Results and discussionThe groups differed significantly (CF > NCF: p < 0.05) to weaning weight (243.57±5.70 vs. 228.92±5.07kg), backfat thickness (12.96±0.86 vs. 10.61±0.42mm), LT muscle marbling score (366.11±12.39 vs. 321.50±13.65), and LT intramuscular fat content (5.80±0.23 vs. 4.95±0.20%). The weights at the beginning of the experiment and at slaughter (390 days) did not differ significantly. Mean methylation levels were higher in CF with 0.18% more CpG, 0.04% CHG, and 0.03% CHH. We identified 974 regions with differential methylation (DMRs: > 25% and q < 0.05), which overlapped with 241 differentially methylated genes (DMGs). Among these genes, 108 were hypermethylated and 133 were hypomethylated in CF group. Notably, 39 of these DMGs were previously identified as differentially expressed genes (DEGs: log2 fold change [0.5]) in the same animal groups. Over-representation analysis highlighted epigenetic regulations related to muscle growth, PPAR signaling, adipogenesis, insulin response, and lipid metabolism. Key DMGs/DEGs included: ACAA1, SORBS1, SMAD3, TRIM63, PRKCA, DNMT3A, RUNX1, NRG3, and SLC2A8. These epigenetic changes improved the performance of supplemented animals up to weaning and enhanced meat quality traits, particularly higher intramuscular fat. The results provided insights into the intricate interplay between nutrition, epigenetics, gene expression and phenotypes in beef cattle production.