; Domıńguez et al., 2019, 2022). It is therefore of

the utmost importance to mitigate oxidative deterioration in meat

to maintain its quality and safety for consumption. Indeed, there is

substantial evidence demonstrating that the implementation of an

appropriate animal feeding strategy can enhance meat quality

(Ripoll et al., 2014; Adeyemi et al., 2016a; Terevinto et al., 2019;

Coria et al., 2020, 2022), as well as, that storage with vacuum

packaging can prevent the modification of lipids, proteins, and the

oxidative stability in beef (Vincenti et al., 2009; Beriain et al., 2009;

Adeyemi et al., 2016b).

Argentine meat has a longstanding tradition of production on

natural and cultivated pastures. However, feedlot systems are

becoming more prevalent among producers, particularly when
02
low-cost corn is available (Descalzo and Sancho, 2008). The

composition of antioxidants, pro-oxidants, and fatty acids differs

between meat produced on pasture or grain (Pouzo et al., 2016).

While carcasses from grain-finished animals are generally heavier

and present better conformation scores (Rosa et al., 2014), cattle fed

on corn finishing diets tend to increase the proportion of omega-6

polyunsaturated fatty acids (PUFA), such as linoleic acid (Descalzo

et al., 2007). Indeed, diets based on corn can result in increased

energy intake, which in turn promotes elevated metabolic activity

and ROS production, thereby contributing to oxidative damage

(Ponnampalam et al., 2022). It is important to note that lipids

containing PUFA are particularly susceptible to attack by free

radicals, which can subsequently result in the degradation of

lipids and proteins (Domıńguez et al., 2019, 2022; Terevinto et al.,

2019). Conversely, animals that have been pasture-finished produce

meat with a higher content of omega-3 PUFA and conjugated

linoleic acid. Additionally, these animals are rich in carotenoids,

vitamin E, and polyphenols, which are natural antioxidants that

reduce oxidative stress in animal tissues and enhance the nutritional

quality of the meat (Descalzo and Sancho, 2008).

The quality and shelf life of meat are typically evaluated

subjectively through analysis or tests that are laborious, time-

consuming, destructive, and do not provide an immediate

response (Wu et al., 2022). In recent decades, the advancement of

non-destructive analytical techniques, including spectroscopy and

microscopy, has facilitated the rapid, precise, and sensitive analysis

of food matrices (Nawrocka and Lamorsk, 2013; Qin et al., 2017).

To illustrate, fluorescence spectroscopy (FS) has been employed in

meat analysis to predict surface spoilage (Yoshimura et al., 2014),

assess freshness, and differentiate fat, connective tissue, and

myofibers (Liu et al., 2019). Scanning electron microscopy (SEM)

combined with energy dispersive X-ray spectroscopy (EDX) was

employed to characterize the microstructure of bovine muscle

(Palka, 2003; Coria et al., 2023). In a previous study, Coria et al.

(2020) evaluated the effect of corn silage supplementation on some

meat quality parameters. Their findings demonstrated that beef

derived from steers reared exclusively on pasture exhibited reduced

hardness, as assessed byWarner-Bratzler shear force (WBSF), and a

lower intramuscular fat content, than meat derived from corn

silage-supplemented Braford steers. Furthermore, in both

finishing systems, the aging time resulted in a notable increase in
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pH and lightness values after 7 and 21 days, respectively,

accompanied by a linear decline in WBSF values (Coria et al., 2022).

In light of the aforementioned findings, the present study

extends the research of Coria et al. (2020, 2022) by examining the

impact of pasture supplementation with corn silage (PS) on the

post-mortem pro- and antioxidant status of the longissimus thoracis

et lumborum (LTL) muscle in Bradford steers. This is compared to

the effects of natural pasture (P) on the same muscle during aging

under vacuum-packed storage conditions, using micro-

spectroscopic techniques.
Materials and methods

Animals and sampling

This study was conducted with animals from a commercial

breeding herd in Santiago del Estero, northwestern Argentina (27°

17′34.3″S - 62°15′14.1″W). Animal handling and experimental

procedures followed the Animal Welfare Procedures Manual of

the Argentine National Animal Health Service (SENASA, 2016).

The meat samples used in the present study were obtained from

animals given diets as described by Coria et al. (2022). Briefly, 30

two-year-old Braford steers were randomly divided into two

experimental groups of 15 animals each and fed as follows for

120 days before slaughter: one group was fed ad libitum pasture (P)

and the second group was fed ad libitum pasture-supplemented

with corn silage (PS) (Table 1). Both groups had ad libitum access to

water and were weighed after the trial. The mean weights for the P

and PS groups were 455 ± 16 Kg and 473 ± 18 Kg, respectively (p =

0.05) (Coria et al., 2020). After assignment to dietary strategies,

animals were randomly assigned to three paddocks of 5 animals

each and slaughtered at an average age of 26 months. Following

slaughter, the carcasses were weighed, with the result expressed as

Hot Carcass Weight (HCW). The HCW for the control group was

264 ± 15 kg, and for the supplemented group, it was 298 ± 17 kg (p

< 0.05) (Coria et al., 2020). The degree of fattening was determined

following the Argentine Bovine Carcass Typification System (Junta

Nacional de Carne, Resolucion J-378/73 de la SAGPSyA). Based on

a visual assessment of the quantity and distribution of subcutaneous

fat, the fattening could assume values between 1 and 4. Higher

values indicate a greater thickness of this deposit. The control group
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carcass exhibited fattening degree values of 1 ± 0.0, while the

supplemented group showed values of 1.7 ± 0.5 (p <0.05) (Coria

et al., 2020). Following a 48-hour post-slaughter cooling period

between 1°C and 5°C, the block of LTL muscle between the 9th and

13th rib was removed from each left half carcass. Four subsamples

of approximately 10 cm and 300 g were taken with an electric saw

(Coria et al., 2022).

Samples were vacuum-packed (Dise SA., thickness 90 mm,

oxygen permeability 50 cm3 m-2 day-1, CO2 permeability 140 cm3

m-2 day-1, water vapor permeability 6 to 8 g m-2 day-1) and aged in

the dark at 2 ± 1°C for 2, 7, 14, or 21 days and then frozen at -80°C

until analysis. Before thawing, 50 grams of each subsample was

obtained, processed with a grinder, divided into 10 tubes for the

different tests, and stored at -18°C until further analysis. The

intramuscular fat content was previously determined in duplicate

according to the Soxhlet AOAC method (Coria et al., 2022), by

continuous distillation with hexane from 5 g of meat. The results

were expressed as a percentage of fat (grams of fat per 100 grams of

meat), yielding values of 2.22 ± 0.14 for the P group and 3.47 ± 1.24

for the PS group (p < 0.05). The analysis was conducted before the

meat reached six months of storage.
Lipid oxidation

The Ferrous Oxidation-Xylenol orange (FOX) assay described

by Grau et al. (2000) was used to measure lipid hydroperoxides

(LHP) in subsamples of raw meat aged 2, 7, 14, and 21 days.

Absorbance was measured at 592 nm after 30 min using a

NanoDrop 2000c UV-Vis spectrophotometer (Thermo Scientific,

USA). The LHP content was expressed as μmoles of cumene

hydroperoxide (CHP) equivalent per gram of sample and was

determined using a calibration curve with authentic CHP as

the standard.

2-Thiobarbituric acid reactive substances (TBARs) assay was

performed according to the method of Duan et al. (2010) with some

modifications. Briefly, 1 g of subsamples of raw meat aged 2, 7, 14,

and 21 days, was homogenized with 2 mL of 10% (w/v)

trichloroacetic acid and centrifuged at 4,000 ×g for 30 min at 4°C.

Then, 2 mL of 10 mM thiobarbituric acid (TBA) was added and the

solution was heated in a boiling water bath for 20 min. The

absorbance of the mixture was measured at 532 nm using the

NanoDrop 2000c UV-Vis spectrophotometer. The assay was

calibrated with a solution of known concentration of 1,1,3,3-

tetramethoxypropane (TMP), an analog of malondialdehyde

(MDA), and TBARS values were expressed as mg MDA per Kg of

the sample.
Protein oxidation

Protein oxidation was measured in raw meat aged 2, 7, 14, and

21 days by the formation of the side chain carbonyl group (C=O) as

determined by derivatization with 2,4-dinitrophenylhydrazine

(DNPH) according to Oliver et al. (1987). The protein

concentration was calculated at 280 nm using bovine serum
TABLE 1 Mean and standard deviation values for the chemical
composition of finishing diets fed to Braford steers over 120 days.

Chemical
composition

Finishing treatments

Pasture
(P)

Pasture + Corn
silage (PS)

CP (%) 9.13 ± 0.65 20.15 ± 0.85

ADF (%) 14.16 ± 0.15 30.40 ± 0.56

NDF (%) 24.62 ± 0.32 50.85 ± 0.38

OMD (%) 60.00 ± 0.89 81.25 ± 0.91
All values are calculated on a dry matter basis. CP, crude protein; ADF, acid detergent fiber;
NDF, neutral detergent fiber; OMD, organic matter digestibility.
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albumin (BSA) as standard, and the carbonyl content was measured

by the increase in absorbance at 370 nm and expressed as

nanomoles of carbonyl per gram of sample using the molar

absorption coefficient of 22,000 M-1 cm-1 for the protein

hydrazones (Wang et al., 2022).
Reducing and antioxidant capacities

The reducing power of the LTL muscle samples was

characterized by measuring the total phenolic content (TPC) only

in the hydrophilic fraction of raw meat samples aged 2, 7, 14, and 21

days using the Folin-Ciocalteu (FC) method (Singleton and Rossi,

1965; Echegaray et al., 2021). Total phenolic content was

determined by measuring the absorbance at 620 nm using a

microplate reader. Gallic acid (GA) was used for calibration and

TPC values were expressed as mg GA equivalents per gram

of sample.

The antioxidant capacity of the meat samples was determined

by analyzing both the hydrophilic and lipophilic extracts obtained

by homogenizing 1 g of raw meat aged 2, 7, 14, and 21 days in 2 mL

of 50 mM phosphate buffer (pH 7) and 2 mL of acetone:ethanol:

distilled water (5:4:1), respectively. Both homogenates were

centrifuged at 18,000 ×g for 30 minutes at 4°C, and each

supernatant was evaluated by reaction with the colored radical

solut ions described as fol lows. The 2,2 ’-azino-bis(3-

ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging

capacity was determined according to Re et al. (1999) measuring

the absorbance at 734 nm after 120 min with the NanoDrop 2000c

UV-Vis spectrophotometer. A calibration curve was also

constructed using Trolox (TX) as a reference and the results were

expressed as μmoles of TX per gram of sample. The 1,1-diphenyl-2-

picrylhydrazyl radical (DPPH) scavenging capacity was determined

according to Brand-Williams et al. (1995). Absorbance was

measured at 492 nm in a microplate reader (Infinite F50, Tecan).

The radical scavenging capacity was also expressed as μmoles of TX

equivalent per gram of sample using a calibration curve.
Antioxidant enzymatic activity

Determinations were made in raw samples aged 2, 7, 14, and 21

days. Catalase activity (CAT) was measured by recording H2O2

depletion monitored by absorbance at 240 nm after 3 min,

according to the method of Aebi (1984). Enzymatic activity was

calculated using the molar extinction coefficient of H2O2 (39.4 M-

1cm-1) and results were expressed as millimoles.min-1.mg-1 protein.

Total superoxide dismutase activity (SOD) was determined by

measuring the inhibition of pyrogallol autoxidation as proposed by

Gatellier et al. (2004). The enzymatic reaction was monitored by the

increase in absorbance at 340 nm after 5 minutes. One unit of SOD

activity was taken as the activity that inhibited the reaction by 50%.

The activity of glutathione peroxidase activity (GPx) was

measured at room temperature by recording the oxidation of

NADPH by the decrease in absorbance of the incubation mixture

at 340 nm after 3 min (DeVore and Greene, 1982). The GPx activity
Frontiers in Animal Science 04
was expressed as the nanomoles of oxidized NADPH.min-1.mg-

1 protein.
Determination of heme pigment content

The proportions of deoxymyoglobin (%DMb), oxymyoglobin

(%OxMb), and metmyoglobin (%MMb) were calculated based on

the absorbance data (Wyrwisz et al., 2016) on samples of raw meat

aged 2, 7, 14, and 21 days, free of external fat and connective tissue.

The surface layers excised from the samples with a sharp blade were

used (Faustman and Cassens, 1990). One gram of each sample was

then finely minced in 9 ml of ice-cold 40 mM phosphate buffer (pH

6.8). After a 1 h blooming period at 4°C, the homogenate was

centrifuged (15,000 xg) for 45 min at 4°C. The supernatant was

filtered through a Whatman No. 1 filter paper. The absorbance was

measured at 503, 525, 557, 582, and 700nm with a NanoDrop 2000c

UV-Vis spectrophotometer (Thermo Scientific, USA). The values of

%DMb, %OxMb, %MMb, and total myoglobin (Mb) were

calculated using the following equations: (Tang et al., 2004;

AMSA, 2012).

%DMb = −0, 543*
A582

A525

� �
+ 1, 594*

A557

A525

� �

+ 0, 552*
A503

A525

� �
− 1, 329 (1)

%OxMb = 0, 722*
A582

A525

� �
− 1, 432*

A557

A525

� �
− 1, 659*

A503

A525

� �

+ 2, 599 (2)

%MMb = −0, 159*
A582

A525

� �
− 0, 085*

A557

A525

� �

+ 1, 262*
A503

A525

� �
− 0, 520 (3)

Total  Mb  
mg

g  meat

� �

= A525 − A700ð Þ* 1  mM  Mb=7:6ð Þ   x   1
mmol

l

� �
=mM

� �
*

17   g
Mb

mmol  Mb

� �
* dilution   factor   l=gð Þ*1000mg=g½ �

(4)
Structural analysis

The structure of the LTL muscle was analyzed by scanning

electron microscopy (SEM) following the protocol proposed by

Coria et al. (2023). Briefly, 3 samples of raw meat aged 2, 7, 14, and

21 days per group (P or PS) cut longitudinally to the muscle fibers

were fixed with Karnovsky’s solution (2.5% paraformaldehyde and

1.5% glutaraldehyde) in 0.1M dibasic phosphate (pH 7.2) at room

temperature. The samples were then rinsed twice with distilled
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water and dehydrated with increasing ethanol gradient solutions

(e.g., 30, 50, 50, 70, 90, and 100%) for 10 minutes in each solution at

room temperature. The samples were then placed in 100% acetone

for 10 minutes, dried with CO2 at critical point conditions (Denton

Vacuum, DCP-1), mounted in a holder with double-sided adhesive

tape, and gold plated twice for 10 and 20 minutes. The

ultrastructure was evaluated using a Phenom ProX scanning

electron microscope (SEM, Thermofisher, USA) with an

accelerating voltage of 5 kV and a working distance of 2 mm.

SEM images were obtained at 1000× for fiber magnification and

15000× for sarcomere structure evaluation. Five randomly selected

representative fields per sample were analyzed.
Fluorescence excitation-emission matrix

Both hydrophilic and lipophilic extracts of the LTL aged 2, 7, 14,

and 21 days muscle samples were also analyzed using an Agilent

Cary Eclipse fluorometer in the 3D fluorescence scanning mode

(Rey et al., 2021). The FEEMs were recorded with a front-face

cuvette configuration at room temperature and a scanning interval

between spectra of 5 nm, with both excitation and emission slits

fixed at 5 nm.
Statistical analysis

Data were checked for normality using Infostat software (Di

Rienzo et al., 2016). Meat trait data were analyzed using mixed

models. Aging time, feeding treatment (P or PS), and their

interaction were included as fixed effects and paddock as a

random effect in the statistical model. The choice of residual

covariance structure was based on the magnitude of the Akaike

Information Criterion (the lowest being better). If no significant

interactions were observed, the data were reanalyzed for main

effects only. If a fixed effect was significant, the least significant

difference Fisher test was performed to determine differences

between individual treatment means. For all assays, the

significance level was set at 0.05.
Results and discussion

Meat oxidative status

Figure 1, Supplementary Table S1 illustrate the variation in

molecular markers of protein and lipid oxidation in LTL muscle

from Braford steers subjected to two distinct feeding regimes (P and

PS, respectively) and stored in vacuum package at 2°C for up to 21

days. Protein oxidation, as quantified by the increase in carbonyl

residue (-C=O) content, exhibited a gradual increase with aging

days (Figure 1A). However, protein carbonylation is approximately

25% higher in animals fed PS than in those fed P (12.2 ± 6.5 vs 8.8 ±

6.7, p < 0.001), as presented in Supplementary Table S1 of the

Supplementary Material. This finding is consistent with the 48%

increase in carbonyl content observed by Insani et al. (2008) in the
Frontiers in Animal Science 05
psoas majormuscle of British Indicus steers finished in grain instead

of grass. Furthermore, the triceps brachii muscle from Aberdeen

Angus steers fed pasture exhibited lower protein oxidation

compared to those fed pasture and concentrate or exclusively

concentrate (Terevinto et al., 2015). It is therefore reasonable to

hypothesize that the observed increases in protein carbonyl content

are associated with lipid oxidation. This is based on the fact that

proteins react with oxidized lipid by-products, such as aldehydes or

reducing sugars (Domıńguez et al., 2022). In this context, the

content of lipid hydroperoxides demonstrated minimal variation

throughout the aging process. In contrast, a pronounced increase in

secondary lipid degradation products, such as malondialdehyde

(MDA), was observed (Figures 1B, C, respectively). Consequently,

the observed protein carbonylation is strongly indicative of a

correlation between lipid degradation and meat aging

(Domı ́nguez et al., 2019, 2022). In contrast, no notable

discrepancies were identified in the oxidative status of lipids

between the two dietary regimens. To enhance the precision of

the comparison between the effects of aging on the oxidative status

of meat, the mean value between feeding strategies for each

parameter during the aging period was calculated (Supplementary

Table S1). Subsequently, the aforementioned values (Y) were

employed to calculate the relative change in each oxidative

marker, as follows: [(Yt – Y0)/Y0], where Y0 and Yt represent the

values at the initial and a given day of aging, as illustrated in

Figure 1D. The comparative oxidative analysis indicates that lipid

degradation occurs at approximately twice the rate of protein

carbonylation, whereas the rate of lipid peroxidation remains

relatively constant throughout the aging process. Although the

formation of MDA in meat is known to produce a rancid odor

even at low concentrations, in the present case, the amount of MDA

produced even after 21 days of storage is an order of magnitude

lower than the accepted rancidity limit of 2.5 mg MDA.kg-1 meat

(Campo et al., 2006; Sales et al., 2020).

On the other hand, Insani et al. (2008) observed that samples of

psoas major muscle from British x Indicus steers aged 9 days

exhibited heigher levels of lipid and protein oxidation in

comparison to fresh meat. Furthermore, they noted a higher

carbonyl concentration in supplemented animals than in pasture-

finished animals. Additionally, elevated levels of protein, carbonyl

groups, and MDA were observed in steaks aged for 14 days in the

biceps femorismuscle of Aberdeen Angus steers, compared to steaks

aged for 2 days (Terevinto et al., 2015). This follows the established

phenomenon of oxidative stress occurring in proteins and lipids

during post-mortem aging, which results in the expected increase in

protein and lipid oxidation (Echegaray et al., 2021).
Reducing and antioxidant capacity

Figure 2, Supplementary Table S1 illustrate the variation in

reducing and antioxidant capacities of LTL muscle samples during

the specified storage conditions. The results show that corn silage

supplementation did not adversely affect the overall antioxidant

status of meat. However, a comparison of TPC, determined by the

Folin-Ciocalteu assay and the dye radical scavenging tests, during
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the aging period of the meat samples shows a different behavior

depending on the type of solvent extraction. In the case of the

hydrophilic fraction of the meat, the TPC value exhibited a slight

decrease with the passage of aging days (Figure 2A), while the total

antioxidant capacity for the scavenging of DPPH• and ABTS•+

radicals increased (Figures 2B, C). As the TPC is a measure of the

electron-donating capacity of the sample, the scavenging

mechanism of both dye radicals involves a mixture of reactions

based on hydrogen atom transfer (HAT) and electron transfer (ET)

(Echegaray et al., 2021). It can be hypothesized that the aging of

meat may result in the formation of hydrophilic hydrogen donor

compounds, as opposed to electron donors. Conversely, the radical

scavenging capacity of the lipophilic fraction was observed to

diminish with the passage of aging days (Figures 2B, C). This

finding follows the results obtained, which indicated a higher

radical-mediated lipid degradation reaction than protein

carbonylation production (Figure 1D). The aforementioned

outcomes follow those previously documented by Feidt et al.

(1996) who demonstrated that beef, the liberation of free amino

acids in beef increases with storage duration and that the
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concentration of hydrophilic antioxidants increases at a greater

rate than that of lipophilic antioxidants as a consequence of cell-

matrix fragmentation and protein breakdown.

Moreover, Gobert et al. (2010) demonstrated that the

antioxidant capacity of the hydrophilic extract remained constant

after 12 days of aging of longissimus thoracis and semitendinosus

muscles from Norman cull cows. Also, it was reported that, during

the aging of meat in the longissimus dorsi and psoas major muscles

of Aberdeen Angus steers, the TPC remained almost constant over

30 days. In contrast, the antioxidant capacity of lipophilic extracts

decreased, as evaluated by DPPH• and ABTS•+ scanning assays

(Pirotti Corrales, 2019).
Enzymatic antioxidant activity

Figure 3, Supplementary Table S1 demonstrate that the

enzymatic activity of the antioxidant enzymes GPx, SOD, and

CAT is largely independent of the dietary regimen of the animals.

The activity of GPx remained relatively stable throughout the aging
FIGURE 1

Variation of molecular markers of oxidation with days of aging of LTL muscle from Braford steers aged in vacuum packages at 2°C and fed ad
libitum grass (P) or grass-supplemented with corn silage (PS). (A) Protein carbonyls (-C=O), (B) lipid hydroperoxides (ROOH), (C) lipid degradation
malondialdehyde (MDA), and (D) mean values during aging for relative change in each molecular marker of meat oxidation.
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process. Conversely, SOD and CAT exhibited a gradual decline with

storage time, particularly after 14 days of aging. This suggests that

SOD and CAT are coupled enzymes and that a similar decline in the

activity of both enzymes is to be expected during the aging period

(Insani et al., 2008). Similarly, Pastsart et al. (2013) observed a

reduction in SOD activity at 10 days post-mortem in the longissimus

dorsi and femoral biceps muscles of young Belgian Blue bulls. A

comparable outcome was documented by Renerre et al. (1996) for

the longissimus lumborum, tensor fasciae latae, psoas major, and
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diaphragm muscles in Francaise Frisonne Pie Noire bulls aged for

8 days.

This can be explained by the inactivation of the SOD enzyme,

which was previously described by Bekhit et al. (2013).

Furthermore, following the present findings, Daun et al. (2001)

observed no differences in GPx activity in steer psoas major and

longissimus dorsimuscles over a 14-day aging period. These authors

demonstrated that the concentration of the cofactor (selenium) did

not decline sufficiently over the 14-day aging period to result in a

reduction in GPx activity. This suggests that this enzyme plays a

pivotal role in the oxidative defense of the muscle.
FIGURE 2

Variation in antioxidant capacity with days of aging of LTL muscle
from Braford steers stored in a vacuum package at 2°C fed ad
libitum grass (P) or grass supplemented with corn silage (PS). (A)
Total phenolic content (TPC) expressed as gallic acid equivalents
(GAE), (B) DPPH: 2,2-diphenyl-1-picrylhydrazyl radical scavenging
assay expressed as Trolox equivalents (TX) and (C) ABTS: 2,2’-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assay
expressed as TX.
FIGURE 3

Variation in enzymatic activity of glutathione peroxidase (GPx),
superoxide dismutase (SOD), and catalase (CAT) with days of aging
of LTL muscle from Braford steers stored in a vacuum package at 2°
C fed ad libitum grass (P) or grass supplemented with corn
silage (PS).
frontiersin.org

https://doi.org/10.3389/fanim.2025.1527127
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Castaño Ledesma et al. 10.3389/fanim.2025.1527127
Fluorescence changes produced
during aging

Figure 4 illustrates the fluorescence excitation-emission matrix

(FEEM) of the hydrophilic and lipophilic extracts derived from the

LTL muscle of Braford steers, contrasting the impact of aging

between 2- and 21-day samples across both feeding regimens. In

the case of the hydrophilic extracts, a sole fluorescence peak was

discerned at excitation/emission wavelengths of 285 nm/332 nm.

This fluorescence signature is characteristic of partially buried

tryptophan (Trp) residues in proteins (Andersen et al., 2018; Liu

et al., 2019), given that the fluorescence maximum of Trp in aqueous

media is red-shifted to 345 nm (Supplementary Figure S1). In the

presence of oxidizing agents, Trp residues can undergo several

different degradation pathways, with the final oxidized product

dependent on the nature of the oxidant precursor (Bellmaine et al.,

2020). The majority of oxygenated Trp degradation products exhibit

a red-shifted fluorescent emission band. For example, kynurenine

and N-formylkynurenine display emission maximums at 480 nm and

434 nm, respectively (Fukunaga et al., 1982). Furthermore, the

formation of advanced Maillard products exhibits a FEEM peak

with excitation/emission wavelengths at 320 nm/380 nm, as

previously observed in Japanese black cattle meat stored in sealed

plastic bags (Liu et al., 2019). In contrast, in the present case, the

constant FEEM fingerprint of the hydrophilic extracts, irrespective of

the feeding system and aging period, provides compelling evidence

that the buried Trp residues in the extracted proteins were effectively

protected from any oxidative damage under the vacuum packing

storage condition. Accordingly, the slight increase in carbonyl

content observed during the aging process (Figure 1D) may be

attributed to the oxidation of other protein residues exposed to the

media and yield no fluorescent derivatives.
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Conversely, the FEEM fingerprint of the lipophilic extract from

the LTL muscle of Braford steers displayed a distinctive 3D

fluorescence topography. The grass-fed and corn silage-

supplemented animals exhibited a prominent FEEM peak at

excitation/emission wavelengths of 355/434 nm. This observed

FEEM corresponded to that of the neat vitamin D (see

Supplementary Figure S1). However, with the progression of

aging from 2 to 21 days, the intensity of this FEEM band

demonstrated a notable decline, reaching approximately 74% and

59% reductions in the grass-fed and supplemented animals,

respectively. This result suggests the potential degradation of

vitamin D during the storage period, which correlates with the

decrease in the antioxidant capacity of the lipid extracts with the

days of aging (Figures 2B, C). The loss of vitamin D, together with

other lipid-soluble antioxidants, may also be responsible for the

increased degradation of lipids (Figures 1C, D). Interestingly, Liu

et al. (2019) reported that for n-hexane extracts of adipose tissue

from Japanese black cattle meat stored in sealed plastic bags for 24

days, a newly formed peak at 385 nm/470 nm, which was attributed

to conjugated Schiff base compounds formed by auto-oxidation

reactions within the meat. Therefore, the method of post-mortem

meat preservation plays a role in the type and amount of lipophilic

off-flavor compounds, which can be easily monitored by the

evolution of FEEM fingerprints (Islam et al., 2020).
Myoglobin content

Figure 5 illustrates the variation in the percentage of heme

pigments from the LTL muscle of Braford steers obtained from both

feeding systems during the aging period (Supplementary Table S2).

It can be observed that there was a concomitant decrease in
FIGURE 4

Fluorescence excitation-emission matrix (FEEM) spectra of hydrophilic (top panel) and lipophilic (bottom panel) extracts of samples of longissimus
thoracis et lumborum (LTL) muscle from Braford steers fed ad libitum on pasture (P) and pasture supplemented with corn silage (PS), vacuum-
packed at 2°C for 2 and 21 days.
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metmyoglobin (% MMb, Figure 5A) and an increase in

oxymyoglobin (%OxMb, Figure 5B) with aging, while

deoxymyoglobin (%DMb, Figure 5C) remained constant. Similar

behavior was observed for the longissimus dorsi Pirenaica bulls at 14

days of age (Beriain et al., 2009), in semimembranosus muscle after

1 h of blooming in Holstein-Friesian × Simmental crossbred bulls at

21 days of age (Wyrwisz et al., 2016), and also in longissimus

thoracis Nellore and Aberdeen Angus bulls during 21 days of aging

(Aroeira et al., 2017). The elevated initial values of %MMb observed

in the present study may be attributed to prolonged storage in

frozen conditions, as previously described by Henriot et al. (2020).

In strip loins frozen for up to six months, %MMb has been shown to

increase from approximately 25% to 35%. These authors have

proposed that the observed increase in MMb is due to a

reduction in metmyoglobin-reducing enzymes. On the other

hand, the increase in %OxMb during aging has been previously

explained by Aroeira et al. (2017) as a reduction in the oxygen

consumption rate, which is related to residual post-mortem

mitochondrial respiration. In this sense, it has been suggested that

during the early storage period under aerobic conditions at low

temperatures, the depth of oxygen penetration in meat increases

due to a decrease in tissue oxygen consumption by mitochondria
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and better oxygen diffusion. The combined effect of these processes

is that oxygen penetrates more deeply into the meat, oxygenating

the myoglobin. This is the mechanism by which the percentage of %

OxMb increases during the aging process (Beriain et al., 2009).

The PS animals exhibited higher total myoglobin (Mb)

concentrations in the LTL muscle than the P group (p < 0.001),

with this difference becoming particularly significant at the onset of

the aging process (Figure 5D, Supplementary Table S2). Similarly,

higher values of Mb concentration were observed in the longissimus

thoracis muscle from Spanish Brown Swiss - Limousine bulls that

were fed concentrate ad libitum (in the form of a meal and barley

straw throughout the finishing period) compared to those that were

fed a concentrated diet restricted in quantity (Cerdeño et al., 2006).

The authors proposed that concentrated feeding resulted in

enhanced protein synthesis, including that of myoglobin protein.

Subsequently, in the current case, the total Mb content decreased at

day 7 and remained constant during 21 days of aging for both

feeding diets (Figure 5D). This behavior was similar to that

observed in the longissimus dorsi muscle from Chinese Yellow

female cattle stored in a refrigerator for 10 days (Fu et al., 2017).

Coria et al. (2022) found with the same samples, an increase in

lightness and wyellowness during aging, that can be attributed to
FIGURE 5

Variation in heme pigments with days of aging of LTL muscle from Braford steers stored in vacuum package at 2°C fed ad libitum grass (P) or grass
supplemented with corn silage (PS). (A) Proportion of Metmyoglobin (%MMb), (B) oxymyoglobin (%OxMb), (C) deoxymyoglobin (%DMb), and (D) total
myoglobin (Mb).
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protein degradation, which weakens protein structures and

enhances light scattering, thereby increasing meat lightness

(Beriain et al., 2009). Furthermore, previous research has

indicated that muscles with lower levels of total Mb demonstrate

higher lightness (Onopiuk et al., 2016). However, it is noteworthy

that the discrepancies in total Mb content observed in the present

study did not mirror the changes in yellowness values previously

documented (Coria et al., 2022). These findings could imply that the

presence of multiple pigments, such as carotenoids, deposited in

muscle from pasture may counteract the color effect by reducing

%Mb.
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The results collectively indicate that finishing strategies exerted no

discernible influence on heme pigments and, consequently, meat color.

Furthermore, it was previously postulated that when %MMb pigment

reached 50% on the surface, meat was deemed unacceptable by all

consumers (Van den Oord and Wesdorp, 1971). It is noteworthy that

in the present study, this heme pigment exhibited values below 36%,

suggesting that fresh or aged beef under vacuum packaging could be

visually acceptable for consumers. Indeed, several factors can affect the

determination of heme pigments in meat. These include the type of

muscle, sample preparation, aging temperature (Madhavi and

Carpenter, 1993), packaging method, oxygen penetration (Henriot
FIGURE 6

Scanning electron microscopy (SEM) images were obtained at a magnification of 1000x (i.e., white bars of 50 µm) for 2, 7, 14, and 21 days of aging,
respectively (panels A through D and I through L), while for the sarcomere structure, a magnification of 15000x (i.e., white bars of 5 µm) was
selected for the same aging days (panels E through H and M through P). The LTL muscle samples from Braford steers stored in a vacuum package at
2°C and fed grass (P) are presented in figures A–H, while those fed grass supplemented with corn silage (PS) are presented in panels I–P.
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et al., 2020), blooming time (Beriain et al., 2009), analytical techniques

employed, storage of samples (Aroeira et al., 2017; Fu et al., 2017), and

the equations used for their determination (Tang et al., 2004), among

other factors, contribute to the observed variability.
Muscle microstructure during aging

The use of scanning electron microscopy (SEM) allowed the

direct morphological high-resolution characterization of the

microstructure of the muscle tissue, thereby enabling the

measurement of the length of the sarcomeres and the diameter of

the muscle fibers (Figure 6). The images obtained indicate that there

were no discernible differences in the microstructure of the muscle

from animals fed with pasture (Figures 6A–C, E–G) and silage-

supplemented (Figures 6I–K, M–O) for up to 14 days of aging. This

is evidenced by the identification offibers adhered to each other and

the sarcomeres delimited by the Z-disks. However, the 21-day-aged

samples exhibited a notable distinction in the separation of fibers

and a less discernible differentiation between sarcomeres across

both feeding systems (Figures 6D, H, L, P). Similarly, Palka (2003)

observed that the myofibrillar structure of the bull semitendinosus

muscle became less distinct after 12 days of aging. They noted that

gaps between myofibrils became more visible and that Z-disks were

less pronounced. It is important to note that oxidative stress can

result in the direct chemical oxidation of numerous contractile

proteins, which can lead to alterations in their structural

conformation and functional activity, explaining the results

obtained in the present work (Steinberg, 2013).
Conclusions

The present study aims to provide comprehensive insights

regarding the impact of corn-silage supplementation on the post-

mortem oxidative status and heme pigment stability during aging

under vacuum packaging of the longissimus thoracis et lumborum

muscle in Braford steers. The addition of corn silage to the diet had a

minimal impact on the oxidation of lipids and antioxidant capacity

when compared to the control group that was fed a diet based on

pasture. However, the supplementation resulted in elevated protein

carbonyl and total myoglobin levels, without affecting the

proportion of heme pigments. Irrespective of the feeding strategy

employed, post-mortem aging exerted a pronounced influence on

oxidative processes, with lipid degradation occurring at a faster rate

than protein oxidation. Moreover, hydrophilic antioxidant capacity

increased during the aging process, presumably due to the release of

antioxidant peptides, whereas lipophilic antioxidant activity

declined, correlating with vitamin D degradation. The findings

demonstrate that a 21-day vacuum aging period effectively

balances oxidative changes, yielding satisfactory heme pigment

contents and, consequently, color, regardless of the feeding

system employed. Furthermore, the utilization of analytical

techniques, such as fluorescence excitation-emission matrices

(FEEM) and scanning electron microscopy (SEM), proved

invaluable in capturing the subtleties of changes in the oxidative
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status and microstructure. These methodologies provide invaluable

tools for future research aimed at optimizing meat quality.
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