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With the purpose to organize methodologies found in (recent) papers focusing

on the development of genomic breed/population assignment tools, this review

proposes to highlight good practice for the development of such tools. After an

appropriate quality control of markers and the building of a representative

reference population, three main steps can be followed to develop a genomic

breed/population assignment tool: 1) The selection of discriminant markers, 2)

The development of a model that allows accurate assignment of animals to their

breed/population of origin, the so-called classification step, and, 3) The validation

of the developed model on new animals to evaluate its performances in real

conditions. The first step can be avoided when amid- or low-density chip is used,

depending on the methodology used for assignment. In the case selection of

SNPs is necessary, we advise the use of one stage methodologies and to define a

threshold for this selection. Then, machine learning can be used to develop the

model per se, based on the selected or available markers. To tune the model, we

recommend the use of cross-validation. Finally, new animals, not used in the first

two steps, should be used to evaluate the performances of the model (e.g., with

balanced accuracy and probabilities), also in terms of computation time.
KEYWORDS

breed composition, classification, clustering, admixture, purebred, crossbred
1 Introduction

During the last decades, there has been a lot of studies aiming to assign animals to their

breed/population of origin based on genotypes. The development of a tool of this kind relies

on three main steps: 1) The selection of markers, useful to assign animals to their breed/

population; 2) The classification, i.e., the development of a model that allows to accurately

assign animals to their breed/population of origin, and 3) The validation of the developed

model on new animals to evaluate its performances in routine conditions. However, the first

and second steps, or the second and third steps, are often confused in papers. Studies can also
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tend to skip the last step. A wide variety of strategies have also been

applied for each of the three steps. The advent of machine learning

techniques adds another level of complexity for developing genomic

breed/population assignment tools. All these events lead to the need

for guidelines for developing tools for breed/population assignment.

Therefore, the objective of this review is to summarize main strategies

found in the literature for breed/population assignment and to give

good practice to develop a genomic model for breed/

population assignment.
2 The definition of breed and
population: Classification
or clustering?

Before diving into the topic of breed/population assignment

models by themselves, it is first important to define the “breed” and

“population” concepts as they are used in this review. The

population concept is defined in a broad sense, representing any

stratified structure within an animal species. In that sense, a

population can be a breed. In this review, we use the definition of

breed as in the point 2 of Article 2 of the European regulation 2016/

1012 where ‘ “Breed” means a population of animals sufficiently

uniform to be considered distinct from other animals of the same

species by one or more groups of breeders which have agreed to

enter those animals in breeding books with details of their known

ascendants for the purpose of reproducing their inherited

characteristics by way of reproduction, exchange and selection

within the framework of breeding program”. Based on this

definition, breeds mainly have an administrative meaning.

If the definition of the studied breed or population sticks to the

observed stratification within a species or a breed, then it is possible

to develop a breed/population assignment model. The more the

definition of the studied breed or population fits the observed

stratification, the more the developed model will be able to

correctly assign animals to their breed/population. In that case,

classification methods are used, i.e., categories (breeds or

populations) are defined by the researcher and a model is built to

correctly classify animals into these defined categories. If the

researcher wants to investigate the stratification existing within a

species/breed, then clustering methods are preferred. It means that

categories are not known a priori in that case.
3 Applications of breed and
population assignment tools

Now that we have introduced the concepts of breeds and

populations, we can develop main applications of breed assignment

tools (in the field of animal breeding) and population assignment

tools (mostly in the field of ecology and wildlife preservation).
Abbreviations: AF, allelic frequency; CV, cross-validation; (G)EBV, (genomic)

e s t ima t ed b r e ed ing va lu e ; QC , qua l i t y con t ro l ; SNP , s ing l e

nucleotide polymorphism.
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3.1 Applications in animal breeding

As we have already explained, genomic breed assignment tools

can be the first step to investigate genomic diversity of breeds

(Nikolic et al., 2009; Gaspar et al., 2023; Hayah et al., 2023) by the

use of clustering methods. It helps to unravel stratification within a

species, a breed or even populations within a breed. Several

elements can explain the observed stratification such as: animal

breeding management, legislation for registry in the breeding book,

mating choices, selection of animals, exchanges of animals and

semen across countries, farms or institutions. A very commonly

performed clustering study is the estimation of admixture within

breeds and, from this, to derive migration events. This kind of study

is often made with STRUCTURE (Pritchard et al., 2000) and

ADMIXTURE (Alexander et al., 2009) software. Based on results

obtained in clustering, the objective can then be to estimate the

proportion of crossbreeding in an animal and which proportion of

the genome belongs to each of the studied breeds (Frkonja et al.,

2012; Huang et al., 2014; He et al., 2018). For this purpose,

classification methods are usually not suitable anymore and

regression is preferred. This is detailed in section 8 of this paper.

Assignment to a breed can be necessary to perform genetic or

genomic evaluations (Gebrehiwot et al., 2021). In this regard, breeds

can be genetic groups as defined by Westell et al. (1988) in the

mixed model equations. Estimations of (genomic) estimated

breeding values [(G)EBV] can also be based on breed

proportions. Some examples are the use of breed base

representation (i.e., breed proportions) to weight within-breed

GEBVs by VanRaden et al. (2020) or custom-made marker effects

based on the breed of origin of alleles (Sevillano et al., 2017).

Genomic breed assignment tools also have special applications for

endangered breeds like checking and maintaining the breed purity

(Hulsegge et al., 2019). Regarding article 19 of the EU Regulation 2016/

1012 on Animal Breeding, animals from an endangered breed can be

registered in the breeding book of their respective breed based on rules

defined by breeding societies. In the case of missing pedigree, a

genomic breed assignment tool can be the only way to guarantee

these registrations, and even more when cryobank-stored samples like

embryos, germplasm, ova, sperm and blood, with no phenotypes

allowing breed assignment, are available (Iquebal et al., 2014).

Genomic breed assignment tools should then complement

assignment based on phenotypes, when available, as the appreciation

of these phenotypes is highly subjective (Baumung et al., 2006).

To allow registration in the breeding book, parentage

assignment can also be a solution. For example, in extensive

farming, where there is natural service conditions, the sire can be

unknown (Connolly et al., 2014). To allow parentage assignment,

the methodology must be unambiguous, i.e., one parent per sex is

assigned to the animal with missing parents. One common way to

define parentage is by counting the number of opposing

homozygotes. For example, Gebrehiwot et al. (2021) used a SNP

panel with high minor allele frequency and they assigned parents

when there was less than 1% of opposing homozygotes.

For tracking (i.e., to follow a food product from farm to fork)

and tracing (i.e., determine exactly the origin of a food product)

labeled breed-derived products with high added value, breed
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assignment tools are very convenient, as illustrated by the different

tools developed to trace meat products from different cattle breeds

(Dalvit et al., 2008b, 2008a; Dimauro et al., 2013). Finally building a

web source with genotypes of animals from the reference

population can avoid biopiracy (Iquebal et al., 2014).
3.2 Applications in ecology and
wildlife preservation

As for domestic populations, assignment tools allow to study the

diversity of wild populations and their stratification. For these

populations, geographical (Safran et al., 2016), ecological and

biological barriers, e.g. subtypes with specialized ecological niches,

anatomic incompatibilities leading to the impediment of

reproduction (Johannesson et al., 2010), different routes of

migration (Scordato et al., 2020) or temporal isolation (Hendry and

Day, 2005), can lead to stratification. Because of these different

barriers breaking the assumption of panmixia, the dispersal of wild

populations can be a topic of interest. Practically, this leads to the

study of the migrant proportion in a population/individual (Waser

and Strobeck, 1998; Castric and Bernatchez, 2004) or of the sex-biased

dispersal (Dallimer et al., 2002). In the context of invasive species,

population assignment tools can also help to determine the origin of

the pest (Cornuet et al., 1999). Finally, another very important

application is the detection of living beings or products originating

from poaching (Cornuet et al., 1999; Primmer et al., 2000).
4 Optimal conditions for the
development of a genomic model for
breed or population assignment

Whatever the targeted application, there are several conditions

that allow an eased development of a performant genomic breed/

population assignment model. It must be highlighted that these

different conditions are not independent from each other.
Fron
1. The number of training samples in the reference

population, i.e., the population used to train the breed/

population assignment model (Cornuet et al., 1999; Negrini

et al., 2009; Bertolini et al., 2015). Usually studies use as

many samples as possible to perform the breed/population

assignment. Actually, the most important is not only the

number of training samples but how well they represent the

genetic diversity within the population or the breed.

The number of training samples needed also has to be

related to the level of differentiation existing between the

different breeds/populations. Giving a rule of thumb to

determine the necessary number of training samples is

difficult because it depends on several elements, as the

other conditions listed in this section. However, Connolly

et al. (2014) recommended to use 400-500 animals in the

reference population when the breeds are closely related

and 50-100 animals when they are distant. They however
tiers in Animal Science 03
did not specify what close or distant breeds were. Actually,

in papers, a wide range of number of animals per breed/

population are used in reference populations, e.g., 19 to 85

individuals per breed in Negrini et al. (2008) or 480 to 1042

individuals per breed in Dimauro et al. (2013).

2. The genetic heterogeneity existing in each of the

population/breed to differentiate (Rosenberg et al., 2001;

Bjørnstad and Røed, 2002; Hulsegge et al., 2019). The

presence of heterogeneity in one population/breed and

animals carrying atypical genotypes make the assignment

more difficult. Of course, this is even more true if the

different populations/breeds are less differentiated.

3. The number of populations/breeds to be differentiated

(Campbell et al., 2003; Putnová and Štohl, 2019). It is

easier to properly assign few breeds because it is easier to

find patterns of differentiation, i.e., that the number of

SNPs to be used for assignment decreases. For example, in

Wilmot et al. (2023b), the aim was to differentiate three

breeds and these three same breeds were also to be

differentiated among nine other breeds in Wilmot et al.

(2022). Comparing both studies, it was indeed observed

that the number of SNPs to be used for differentiation

decreased from 2,005 to an average of 805 across repetitions

when the number of breeds decreased. However, in these

studies, the decrease of the number of SNPs might also be

(partially) due to an increased number of samples,

representing better the genomic diversity of the

different breeds.

4. The level of genetic differentiation between populations/

breeds (Campbell et al., 2003; Putnová and Štohl, 2019;

Gebrehiwot et al., 2021). Under the assumption of the same

number of breeds/populations, the higher the level of

genetic divergence is, the easier it is to assign animals to

their population/breed.

5. The number of markers. Studies often tend to use as many

markers as they can in order to correctly assign animals to

their breed or population (Dimauro et al., 2013). The

objective is then to find the optimal number of markers

to reach a certain level of correct assignment (Judge et al.,

2017). However, using more and more markers does not

always lead to better performances of the genomic breed

assignment model as can be seen in Wilmot et al. (2022). It

is well known that having more variables than number of

samples has a negative effect on classification models,

which is referred as the curse of dimensionality (Gaspar

and Breen, 2019). Then, similar to the number of samples,

the most important is not the number of markers but their

discriminatory power (Roques et al., 1999). Logically,

markers that have segregating alleles between breeds/

populations or that have extreme allele frequencies (AF)

are useful for breed assignment (Campbell et al., 2003).

Before the advent of SNP genotyping, in the context of the

origin of human populations, the use of private alleles

(Neel, 1973) was also recommended. However, as SNPs

are biallelic, it is rare to find alleles that exist only in one of

the breeds/populations to be differentiated.
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Based on the chosen classification methodology

(Wilkinson et al., 2011), the number of breeds/

populations to be differentiated and their genetic

divergence, the optimized number of markers to reach a

threshold of correct assignment might be (very) different,

especially if the used markers are SNPs. The pruning of

SNPs in linkage disequilibrium was found to have an effect

only on the number of selected SNPs and not on the

percentage of correct assignment (Lewis et al., 2011). The

density of the chip is also an important factor shaping the

number of selected SNPs. Because of lower ascertainment

bias, high density chips allow better performances of breed

assignment models (Judge et al., 2017). This is also related

to the fact that there is a wider choice of SNPs to be selected

in higher density chips.
5 Quality control

There are two main types of quality control (QC). The first one

is performed on individuals and is often limited to animal call-rate

because researchers have usually a set of known reliable samples

from previous studies or because the number of available samples is

limited (e.g., in endangered breeds). The use of all available samples

when developing a genomic breed assignment tool can also allow to

be closer to in routine circumstances. The second type of QC is the

one made on markers and can encompass a wide range of criteria.
5.1 Quality control of individuals

Most of the time, animal call-rate is the only QC performed on

individual samples as it allows to discard samples with a high

percentage of missing values (e.g., 10% as in Hulsegge et al., 2019;

Gebrehiwot et al., 2021). It might also be interesting to remove

samples with Mendelian errors when pedigree is available and reliable.

Another important point when building the reference population

is, whenever the genotyped population size is high enough, to ensure

a balanced representation of the different families by keeping only

one animal’s sample in groups of highly related animals (Baumung

et al., 2006). The objective here is to have a good representation of the

within- breed/population diversity and to have animals that are less

related as possible in the reference population.

Removal of outliers has also been recommended by several

studies (e.g., Cornuet et al., 1999). However, it is sometimes hard to

define which animals are really outliers (e.g., due to crossbreeding)

or if they simply show a different, uncommon genotype. If the

genotype is rare but not due to crossbreeding, it is better to include

it in the reference population to have a better representation of the

breed/population’s genomic diversity. A last good practice for

building the reference population, even if not directly related to

QC, is to use animals that were recorded in the breeding book

(Negrini et al., 2009).

To conclude, we suggest to use animals that are recorded in the

breeding book (Negrini et al., 2009) and for which genotypes are
tiers in Animal Science 04
available with a good call-rate (e.g., at least 90% as in Hulsegge et al.,

2019 and Gebrehiwot et al., 2021). If the size of the population

allows it, less related animals should be selected to allow a good

representativity of the breed (Baumung et al., 2006). For this same

purpose, we recommend to keep animals with atypical genotypes as

long as they are purebred.
5.2 Quality control of SNPs

The SNPs being the most widely used markers currently, we

decided to focus on good practice for their QC in this section. Even

if the step of selection of SNPs can be by-passed by some studies,

QC of SNPs is always done. Similar to animal call-rate, SNP call-

rate is the most performed QC as it allows to get rid of less reliable

SNPs (Lewis et al., 2011; Frkonja et al., 2012; Dimauro et al., 2013;

Huang et al., 2014; Bertolini et al., 2015; Judge et al., 2017; Kumar

et al., 2019; Gebrehiwot et al., 2021; Manzoori et al., 2023; Zhao

et al., 2023; Hayah et al., 2023; Jasielczuk et al., 2024). Other

common and useful practices are the removal of unmapped SNPs

(Dimauro et al., 2013; Bertolini et al., 2015; Judge et al., 2017;

Gebrehiwot et al., 2021; Jasielczuk et al., 2024) and of SNPs located

on heterosomes (Dimauro et al., 2013; Bertolini et al., 2015; Zhao

et al., 2023; Jasielczuk et al., 2024). Except if the purpose is to study

sex-biased dispersal, the removal of heterosomic SNPs is very

important as the genomic breed/population assignment model

must not be sex biased. It can also be recommended to remove

monomorphic SNPs (Frkonja et al., 2012; Dimauro et al., 2013),

particularly when they are monomorphic for all breeds/populations

to differentiate (Wilmot et al., 2022), because these SNPs do not add

any useful information for assignment (Smouse et al., 1982) or, even

worse, they add noise. Some studies also used thresholds of GT

score (Hulsegge et al., 2013; Jasielczuk et al., 2024), GC score

(Hulsegge et al., 2013; Gebrehiwot et al., 2021; Jasielczuk et al.,

2024), minor allele frequency (Dimauro et al., 2013; Hayah et al.,

2023; Jasielczuk et al., 2024) and/or Hardy-Weinberg equilibrium

(Frkonja et al., 2012; Dimauro et al., 2013; Judge et al., 2017;

Jasielczuk et al., 2024) for QC of SNPs. Wilmot et al. (2022)

demonstrated that discarding SNPs with deviation from Hardy-

Weinberg equilibrium did not have any effect on the performance of

breed assignment models. This has to be further validated by new

studies as it might depend on the studied breeds and the chosen

methodology/model of assignment.

Besides QC per se, imputing missing SNPs is also a matter of

importance as the chosen methodology of assignment might not

allow any missing values in samples. For this purpose, several

strategies were implemented in studies. The genotype found to be

the most frequent within the breed/population can be used for

imputation (Dimauro et al., 2013; Bertolini et al., 2015). Instead of

imputing all individuals, both from the reference and the validation

population, together, Gaspar and Breen (2019), in the context of

genetic ancestry of human populations, recommended to impute

individuals to be tested one by one, based on the reference

population. We can apply this in the context of breed/population

assignment. It is indeed better to impute animals to be tested in a

second step, after the imputation of all reference animals.
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Otherwise, there can be an upward bias in the performance of the

developed breed/population assignment model. The Beagle

software (Browning and Browning, 2007), based on a haplotype-

cluster model, is very commonly used for imputation of missing

values (Hulsegge et al., 2019). Paschou et al. (2007) imputed human

genotypes using a least-squares regression-based technique (Alter

et al., 2000). Because they did not implement this strategy separately

for each of the studied populations but for all of them together, the

imputed genotypes can be less differentiated across the different

populations than they truly are. Nonetheless, an all-breed/

population imputation can be seen as a mean to discard less

reliable SNPs in the step of selection of markers.

To conclude, we suggest to use the following SNP QC: high call-

rate (e.g., 95% as in Hulsegge et al., 2013), polymorphic mapped

SNPs on autosomes (Dimauro et al., 2013) with GT score higher

than 0.55 and GC score higher than 0.2 (Hulsegge et al., 2013). We

do not recommend to discard SNPs with low minor allele frequency

as they contain important source of variation among breeds. If the

chosen methodology does not allow any missing SNPs, we suggest

to do the imputation for each breed separately (if the size of the

sample of genotyped animals allows it) and to impute validation

animals one by one, in a separate step, based on the reference

population (Wilmot et al., 2022). This paves the way for the next

step: selection of markers.
6 Selection of markers

As we highlighted in the previous section, the selection of

markers is not a mandatory step for developing a breed/

population assignment model and all the available markers can be

used for this purpose. Why therefore did some studies still decide to

select markers?
Fron
1. It can increase the performance of prediction (Wilkinson

et al., 2011; Pasupa et al., 2020) by removing markers that

are correlated to others (referring to collinearity of

variables) and by that mean decreasing the noise the

model has to deal with. Reducing the number of used

markers can also reduce the risk of overfitting which can be

related to the curse of dimensionality, i.e., number of

markers being notably higher than the number

of genotypes. The main purpose of the step of selection

of markers is therefore simply to detect the best set of

predictors for breed/population classification. When the

markers are SNPs, this best set of predictors can bear the

following names: Breed-Informative SNPs (Bertolini et al.,

2015; Schiavo et al., 2020; Kumar et al., 2021; Hayah et al.,

2023), Ancestry Informative SNPs (Lewis et al., 2011) or,

very simply, Informative SNPs (Judge et al., 2017; Bertolini

et al., 2018; Hulsegge et al., 2019; Moradi et al., 2021;

Jasielczuk et al., 2024). Other names can be used for the

selected panel of markers.

2. It can decrease the computation time (Kwak and Choi,

2002). This assumption is however very dependent on the

used methodology and the size of selected panels.
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3. The cost of the routine use of the breed/population

assignment tool can also decrease as low and mid density

chips are less expensive than high density chips or whole

genome sequencing. However, nowadays, the use of high

density chips is more and more common as their cost is

constantly decreasing. Developing a customized SNP chip

for breed assignment purposes can also involve important

financial resources.
One important drawback of the step of the selection of markers is

that the genomic breed/population assignment model might not be

sustainable in the long (or even the short) run. In the specific case of

SNPs, this is because SNP chips are regularly updated and selected

SNPs might not be found on these new SNP chips. This is true even if

the genomic breed/population assignment model is based on a subset

of SNPs overlapping several chips. Considering this problem, why not

simply using all the available SNPs, potentially at the overlap of

several SNP chips? Wilmot et al. (2023b) showed it was possible to

have similar performances of assignment with and without selection

of SNPs, avoiding overfitting and the curse of dimensionality by

summarizing SNP information in a few variables (the mean and the

standard deviation of the relationships) to be used for the genomic

breed assignment model. The computation time was therefore not

compromised, even for training the model. A suggestion would

therefore be to keep all available SNPs to build the breed/

population assignment model and then to regularly update the

reference population by removing animals genotyped with older

chips and adding recently genotyped ones.

The step of selection of markers can therefore be avoided when

mid density SNP chips are used but probably not for higher density

chips or whole genome sequencing as noise, curse of dimensionality

and computer time will strongly increase in that case. There is

however a lack of study about this topic.

Now that we have discussed if it is useful to select markers, let us

see how we can practically do this. The selection of markers often

presupposes the use of an indicator to decide which marker to keep

and which one to discard. The most common type of indicators rely

on AF. For example, global and pairwise Fst (Wilkinson et al., 2011;

Frkonja et al., 2012; Hulsegge et al., 2013; Judge et al., 2017; He et al.,

2018; Zhao et al., 2023; Jasielczuk et al., 2024), the difference of AF

(Wilkinson et al., 2011; Hulsegge et al., 2013; Judge et al., 2017;

Gebrehiwot et al., 2021; Zhao et al., 2023; Jasielczuk et al., 2024) or

their combination (Judge et al., 2017) have been common indicators

for selection of SNPs. Recently, more refined and sophisticated

techniques have been added to the list of means to select SNPs. One

can cite PCA (Wilkinson et al., 2011; Hayah et al., 2023),

multivariate canonical discriminant analysis (Dimauro et al.,

2013), artificial neural network (Iquebal et al., 2014; Manzoori

et al., 2023) or random forest (Wilmot et al., 2022). To make the

selection of SNPs even more complex, these different indicators can

also be combined in multiple stages (Bertolini et al., 2015, 2018;

Hulsegge et al., 2019; Pasupa et al., 2020; Wilmot et al., 2022). Even

if multiple stages are used to select SNPs, it does not necessarily

mean that there is no collinearity anymore in the selected set.

Authors propose some strategies to solve this issue. Judge et al.

(2017) suggested to define blocks of SNPs within each chromosome
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and then to select the best n SNPs within each block. Hulsegge et al.

(2013) and Kumar et al. (2019) used linkage disequilibrium as a

filter in the panel of selected SNPs to remove correlated SNPs.

Another suggestion to remove SNPs in collinearity is by systematic

selection of every ith SNP as Frkonja et al. (2012) did.

Besides the important question of the indicator (or their

combination) to be used to select markers, the issue is now to

decide how many markers have to be selected. Again, there is no

consensus in the literature about this question. Some authors

preferred to select an arbitrary number of markers (Bertolini

et al., 2018; He et al., 2018; Hulsegge et al., 2019; Jasielczuk et al.,

2024). It was also advocated to test different panel sizes to estimate

which one gives the most performant model, e.g., by incrementation

(Judge et al., 2017). Another way to estimate the panel size is to

define a percentage of correct assignment to be reached and select

the markers that allow this percentage of correct assignment

(Wilkinson et al., 2011; Manzoori et al., 2023). A last way to

define the number of markers is by setting a threshold to the

chosen indicator. As an example, Wilmot et al. (2022) defined

different thresholds for each indicator they used for selection of SNP

markers, leading to 64 different SNP panels to be tested.
7 Classification models

In studies, the classification step is not always clearly distinguished

from the selection of markers, mostly when they are based on the same

method. The main purpose of the classification step is to train the

model on the reference population to achieve the best performance.

Recently, more and more studies have used machine learning

techniques for classification which involves tuning of

hyperparameters. A cross-validation (CV) is a very common way to

tune hyperparameters. The reference population is first divided in n

folds. Each fold is successively used for internal validation, i.e., for

evaluating the model, while the others, n-1 folds, are used for building

the model. This whole process of random division can also be repeated,

referring then to repeated CV. Therefore, the performances in CV is

the average of 1-the conditional error rate across the number of folds

repeated n times. We then choose hyperparameters that allow the best

average performance.

Similar to the step of selection of markers, very different methods

can be used for classification. It is difficult to draw conclusions regarding

the best classification method because the number of breeds to

differentiate, their differentiation level or the SNPs selected (and how

they were selected) differ from one study to the other. Moreover, the

validation step is sometimes skipped in studies, making the comparison

even more difficult, and, most of the time, studies did not compare

different methodologies of assignment. However, Wilmot et al. (2022)

found out that the nearest shrunken centroids and partial-least squares

discriminant analysis gave better global accuracy of assignment than

random forest and support vector machine (respectively 97.33%,

98.22%, 88.79% and 75.08% in CV in the best cases). Zhao et al.

(2023) compared the k-nearest neighbours, the random forest and the

support vector machine techniques and suggested to combine all of

these to obtain better accuracy (higher than 99% in their study).
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Historically, breed/population assignment models were based on

microsatellites and likelihood of the genotype to belong to the

population based on the distribution of AF (Paetkau et al., 1995;

Bjørnstad and Røed, 2002). In a recent study, Manzoori et al. (2023)

showed that this methodology was less performant than the artificial

neural networks (70% vs 93% of correct assignment). Bayesian

approaches were later slowly preferred to likelihood techniques (e.g.,

Negrini et al., 2009). However, Dalvit et al. (2008a) had quite poor

accuracy with Bayesian approaches (only 52.5% of animals with at least

90% of probability were correctly assigned). This is similar to Baumung

et al. (2006) who had 66% of correct assignment for one of the sheep

breeds to be assigned. On the other hand, Putnová and Štohl (2019) had

better performances with Bayesian approaches than with random forest

and support vector machine, demonstrating once again the difficulty of

proving one classification methodology as the best. Machine learning

techniques have then been preferred to traditional Bayesian methods.

Dimauro et al. (2013) used the canonical discriminant analysis for breed

assignment, which is similar to the partial least squares-discriminant

analysis as it also makes a linear combination of variables. They could

achieve 100% of accuracy, without validation though, and the analysis

was done chromosome by chromosome, which can be avoided by other

methodologies. Another used machine learning technique is random

forest. It is a pretty intuitive method of classification, easy to tune and

that handles well the high number of variables related to genotyping.

Even if some studies found almost perfect global accuracies with

random forest (Bertolini et al., 2015, 2018), the study of Wilmot et al.

(2022) demonstrated it was not the most performant, which was

probably related to the higher number of breeds to differentiate in

their study. In recent years, artificial neural networks have gained

popularity in the scientific community. However, their application in

population/breed assignment is probably not easy when using SNPs as

the number of nodes per layer can then be incredibly high, which

increases the computation cost. One solution is to apply a very stringent

SNP selection: Manzoori et al. (2023) obtained a global accuracy of 93%

with 110 SNPs when using deep neural networks. Other classification

methodologies can be directly based on distances or relationships,

which are probably easier to interpret. Using the 5 nearest neighbors,

Lewis et al. (2011) could achieve almost 100% of accuracy, without

validation. Similarity matrices have recently been designed (Varga et al.,

2022; Perfilyeva et al., 2024) for dog breeds’ assignment. The genomic

relationship matrix can also be a method of choice for breed/population

assignment. It summarizes the information of the genotypes and

therefore avoids the curse of dimensionality. When combined with

support vector machine, Wilmot et al. (2023b) obtained 96% of

validation global accuracy, based on 200 resamples. This global

accuracy percentage was statistically similar to their previously best

found model in Wilmot et al. (2022), based on the nearest shrunken

centroids method. If not applied directly on genotypes but on average

and standard deviation of relationships, the support vector machine

methodology can therefore be useful for breed/population assignment,

even if its hyperparameters are less easy to tune, especially when the

kernel is not linear. However, Pasupa et al. (2020) had a global accuracy

of 95.66% using linear or radial support vector machine for assignment

of pig breeds. Based on all these examples, we can say that the best

classification methodology is case specific. We therefore suggest to use a
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machine learning technique, properly tuned, validated and using

appropriate performance indicators (described in sections 9 and 10 of

this review) for a performant breed/population assignment.
8 The specific case of crossbreds

Developing a model for detection of crossbred and breed

proportions can be a difficult task as it relies on the definition given

for a crossbred. Even if there are cases where breeds and lines are clearly

defined and registered in pedigree records, the fact is that local breeds

often lack complete pedigree and therefore breed compositions.

Knowing that these breeds were often admixed for their maintenance,

it makes the definition of purebred and crossbred very uneasy in this

case. Therefore, for local breeds, it is rather difficult to define a threshold

under which animals are predicted as crossbred based on false positives

and false negatives as suggested by Hulsegge et al. (2019).

The most straightforward manner to estimate breed proportions is

by regressing genotypes on AF (Kuehn et al., 2011; Huang et al., 2014;

Funkhouser et al., 2017; He et al., 2018; Calus et al., 2022). Partial least

squares or least absolute shrinkage and selection operator (LASSO)

variable selection are sometimes used to improve the prediction of the

breed composition (Frkonja et al., 2012). The ADMIXTURE software

has also been commonly used for breed composition, each defined

cluster being related to an existing breed (Gobena et al., 2018; He et al.,

2018; Gebrehiwot et al., 2021; Calus et al., 2022). However, in some

cases, even if the number of clusters is tuned to be equal the number of

breeds to differentiate, each defined cluster is not necessarily related to

an existing breed (Wilmot et al., 2023a). Bayesian models have also

been used to predict the breed composition. VanRaden et al. (2020)

considered breeds as continuous variables, animals being purebred

having a phenotype of 100 for this breed and 0 for others. He used a

genomic evaluation model implemented in the BayesA algorithm

(VanRaden, 2008) to predict the breed composition. This method is

suitable when all the breeds at the origin of the studied crossbreds have

been sampled or for composite breeds considered as purebred (e.g.,

Ayrshire). Similarly the BayesB algorithm has also been used

(Meuwissen et al., 2001) for breed composition prediction (Frkonja

et al., 2012). Another strategy for breed composition that deserves

attention is the BOAmodel developed by Vandenplas et al. (2016) that

uses phased haplotypes. A similar algorithm, also based on phased

haplotypes, was also developed by Weldrufael et al. (2024).

Using methodologies based on distances for breed composition is

less practical because there is a need to translate probabilities to breed

proportions, which is not always straightforward. Which probability

threshold to consider an animal as crossbred? Relationships between

breed proportions, e.g., 87.5% to be considered purebred (Hulsegge

et al., 2019), and predicted probabilities should be established.

Moreover, the relationships of the different breeds should be

considered when establishing these thresholds. A small and

significant probability to belong to another closely related breed

might not be considered as crossbreeding in opposition to a small,

but significant, probability to belong to a more distant breed. It seems

therefore more straightforward to use the strategies described in the

previous paragraph for breed composition.
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9 Validation

The objective of the validation step is simply to estimate how

the model would perform in routine, i.e., with new animals, not

used for the selection of markers and the training of the

classification model. The trained model is therefore applied on

these new animals and the performance of the model evaluated.

Once again, this step does not often appear in studies (for example

not in Roques et al., 1999; Lewis et al., 2011; Dimauro et al., 2013;

He et al., 2018; Kumar et al., 2019) and, if so, is often quite confused

with the step of classification (e.g., Wilkinson et al., 2011).

Therefore, the CV for hyperparameters tuning or selection of

markers should not be used to assess the model performance in

the meantime. It is of main importance to clearly distinguish the

steps of classification and validation to avoid to overfit the designed

model for breed/population assignment. As we already highlighted,

it is also of main importance to not use validation animals for the

step of selection of markers because it can lead to an upward bias in

the performance evaluation when validation animals are tested.

This was demonstrated in the context of human populations by

Smouse et al. (1982). Campbell et al. (2003) left aside one animal to

be assigned when computing AF (“leave-one-out”), which is already

an improvement compared to using all animals for all steps of

development of a breed assignment model. Huang et al. (2014) used

purebred animals and others with unknown breed composition for

validation purposes. In this case, it is difficult to evaluate accurately

the performance of the model and the use of crossbreds with known

breed composition should obviously be favored like in Gebrehiwot

et al. (2021).

The best advice is therefore to put apart a proportion of the

available genotypes for validation purposes only. This needs to be

the standard for the design of a breed/population assignment

model. Studies can randomly choose 10% (Bertolini et al., 2015,

2018) or 20% (Iquebal et al., 2014) of the samples to evaluate the

model in validation. A good practice according to Nadeau and

Bengio (2003) is to have classification sets that are 5 to 10 times

bigger than validation sets. New samples of purebreds and/or

crossbreds can also be used (Padilla et al., 2009; Kuehn et al.,

2011; Frkonja et al., 2012; Hulsegge et al., 2013, 2019; Judge et al.,

2017). Especially for endangered breeds, as the number of available

samples can be limited, the simulation of purebred (Dalvit et al.,

2008a), or even crossbreds (Funkhouser et al., 2017), also when

estimating the breed of origin of alleles (Weldrufael et al., 2024), can

be a solution for validation. Another important element to look at in

the validation step is how the model behaves when breeds that were

not used for developing the model are tested (Funkhouser et al.,

2017; Hulsegge et al., 2019).
10 Evaluation of breed/population
assignment model performances

Whether it is for the classification or the validation step, the

evaluation of the breed/population assignment model should rely
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on a (or several) performance indicator(s). There is therefore not a

unique way to evaluate the performance of a model. Here are some

of the most common performance measures:
Fron
1. The most basic performance measure is the percentage of

correct assignment, i.e., the global accuracy (Baumung

et al., 2006; Negrini et al., 2008; Lewis et al., 2011; Iquebal

et al., 2014; Bertolini et al., 2015, 2018; Hulsegge et al., 2019;

Putnová and Štohl, 2019).

2. The sensitivity which is the percentage of correct

assignment for each of the breeds/populations to be

differentiated and its corollary, specificity, which is the

percentage of animals not from a specific breed/

population that are indeed not assigned to this breed/

population (Negrini et al., 2008; Wilmot et al., 2022,

2023b; Jasielczuk et al., 2024).

3. The balanced accuracy is weighting the different breeds/

populations according to their number of samples when

computing accuracy (Brodersen et al., 2010). It can

therefore also be seen as the average of breed/population

sensitivities. The balanced accuracy should be more widely

used to evaluate breed/population assignment models as it

summarizes very well their average performance while

considering disparities in breed/population performances

and therefore replaces the combined use of global accuracy,

sensitivity and specificity.

4. Probabilities of assignment (Paetkau et al., 1995; Jasielczuk

et al., 2024) are another important indicator for evaluation

of performances. The highest probability of the genotype to

belong to a breed/population can be used for breed/

population assignment. However, that means that very

low probabilities can lead to assignment to a specific

breed and the more breeds/populations to differentiate,

the more there is a chance that this happens. One

solution is to use a threshold of probability (Dalvit et al.,

2008a) or log likelihood ratios of the probability to be

assigned (Wilkinson et al., 2011; Hulsegge et al., 2013;

Manzoori et al., 2023) to make the decision about the

predicted breed/population. A drawback is that if none of

the probabilities reaches the threshold, then the animal is

left unassigned. Probabilities can also be used to estimate

breed proportions of crossbreds. However, the relationship

between probabilities and breed proportions can

sometimes be difficult to estimate as we have already

highlighted. It is not because the probability of an animal

to belong to a breed equals 87.5% that this animal has a

breed proportion of 87.5% for this breed. In brief, breed

probabilities and proportions are not strictly equivalent.

5. Finally, for crossbreds, it is common to estimate the

correlation between the predicted and the real breed

proportions, the latter being estimated for example based

on pedigree or the full set of markers (Kuehn et al., 2011;

Frkonja et al., 2012; Funkhouser et al., 2017; Judge et al.,

2017; Gobena et al., 2018; Gebrehiwot et al., 2021). The root
tiers in Animal Science 08
mean square error can also be valuable for the evaluation of

genomic breed assignment in the case of crossbreds.
The main problem when evaluating models based on one

random sample of validation animals is that the performance of

the model is based on this unique random partition to reference and

validation populations. This means that a model can appear the best

just by chance. If the number of samples is high enough, it is then

very simple to subsample the dataset in different samples of the

same size and then randomly sample again in a reference and

validation population each of these subsamples. We can then use a

classical paired Student’s T-test or non-parametric paired tests like

Wilcoxon signed ranked or Friedman test (Demsǎr, 2006) on the

average performance of models to evaluate which one is the best.

However, for local and endangered breeds, with limited number of

samples by definition, it is most of the time not possible to obtain

independent datasets.

Wilmot et al. (2023b) used an adapted paired Student’s T-test,

based on the equation of Bouckaert and Frank (2004) to compare

the global accuracy, sensitivity and specificity of four different

models. The use of an adapted Student’s T-test was necessary

because the validation was made on 200 random resamples. In

that case, the use of classical Student’s T-test is strongly discouraged

because the assumption of independence of observations is violated

(Dietterich, 1998). Another solution adopted by Wilmot et al.

(2023b) is the use of a Bootstrap confidence interval. The main

strength of a Bootstrap confidence interval is that it does not rely on

any assumption, making it very suitable for any case of comparison

of methodologies (Brownlee, 2019).

We can find other strategies in the literature to overcome the

issue of the dependence of observations happening when there is

resampling. For each pair of models to compare, one can use a

McNemar’s test (McNemar, 1947), based on a contingency table of

the number of accordant and discordant results between models.

The objective of the test is to detect significant differences of

discordant results between the models. The main limitation of the

McNemar’s test is that it can only be used when there are only two

breeds or populations to be differentiated. Dietterich (1998)

recommended to use a two folds CV, repeated 5 times, and then

the adapted Student’s T-test for evaluation of models. However, if

there is already a need to use CV for the tuning of hyperparameters,

this means that a nested CV should be used, which is a bit trickier

to implement.

Finally, a last indicator to consider to evaluate performance of

breed/population assignment model is the training time and the

time to assign each animal to its breed/population in validation (or

in routine). The most important is to limit the latest as the model

should be able to quickly assign new animals with a high accuracy to

their breed/population of origin in routine. In opposition, the

training is only done once in a while to update the model and it

is not an issue if it takes more time than routine tests. Of course, it is

also less important to have a short validation or test time if there are

few animals to be tested in a routine basis. Therefore, what is

considered a reasonable computation time for training or for in
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routine tests depends on the context, that is, needs for updating the

model and number of animals to be assigned in routine.
11 Conclusion

There are three main steps, that should be clearly distinguished,

for the development of a breed/population assignment model:

selection of markers, classification and validation. These steps are

summarized in Figure 1, along with complementary steps,

considering SNPs as the used markers. If the first step should be

skipped or not depends on the chosen methodology and the density

of genotyping. To select markers, a QC must be first performed to
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eliminate less reliable and less informative markers. A methodology

should then be chosen, as well as a threshold, to indicate if the

marker should be kept or not. Pruning of markers in linkage

disequilibrium can be done to avoid collinearity and limit noise

in the model. The step of classification is nowadays mostly done

with machine learning techniques. The CV can be used to tune

hyperparameters of the model, based on the reference population.

The reference population should consist of animals with high call-

rate, that are less related as possible and representative of the breed

diversity. In this regard, atypical animals are very interesting to

build the reference population. Then, for the validation step, we

strongly recommend to use animals that were not used in previous

steps, purebred but also crossbreds, as well as animals from new
FIGURE 1

Work flow for good practice for breed assignment. In bold, main steps for breed assignment.
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breeds/populations. To evaluate the model, both in classification

and validation steps, we recommend the use of balanced accuracy as

it accounts for the sample size of each breed/population, and of

probabilities of assignment. It can also be useful to define a

minimum probability under which animals are considered

unassigned. If possible, the available genotypes can be subsampled

to repeat the evaluation of the model and reduce bias due to

partition. Otherwise, statistical tests for resampling can be used.

Another important aspect to look at is the computation time to

assign new animals so that the tool can be used in routine.
Author contributions

HW: Conceptualization, Investigation, Writing – original draft.

NG: Supervision, Writing – review & editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. H. Wilmot, as

a former Research Fellow andN. Gengler, as a former Senior Research

Associate, acknowledge the support of the Fonds de la Recherche

Scientifique – FNRS (Brussels, Belgium). The Walloon Government

(Service Public de Wallonie – Direction Générale Opérationnelle

Agriculture, Ressources Naturelles et Environnement, SPW-

DGARNE; Namur, Belgium) is acknowledged for its financial

support. The authors gratefully acknowledge the support of the

project 'Rotbunt DN' funded under the European Innovation

Partnership (EIP Agri) Schleswig-Holstein, Germany, through the

European Agricultural Fund for Rural Development (EAFRD).
Frontiers in Animal Science 10
Acknowledgments

This paper was adapted from the Chapter 4 of the doctoral

thesis of H. Wilmot: “Supporting the management and diversity of

local breeds through the use of genomic tools” Available at: https://

hdl.handle.net/2268/309315.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast model-based estimation
of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. doi: 10.1101/
gr.094052.109

Alter, O., Brown, P. O., and Botstein, D. (2000). Singular value decomposition for
genome-Wide expression data processing and modeling. Proc. Natl. Acad. Sci. U. S. A.
97, 10101–10106. doi: 10.1073/pnas.97.18.10101

Baumung, R., Cubric-Curik, V., Schwend, K., Achmann, R., and Sölkner, J. (2006).
Genetic characterisation and breed assignment in Austrian sheep breeds using
microsatellite marker information. J. Anim. Breed. Genet. 123, 265–271.
doi: 10.1111/j.1439-0388.2006.00583.x

Bertolini, F., Galimberti, G., Calò, D. G., Schiavo, G., Matassino, D., and Fontanesi, L.
(2015). Combined use of principal component analysis and random forests identify
population-informative single nucleotide polymorphisms: Application in cattle breeds.
J. Anim. Breed. Genet. 132, 346–356. doi: 10.1111/jbg.12155

Bertolini, F., Galimberti, G., Schiavo, G., Mastrangelo, S., Di Gerlando, R., Strillacci,
M. G., et al. (2018). Preselection statistics and Random Forest classification identify
population informative single nucleotide polymorphisms in cosmopolitan and
autochthonous cattle breeds. Animal 12, 12–19. doi: 10.1017/S1751731117001355

Bjørnstad, G., and Røed, K. H. (2002). Evaluation of factors affecting individual
assignment precision using microsatellite data from horse breeds and simulated breed
crosses. Anim. Genet. 33, 264–270. doi: 10.1046/j.1365-2052.2002.00868.x

Bouckaert, R. R., and Frank, E. (2004). “Evaluating the Replicability of Significance
Tests for Comparing Learning Algorithms,” in Advances in Knowledge Discovery and
Data Mining. 8th Pacific-Asia Conference, PAKDD 2004, Vol.3056 pp. 3–12 (Sydney:
Springer).
Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M. (2010). “The
balanced accuracy and its posterior distribution,” in 2010 20th International Conference
on Pattern Recognition. (New York City: IEE)3121–3124. doi: 10.1109/ICPR.2010.764

Browning, S. R., and Browning, B. L. (2007). Rapid and accurate haplotype phasing
and missing-data inference for whole-genome association studies by use of localized
haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097. doi: 10.1086/521987

Brownlee, J. (2019). Statistical significance tests for comparing machine learning
algorithms. Mach. Learn. Mastery. Available at: https://machinelearningmastery.com/
statistical-significance-tests-for-comparing-machine-learning-algorithms/ (Accessed
June 14, 2023).

Calus, M. P. L., Henshall, J. M., Hawken, R., and Vandenplas, J. (2022). Estimation of
dam line composition of 3-way crossbred animals using genomic information. Genet.
Sel. Evol. 54, 1–11. doi: 10.1186/s12711-022-00728-4

Campbell, D., Duchesne, P., and Bernatchez, L. (2003). AFLP utility for population
assignment studies: Analytical investigation and empirical comparison with
microsatellites. Mol. Ecol. 12, 1979–1991. doi: 10.1046/j.1365-294X.2003.01856.x

Castric, V., and Bernatchez, L. (2004). Individual assignment test reveals differential
restriction to dispersal between two salmonids despite no increase of genetic differences
with distance. Mol. Ecol. 13, 1299–1312. doi: 10.1111/j.1365-294X.2004.02129.x
Connolly, S., Fortes, M., Piper, E., Seddon, J., and Kelly, M. (2014). “10th World

Congress of Genetics Applied to Livestock Production,” in Determining the number of
animals required to accurately determine breed composition using genomic data
(American Society of Animal Science, Vancouver (Canada).

Cornuet, J. M., Piry, S., Luikart, G., Estoup, A., and Solignac, M. (1999). New
methods employing multilocus genotypes to select or exclude populations as origins of
individuals. Genetics 153, 1989–2000. doi: 10.1093/genetics/153.4.1989
frontiersin.org

https://hdl.handle.net/2268/309315
https://hdl.handle.net/2268/309315
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1073/pnas.97.18.10101
https://doi.org/10.1111/j.1439-0388.2006.00583.x
https://doi.org/10.1111/jbg.12155
https://doi.org/10.1017/S1751731117001355
https://doi.org/10.1046/j.1365-2052.2002.00868.x
https://doi.org/10.1109/ICPR.2010.764
https://doi.org/10.1086/521987
https://machinelearningmastery.com/statistical-significance-tests-for-comparing-machine-learning-algorithms/
https://machinelearningmastery.com/statistical-significance-tests-for-comparing-machine-learning-algorithms/
https://doi.org/10.1186/s12711-022-00728-4
https://doi.org/10.1046/j.1365-294X.2003.01856.x
https://doi.org/10.1111/j.1365-294X.2004.02129.x
https://doi.org/10.1093/genetics/153.4.1989
https://doi.org/10.3389/fanim.2025.1508081
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Wilmot and Gengler 10.3389/fanim.2025.1508081
Dallimer, M., Blackburn, C., Jones, P. J., and Pemberton, J. M. (2002). Genetic
evidence for male biased dispersal in the red-billed quelea Quelea quelea.Mol. Ecol. 11,
529–533. doi: 10.1046/j.0962-1083.2001.01454.x

Dalvit, C., De Marchi, M., Dal Zotto, R., Gervaso, M., Meuwissen, T., and Cassandro,
M. (2008a). Breed assignment test in four Italian beef cattle breeds. Meat Sci. 80, 389–
395. doi: 10.1016/j.meatsci.2008.01.001

Dalvit, C., Marchi, M. D., Targhetta, C., Gervaso, M., and Cassandro, M. (2008b).
Genetic traceability of meat using microsatellite markers. Food Res. Int. 41, 301–307.
doi: 10.1016/j.foodres.2007.12.010
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Putnová, L., and Štohl, R. (2019). Comparing assignment-based approaches to breed
identification within a large set of horses. J. Appl. Genet. 60, 187–198. doi: 10.1007/
s13353-019-00495-x

Roques, S., Duchesne, P., and Bernatchez, L. (1999). Potential of microsatellites for
individual assignment: The North Atlantic redfish (genus Sebastes) species complex as
a case study. Mol. Ecol. 8, 1703–1717. doi: 10.1046/j.1365-294X.1999.00759.x

Rosenberg, N. A., Burke, T., Elo, K., Feldman, M. W., Freidlin, P. J., Groenen, M. A.
M., et al. (2001). Empirical evaluation of genetic clustering methods using multilocus
genotypes from 20 chicken breeds. Genetics 159, 699–713. doi: 10.1093/genetics/
159.2.699

Safran, R. J., Scordato, E. S. C., Wilkins, M. R., Hubbard, J. K., Jenkins, B. R., Albrecht, T.,
et al. (2016). Genome-wide differentiation in closely related populations: the roles of selection
and geographic isolation. Mol. Ecol. 25, 3865–3883. doi: 10.1111/mec.13740

Schiavo, G., Bertolini, F., Galimberti, G., Bovo, S., Dall’olio, S., Nanni Costa, L., et al.
(2020). A machine learning approach for the identification of population-informative
markers from high-throughput genotyping data: Application to several pig breeds.
Animal 14 (2), 223–232. doi: 10.1017/S1751731119002167

Scordato, E. S. C., Smith, C. C. R., Semenov, G. A., Liu, Y., Wilkins, M. R., Liang, W., et al.
(2020). Migratory divides coincide with reproductive barriers across replicated avian hybrid
zones above the Tibetan Plateau. Ecol. Lett. 23, 231–241. doi: 10.1111/ele.13420

Sevillano, C. A., Vandenplas, J., Bastiaansen, J. W. M., Bergsma, R., and Calus, M. P.
L. (2017). Genomic evaluation for a three-way crossbreeding system considering breed-
of-origin of alleles. Genet. Sel. Evol. 49, 1–14. doi: 10.1186/s12711-017-0350-1
frontiersin.org

https://doi.org/10.1046/j.0962-1083.2001.01454.x
https://doi.org/10.1016/j.meatsci.2008.01.001
https://doi.org/10.1016/j.foodres.2007.12.010
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1162/089976698300017197
https://doi.org/10.1111/age.12021
https://doi.org/10.1111/age.12021
https://doi.org/10.1111/j.1365-2052.2012.02345.x
https://doi.org/10.2527/tas2016.0003
https://doi.org/10.1186/s12859-019-2680-1
https://doi.org/10.1186/s12859-019-2680-1
https://doi.org/10.3389/fgene.2023.1109490
https://doi.org/10.1186/s12711-021-00615-4
https://doi.org/10.3389/fgene.2018.00090
https://doi.org/10.3389/fgene.2023.1229741
https://doi.org/10.1186/s12863-018-0654-3
https://doi.org/10.1111/j.1365-294X.2005.02480.x
https://doi.org/10.1111/j.1365-294X.2005.02480.x
https://doi.org/10.2527/jas.2013-6907
https://doi.org/10.2527/jas.2013-6678
https://doi.org/10.2527/jas.2013-6678
https://doi.org/10.1016/j.livsci.2019.03.002
https://doi.org/10.1111/age.12208
https://doi.org/10.1007/s13353-024-00857-0
https://doi.org/10.1098/rstb.2009.0256
https://doi.org/10.1017/S1751731116002457
https://doi.org/10.2527/jas.2010-3530
https://doi.org/10.35841/biomedicalresearch.30-18-1195
https://doi.org/10.1016/j.gene.2021.145473
https://doi.org/10.1109/72.977291
https://doi.org/10.1371/journal.pone.0018007
https://doi.org/10.1038/s41598-023-38601-z
https://doi.org/10.1007/BF02295996
https://doi.org/10.1007/BF02295996
https://doi.org/10.1093/genetics/157.4.1819
https://doi.org/10.2478/aoas-2020-0097
https://doi.org/10.1023/A:1024068626366
https://doi.org/10.1073/pnas.70.12.3311
https://doi.org/10.1111/j.1365-2052.2008.01800.x
https://doi.org/10.1016/j.meatsci.2008.05.021
https://doi.org/10.1017/S0016672309000093
https://doi.org/10.1016/j.livsci.2008.09.016
https://doi.org/10.1111/j.1365-294X.1995.tb00227.x
https://doi.org/10.1111/j.1365-294X.1995.tb00227.x
https://doi.org/10.1371/journal.pgen.0030160
https://doi.org/10.1371/journal.pgen.0030160
https://doi.org/10.1186/s12859-020-3471-4
https://doi.org/10.1101/2024.03.19.585659
https://doi.org/10.1098/rspb.2000.1197
https://doi.org/10.1093/genetics/155.2.945
https://doi.org/10.1007/s13353-019-00495-x
https://doi.org/10.1007/s13353-019-00495-x
https://doi.org/10.1046/j.1365-294X.1999.00759.x
https://doi.org/10.1093/genetics/159.2.699
https://doi.org/10.1093/genetics/159.2.699
https://doi.org/10.1111/mec.13740
https://doi.org/10.1017/S1751731119002167
https://doi.org/10.1111/ele.13420
https://doi.org/10.1186/s12711-017-0350-1
https://doi.org/10.3389/fanim.2025.1508081
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Wilmot and Gengler 10.3389/fanim.2025.1508081
Smouse, P. E., Spielman, R. S., and Park, M. H. (1982). Multiple-locus allocation of
individuals to groups as a function of the genetic variation within and differences
among human populations. Am. Nat. 119, 445–463. doi: 10.1086/283925

Vandenplas, J., Calus, M. P. L., Sevillano, C. A., Windig, J. J., and Bastiaansen, J. W.
M. (2016). Assigning breed origin to alleles in crossbred animals. Genet. Sel. Evol. 48, 1–
22. doi: 10.1186/s12711-016-0240-y

VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. J. Dairy
Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980

VanRaden, P. M., Tooker, M. E., Chud, T. C. S., Norman, H. D., Megonigal, J. H.,
Haagen, I. W., et al. (2020). Genomic predictions for crossbred dairy cattle. J. Dairy Sci.
103, 1620–1631. doi: 10.3168/jds.2019-16634
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