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Sensor data cleaning for
applications in dairy herd
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D4Dairy-Consortium
1ZuchtData EDV-Dienstleistungen GmbH, Vienna, Austria, 2Bioeconomy and Environment, Natural
Resources Institute Finland (Luke), Helsinki, Finland
Data cleaning is a core process when it comes to using data from dairy sensor

technologies. This article presents guidelines for sensor data cleaning with a

specific focus on dairy herd management and breeding applications. Prior to any

data cleaning steps, context and purpose of the data use must be considered.

Recommendations for data cleaning are provided in five distinct steps: 1) validate

the data merging process, 2) get to know the data, 3) check completeness of the

data, 4) evaluate the plausibility of sensor measures and detect outliers, and

5) check for technology related noise. Whenever necessary, the

recommendations are supported by examples of different sensor types (bolus,

accelerometer) collected in an international project (D4Dairy) or supported by

relevant literature. To ensure quality and reproducibility, data users are required

to document their approach throughout the process. The target group for these

guidelines are professionals involved in the process of collecting, managing, and

analyzing sensor data from dairy herds. Providing guidelines for data cleaning

could help to ensure that the data used for analysis is accurate, consistent, and

reliable, ultimately leading to more informed management decisions and better

breeding outcomes for dairy herds.
KEYWORDS
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1 Introduction

Advancing technologies on dairy farms have unlocked the potential for data-driven

decision support systems to improve herd management. Sensor technologies in automatic

milking systems (AMS) or on wearable devices such as collars, ear tags or rumen boluses,

allow the (continuous) recording of milk properties (e.g. milk amount, milk contents,

electrical conductivity, etc.) or physiological and behavioral variables (e.g. rumination,

activity, temperature, etc.). Based on changes in behavioral patterns or physiological

parameters farmers should be alerted to animals in need of treatment or management
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procedures. Many manufacturers already offer herd management

products that use these technologies to detect cows in heat, cows

about to calve, or cows that may need attention due to health

problems (Caja et al., 2016; Mayo et al., 2019). However, the results

of these predictions and alerts also rely on additional data to reach

their full potential. This implies that farmers enter data such as

calving or insemination dates into the system and the sensor device

must be linked to the individual animal by a unique ID to ensure

correct data assignment. In addition to the benefits of sensor

technology to its target customer - the farmer - the data from

these devices also offers a great opportunity to be used for research

or other applications such as phenotyping for routine genetic

evaluation or the development of new decision support tools for

farmers. Dairy herd improvement (DHI) and breeding

organizations have built up extensive databases over the past

decades containing data on management practices, health records,

conformation, etc. Integration of these different data sources should

be the key to unlocking the full potential of precision livestock

farming (PLF) technologies and providing farmers with decision

support tools not only for specific management aspects, but also for

herd health management and breeding decisions.

Data availability in the dairy sector is increasing as the number

of farms with sensor or AMS technology continues to grow (e.g.

Steeneveld et al., 2015). As sensor data have the potential to be used

to provide information on regulatory compliance (Stygar et al.,

2022) and consumer desired welfare attributes (Stygar et al., 2023)

any failure in data cleaning may have not only technical but also

legal consequences (Stöger et al., 2021). Therefore, a properly

designed, implemented, and documented data cleaning procedure

is becoming a necessity in the dairy industry. Guidelines for data

cleaning in bioinformatics and health informatics (e.g. Van den

Broeck et al., 2005; Chicco et al., 2022) and data cleaning protocols

for the use of various data for routine genetic evaluation and tools

provided by DHI and breeding organizations (see e.g. ICAR, 2022a)

are well established. However, to the best of the authors’ knowledge,

there are no recommendations for data cleaning in dairy herd

management and breeding applications when it comes to high

resolution data from commercial sensor technologies. When

discussing sensor data in the context of this paper, we are

specifically referring to information collected by wearable sensor

devices attached to individual animals within one or more farms or

data coming from AMS. These devices are supplied and maintained

by different companies and data sharing may be facilitated via

interfaces or other means. Generally, the data obtained from sensors

contain a lot of noise and usually have undergone prior processing

to transform raw sensor measurements into variables such as

activity levels or specific behaviors such as ruminating or eating

(Schmeling et al., 2021). These variables are derived using

specialized algorithms developed by the respective company and

are not disclosed for intellectual property reasons. Consequently,

the recipient of the data remains unaware of the specific procedures

involved in data cleaning, imputation, pre-processing, and analysis,

as these details are undisclosed by the data provider.

Before any further use, sensor data must be carefully inspected

and evaluated to ensure that results are not biased by erroneous data
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due to sensor malfunction ormeasurement error Teh et al (2020) have

delineated various types of errors inherent in sensor data that require

attention in the context of data quality assurance. These include

outliers, missing data, bias, drift, noise, constant value, uncertainty,

and stuck-at-zero conditions. Given that users are typically not

provided any details on the methodologies employed by the data

provider to address these quality issues, it becomes imperative for the

data user to seek relevant information from the provider.

Consequently, data users must scrutinize the data for potential

sources of error upon receipt, considering the aforementioned types

of data anomalies outlined by (Teh et al., 2020). In addition to

information on the cleaning and pre-processing that has taken

place prior to data delivery, some use cases may require knowledge

of whether and how the data from these sensors has been validated.

Often, sensor systems available on the market are not validated at

all or are validated only for one or a few very specific purposes

(Knight, 2020; Stygar et al., 2021). Data processing and software

algorithms may emphasize some behaviors more than others to

generate the most reliable alarms, for example emphasizing

mounting activity for heat detection (Elischer et al., 2013).

Against this background, this paper aims to address what needs

to be considered when using sensor data from commercially

available sensor systems. Starting with general aspects of data

cleaning, it will be discussed how they apply to data from sensor

systems and their specialties. Focus will be put on the discussion of

sensor data cleaning for use in dairy herd management and

breeding using examples from projects exploiting the potential of

advanced data analysis for the improvement of animal health and

welfare, nutrition, and product quality. Examples will be described

from projects and studies using sensor data from different

manufacturers in the course of the D4Dairy project (https://

d4dairy.com). Based on the experience gained in these projects,

general recommendations and conclusions will be drawn, which in

turn will serve as a basis for guidelines for the use of sensor data

developed by a joint initiative of ICAR (International Committee of

Animal Recording) and IDF (International Dairy Federation).
2 Context and purpose

Decisions for data cleaning and processing depend very much on

the purpose of data use and type of analysis. For example,

requirements for applications related to herd management differ

from those for breeding. If data are fed into a detection or

classification algorithm for herd management, complete time series

data are more important than it may be the case for some breeding

purposes. Missing observations may result in a false or no alarm for a

particular time slot (e.g. Stygar et al., 2023). In addition, most herd

management applications are run in real time (e.g. Rustas et al.,

2024), unlike breeding evaluation, which is performed at a specific

point in time using appropriate types of data (e.g. Egger-Danner

et al., 2012). Therefore, data cleaning for herd management

applications may benefit more from automated approaches based

on for instance principal component analysis, artificial neural

networks or Bayesian networks (Teh et al., 2020).
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Traits in livestock breeding must have a reasonably large genetic

variability, be heritable and clearly defined (Shook, 1989). If traits

can only be measured at high costs or have very low heritabilities, it

may be necessary to define auxiliary traits with high genetic

correlation to the target trait (Shook, 1989). While this approach

makes perfect sense as a theoretical concept, the lack of a valid gold

standard often makes it challenging to implement. Target traits may

be too complex to be defined by a single value (e.g. resilience as

described in Friggens et al., 2022), or there may be a variety of gold

standards, making comparisons and trait development difficult [e.g.

mastitis (Jensen et al., 2019)]. As the choice of the gold standard is

crucial for the development of valid auxiliary traits, these must be

chosen with caution and limitations have to be considered and

disclosed. Due to the general lack in validation of sensor variables,

i.e. if minutes spent ruminating as identified by a sensor system

equal the actual duration of rumination of the cow, sensor data may

for now be mainly considered for developing proxies for traits with

low frequencies or heritabilities, such as functional traits.

Furthermore, data from different sensor systems using different

measuring devices and algorithms should be analyzed separately for

as long as sensor measures are not objectively validated for

measuring specific behaviors. Several studies demonstrated a lack

of common trends across herds for predicting dairy cattle resilience

(Adriaens et al., 2020), welfare (Stygar et al., 2023) and dry matter

intake (Yilmaz Adkinson et al., 2024) when using sensor data. The

prediction accuracy could be improved by the development of

industry-wide standards and guidelines for sensor validation,

which is an ongoing joint activity of ICAR and IDF (Egger-

Danner et al., 2024).

Although sensor data are available continuously throughout the

lactation or even the whole (productive) lifetime of a cow, not all

data is necessary for trait definition and parameter estimation. In

contrast, it may even be a problem regarding storage and

computation time (Koltes et al., 2019). Carlström et al. (2013)

investigated heritabilities of AMS-derived milkability traits during

the whole lactation and concluded that standard errors of the

heritability estimates did not increase when instead of the 330

only the first 100 observations per cow were used for analysis. Thus,

for breeding purposes the importance of including a sufficiently

large number of animals and covering the main factors of variation,

as well as comprehensive pedigree information and precise

definition of traits outweigh the amount of available data per
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animal as long as the genetic correlation with the desired

(functional) trait is high enough.
3 Five steps to successful sensor
data cleaning

As soon as purpose and context of sensor data use are clarified

and made explicit, the actual data cleaning can be started. We

identified six steps crucial for successful cleaning of sensor data,

which are shown in the flow chart in Figure 1 and described in detail

in the following.
3.1 Step 1: validate data merging process

Cows are officially registered with a unique official identification

number on their ear tag, which should be used when merging data

from multiple sources. Ideally, sensor data is already permanently

assigned to this unique animal identifier. However, sometimes data

are assigned to the ID of a sensor device and the assignment of the

device to an animal ID is contained in a separate file. In this case,

correct merging of animal ID data and sensor data must be

performed by the data user. In doing so, the user must check for

the possibility of more than one device being assigned to an animal.

In case a sensor was broken or ran out of battery, an animal

probably had to be equipped with a new device leading to multiple

sensor devices sequentially recording data of the same animal. Vice

versa, multiple animals may be equipped with the same device if

farms own fewer devices than cows and they use the sensor only

during specific periods in a cow’s lactation for example for heat or

calving detection. Obviously, the latter will not be the case for

sensor systems using a rumen bolus. Thus, post-merging validation

should be performed by running duplicate checks on sensor and

animal ID assignments and obtaining information on the

structure of data sets and handling of devices from the sensor

company. Particularities may become apparent by employing

dedicated algorithms to identify for example conspicuously short

calving intervals or constant detection of heat events or other

inconsistencies depending on the kind sensor information.

Furthermore, if sensors are attached for the first time to an

animal the algorithm takes some time to learn before it works
FIGURE 1

Flow chart of the sensor data cleaning process.
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properly and sends meaningful alarms. These time windows are

usually specified by the manufacturer and should not be used for

data analysis. Other potential sources of error are differences in time

zones or missing corrections for the daylight-saving time including

winter and summer time. Sometimes variables are calculated from

moving averages and thus, may be missing in the beginning and

even be lagged compared to the other output variables. All these

aspects are crucial to consider for integration with other data and

should be clarified with the sensor company.

Table 1 provides a list of information that is important to

request from sensor companies or data providers for a better

understanding of the data and aspects that require special

attention during the data cleaning process. It should be noted,

however, that the provision of this information depends on the

sensor companies’ willingness to share their data and the type of

data provided.
3.2 Step 2: get to know your data

Before starting with any further data cleaning steps, the nature

of the data obtained must be described and any uncertainties about

type and unit eliminated. For a better understanding of the data, it

should be visualized. Whereas raw sensor data resembles sampling

rate, usually Hz, the data which can be retrieved from interfaces is

already processed by (proprietary) algorithms. Depending on the

type of output, which is generated from the raw sensor signals, it

can be expressed as durations (e.g. minutes of ruminating or time

spent lying during a defined period), counts (e.g. number of drink

cycles or rumination bouts) or as an index without any further

specifications (e.g. activity levels). Thus, a proper description of the

nature (including units) and the type (raw vs processed) of data

should be asked from the sensor company together with the data

(Bouchon et al., 2019). Knowing how values are expressed and what

units are used is important for time series data, particularly

regarding further aggregation steps. Rumination time, for

example, may be expressed as minutes of rumination per hour or
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within the last 24 hours but still at an hourly rate. Furthermore, it is

important to know if hourly measurements with a certain time

stamp refer to values for the preceding or successive hour. Another

important aspect is whether the data is a single shot measurement,

such as a reticular temperature measurement at one point in time,

or whether it is summarized, averaged, filtered, or otherwise

processed by an algorithm, which can introduce a delay (Bouchon

et al., 2019). One example of the latter is the activity level as

provided in some of the sensor data we analyzed, which was based

on the summary of the accelerometer data over the period of

sampling intervals. Whereas time series data follows the pattern

of the data frequency, events or alarms may be assigned to an exact

timestamp within the time series intervals. Depending on the

further use and aggregation of the data, different strategies have

to be chosen for handling those differences in a timely resolution,

i.e. how are events or alarms aligned with time series data or

aggregated versions thereof. Plots such as scatter plots (e.g.

Figure 2) or histograms containing statistical summaries or

individual time series plots are recommended to gain valuable

information about the nature of the data including distribution

types, patterns, gaps, outliers or other problems in the data

(Unwin, 2020).
3.3 Step 3: check completeness of data

When sampling and data rate, type, and unit of data are clarified,

the next step is to check for missing data as well as duplicates.

Completeness of data is easy to assess in time series data where data

frequency is known, whereas it may not be that straightforward for

datasets containing only alarms or other information that does not

follow an expected frequency or pattern. In case of missing data, it is

recommended to consult with the data provider for underlying

reasons and recommendations on how to handle them. Reasons for

missing data comprise data transmission problems due to low battery

status of the sensor or bad connectivity, power failures on the farm or

other technical malfunctioning (Borchers et al., 2017; Ren et al., 2021).
TABLE 1 Key information to obtain from sensor data providers.

Data cleaning step Required information

Step 1: Validate data
merging process

• Structure of data file(s) and correct assignment of animal ID to sensor device ID
• Timestamps: time zone (e.g. UTC, etc.), correction for day light savings, timely alignment of variables, intervals
• Alignment of measurements and alarms/events
• Time the algorithm needs to learn before it starts to work properly, and data can be used

Step 2: Get to know your data • Variable description: units, sampling and data rate, raw data or processed, single-shot measurement or aggregated, time span and
aggregation method, timely alignment (e.g. for aggregation over sliding windows)

• Handling of missing data: imputation, tolerance level for calculation of variables, appearance in provided data

Step 3: Check completeness of
the data

• Missing values: NULL/NA values or extended intervals between data points
• Reasons for missing values (e.g. data transmission problems, low battery, etc.) or duplicates

Step 4: Evaluate plausibility and
detect outliers

• Outlier identification and handling: by algorithm prior to data provision or not
• Biological reference values
• Reasons for potential outliers in the data (e.g. failed measurements)

Step 5: Check for technology
related noise

• Sensor drift and calibration: handled by the algorithm prior to data provision or still part of the data set
• Information on updates of hard- or software (e.g. algorithm, output variables, etc.)
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Missing data may occur as NULL/NA values or not appear in the data

at all, i.e. intervals between subsequent data points are greater than the

data rate. However, missing values may have already been imputed by

the algorithm before output of sensor variables or due to the nature of

the variable (e.g. moving averages or other types of aggregated data

such as hourly output of mean rumination time over the last 24 hours)

and thus may not be detectable in the data.

The decision about how to handle missing data should be based

on the type and purpose of the analysis, further data processing, and

the amount and distribution of missing data. For some types of

analysis, it may be sufficient to set a threshold for the minimum

number of records available per animal or to have observations over

a specific period. As shown by Carlström et al. (2013), genetic

parameter estimation for milkability traits from AMS data requires

complete time series data; however, there was no difference in the

accuracy of the parameter estimates when records between 8 and

330 days or only up to 100 days in milk were included. For herd

management and disease predictions, the amount of time series data
Frontiers in Animal Science 05
depends very much on the type (e.g. acute vs. chronic) and

frequency of the disease, individual or herd level information as

well as the quality of the algorithm (Hogeveen et al., 2021). If data

are to be further aggregated, e.g. on a daily basis, averaging (mean or

median values) will be less affected by missing values than

summations (Mensching et al., 2020b). The latter is important for

data such as (daily) milk yields recorded by automatic milking

systems. Hogeveen et al (2001) suggested calculating kg milk per

hour by dividing the milking yield of a milking event by the milking

interval. They discarded records deviating more than 50% in hourly

production from the average per hour production of the preceding

and subsequent ten days and milking events of less than one kg milk

in total. Flagging potentially flawed data frommilk recordings using

this approach is particularly important when using data from single

milkings and information about milking intervals for health

assessment to avoid bias. This approach was also applied in the

D4Dairy project to identify gaps and potential outliers in the data as

well as for the aggregation of 24-hour milk yields based on
FIGURE 2

Scatterplots for bihourly sensor outputs for activity (top) and rumination time (bottom) over 110 days in milk for 63 lactations from 57 animals on one farm.
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timestamps of single milkings. Furthermore, depending on the

underlying reasons for missing data, data may be missing

completely at random or systematically, resulting in different

distributions between missing and non-missing observations,

leading to biased results (Bhaskaran and Smeeth, 2014).

Imputation or interpolation of missing data may be considered

necessary for some purposes or types of time series data analyses,

which cannot handle missing values. Some analyses however may

require complete datasets for producing unbiased results, which can

be achieved by applying data imputation methods (You et al).

However, by imputing values, particularly of larger blocks missing

data, assumptions about the data and models must be made, which

may or may not reflect the patterns of the ‘real’ data.

Opposed to missing values duplicates may also be found in the

data. Complete duplicates, i.e. data points with equal timestamps

and equal sensor values, should be removed. However, we also

encountered data with multiple measurements per timestamp

containing different values or – in the case of multivariate sensor

data - values were split across rows for different variables. In the

latter case rows with equal timestamps may be merged resulting in

complete records whereas data with duplicate timestamps but

differing values will have to be removed. Furthermore, data which

was recorded in shorter intervals than the data frequency should be

discarded from the data set. In their study on the effects of health

disorders on sensor measurements, Siberski-Cooper et al (2023)

even removed data three days prior to sensor failures.
3.4 Step 4: evaluate plausibility of sensor
measures and detect outliers

Regarding outlier detection and their treatment different

approaches exist, which can be broadly categorized into three

principal approaches: those reliant on statistical parameters and

the underlying distribution of the data, those employing thresholds

grounded in biologically significant ranges, when applicable, and

those identifying outliers in an iterative feedback modeling process

applying e.g. machine learning algorithms or modeling approaches.

Several investigations have delineated outliers based on statistical

measures, such as the identification of values exceeding a specified

number of standard deviations (SD) from the mean, as exemplified

by approaches like removing values outside a confidence interval of

±4 SD from the mean (for daily milk yield and body weight, see

Ouweltjes et al., 2021), ± 3 SD from the mean (for reticular body

temperature, see Bewley et al., 2008) or standardized residuals

outside ±3 SD (Mensching et al., 2020b). Alternatively, outliers

were identified by assessing whether a value surpasses 1.5 times the

interquartile distance from the lower or upper quartile (Mensching

et al., 2020a). Moreover, employing smoothing techniques and

analyzing deviations from expected curves can enhance the

identification of potential outliers in the data.

Establishing biologically meaningful thresholds based on

domain knowledge presents another strategy in data plausibility

checks and outlier identification within sensor data. Andreen et al

(Andreen, 2020), for example, removed data with a total rumination
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time of less than 200 minutes per day because they suspected illness

of the animal or technological malfunctioning of the sensor system.

Additionally, they defined the ratio of time allocated to rumination

relative to time spent eating should fall within the range of 0.5 and

10. Departures from this range triggered the suspicion of

misinterpretation, such as rumination being erroneously

identified as eating, or vice versa. Within the D4Dairy project,

temperature data from a rumen bolus showed negative values,

which is biologically impossible in living animals (Schodl et al.,

2022). However, while it is easy to identify a particular range of

measurements as implausible, it is difficult to set a precise threshold

below or above which data can be flagged as a potential outlier

or measurement error. Thus, exactly defining these thresholds

based on domain knowledge alone is not straightforward

and poses various challenges, primarily attributable to several

inherent reasons. One notable challenge arises from the fact that

variables, such as activity indices, are expressed as ‘arbitrary’ or

dimensionless values, lacking a predefined reference spectrum for

their biological significance. Unlike established and measurable

physiological parameters, these values currently lack a universally

acknowledged standard that delineates their biological relevance.

Consequently, the absence of a well-established framework

complicates the task of setting thresholds based on biological

significance. In instances where extreme values are evident,

manifesting as physiologically implausible outcomes (e.g.

reticular temperature values approximating or falling below 0°C,

as elucidated in Schodl et al., 2022), their identification and

subsequent removal can be readily executed through the

application of domain knowledge. However, the intricacy arises

when attempting to define specific threshold values for continuous

variables that appropriately discern between normal fluctuations

and values indicative of abnormal biological states. Thus, it is

crucial to exercise caution when implementing outlier removal

methods, as overly stringent criteria may inadvertently lead to the

exclusion of genuine outliers. Such genuine outliers could hold

valuable information for predicting diseases or characterizing traits,

such as resilience (Ouweltjes et al., 2021). Or as Knorr and

Ng (1998) have aptly phrased it: “One person’s noise is

another person’s signal”. Including other variables into the outlier

detection process may help prevent the unintentional removal

of genuine outliers. Mensching et al (2020b) developed a

multivariate plausibility assessment algorithm to differentiate

between ‘physiologically normal’, ‘physiologically extreme’ and

‘implausible’ observations in simultaneously recorded data. They

based their concept on the assumption that different measurable

parameters are physiologically linked and that in the case of a

disease or other disturbances more than one parameter is altered.

Vice versa, if only one parameter shows extreme deviations it is

most likely implausible and to be classified as an outlier (Mensching

et al., 2020b). A similar approach is the integration with other

farm data such as calving, insemination or health records to cross-

check if deviations in sensor patterns may have occurred due to

events such as calving or heat. Within the D4Dairy project these

data were available from the Austrian central cattle database

Rinderdatenverbund (RDV, https://www.rdv-gmbh.net/en.html)
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and were used to flag e.g. data during heat or calving events or

around clinical diagnoses before further analysis.

Particularly when confronted with time series data, which is

characterized by inherent noise or missing values, advanced

modeling techniques provide suitable approaches. Dynamic

Linear Models (DLMs) incorporating Kalman filtering emerge as

particularly valuable tools for the modeling and estimation of the

hidden state of a system undergoing temporal evolution,

particularly in the design of control systems. An illustrative

example of the efficacy of such methods is found in the work of

Stygar et al. (2017), where statistical analyses applied to historical

data enabled the estimation of measurement errors and variances

associated with both, animal and environmental factors. This

information, in turn, serves as a crucial metric for assessing the

control status of the current production process. For instance, it

allows an evaluation of the potential impact on milk production

should a farmer implement a modified feeding strategy within a

herd utilizing an AMS. Within the framework of the D4Dairy

project, an innovative statistical sensor data processing framework

has been conceptualized. This framework capitalizes on the

interplay between data quality and model robustness, utilizing co-

dependency to identify performance issues in data-driven predictive

models (Papst et al., 2021). Papst et al (2021) exemplified the

effectiveness of this framework by revealing that shifts in the

distribution or mean of input data significantly impacted the

quality of predictive models. They introduced an indicator

capable of detecting such distributional shifts in the test data.

When the test data contains too many outliers compared to the

training data, intervention steps such as re-training of the model

were applied, which lead to a noteworthy improvement of up to

62% in accuracy compared to predictions without interventions

(Papst et al., 2021). This underscores the utility of advanced

statistical frameworks in addressing data quality challenges and

optimizing the performance of predictive models in agricultural

contexts. While outlier identification is one important aspect the

question of how to manage them is another one (Basu and

Meckesheimer, 2007). Instead of flagging or merely removing

outliers and potential measurement errors, specialized techniques

quantifying the expected degree of measurement error may be

employed to replace outliers with imputed values (Basu and

Meckesheimer, 2007).
3.5 Step 5: check for technology
related noise

Technology related noise such as sensor drift, updates,

calibration, and the installation of new devices have to be

considered and may not be straightforward to detect depending

on its velocity and dimension. To detect and correct for sensor

measurement drift, i.e. deviations from its true value over time,

various methods (e.g. sensor calibration) and algorithms were

already proposed (Teh et al., 2020). However, if drift is happening

very slow, algorithms may not be able to detect it (Giannoni et al.,
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2018). Therefore, any suspicious sensor reading should be checked

against herd management records and data should only be

removed if it is associated with sensor malfunction (e.g. negative

values for reticular temperature measurements within the

D4Dairy project Schodl et al., 2022). In a study by Stygar and

Kristensen (2016), daily observations of pig body weight gain were

systematically decreasing for all pigs in a pen leading to the

conclusion of malfunctioning of scales. By cross-checking the

management records the alleged malfunctioning turned out to

be a shortage of soybean meal in the pigs’ diet due to a forgotten

order to the feed company. Moreover, instruments may be prone

to measuring instabilities over time (e.g. mid-infrared mass

spectrometers) and measuring a standardized reference sample

(e.g. samples of the same batch of milk) on a regular basis may

help to detect this issue (Grelet et al., 2021). Drift can also occur

for timestamps if data are transmitted in the wrong time slot due

to clock drifts in sensor devices leading to gradual delay in

transmission (Leliveld et al., 2024). Depending on the type of

data provided by the sensor company and the extent of pre-

processing, drift may have been accounted for prior to data

provision. As the detection and correction of sensor drift is

essential for a functioning herd management software, it can be

assumed that the company has developed strategies to deal with

this issue. Ideally, this information should be retrieved from the

sensor company.

Software that analyzes sensor data for decision support is not a

static tool and is regularly updated to fix bugs or add new analyses

and evaluations. In addition, the sensors themselves, or the

algorithms that convert the sensor signal into data, are

constantly being improved or calibrated in the event of sensor

drift. As beneficial as this is for the user of the herd management

software, it can be a critical issue when it comes to using sensor-

generated data for other purposes. Values or patterns may change

after calibration or installation of new sensors, leading to biased

results. During the D4Dairy project, one sensor company updated

their software and replaced activity data with feeding time

(Figure 3) and time resolution of data was changed from 2-hour

to 1-hour intervals. In this case, detection of the update was

straightforward, which would not have been the case if the sensor

variables had remained the same. Therefore, when a sensor

company provides data, it may be helpful to ask for additional

information about software updates, changes in the algorithms

that translate the sensor signal into data, sensor replacements (e.g.

by changing the sensor IDs on the same animal) and the reason for

the replacement (e.g. new sensor of the same type or a new

generation of sensor). Assuming that this information is not

always available, the data should be checked for this issue.

Indications could be the introduction of new variables, different

temporal resolution of the data, sudden or persistent changes in

scale. In the case of a software update, these changes apply to all

animals on a farm and occur on the same date. If data from the

same sensor system are available for more than one farm, the

occurrence of such changes on other farms in a similar period may

also be a good indicator for a software update. In the case of
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management changes that affect the behavior of the herd (e.g.

animals are put out to pasture for a period of time, resulting in

higher activity levels for all animals), care must be taken to

interpret these changes accurately. If the above changes are only

seen in individual animals at different times, this may indicate that

the sensor was calibrated, or the device was replaced.
4 Document your approach

Efforts in data cleaning are largely underreported. For instance,

only approximately 40% of medical studies provide a statement

about data cleaning (Huebner et al., 2020). First and foremost,

transparency and reproducibility in data processing and algorithm

developments are essential for achieving progress in science

(McKinney et al., 2020). Taking sensor data exploitation further

in terms of the development of herd management or breeding tools

or quality assurance within the dairy sector, proper documentation

of data cleaning efforts may become a key factor in monitoring the

effectiveness of these tools. Therefore, information on the number

of missing observations or any efforts concerning imputation or

interpolation of missing data would need to be provided if the data

is shared through agricultural dataspaces. Information about

uncertainty of obtained results is indispensable for the

implementation of management strategies (Stygar et al., 2017);

therefore, any deficiencies on data availability should be clearly

communicated to the end users.

Number of days without observations, criteria for a plausibility

check, number of removed outliers and information about data

extrapolations are critical for transparency and reproducibility and

as such should be reported. Therefore, all actions taken regarding
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data or issues which have been discovered in steps 1 to 6 should be

described and this information should be provided to potential

users of the data (e.g. scientists, other companies).
5 Conclusions

The use of data from wearable sensor devices on dairy cows has the

potential to improve animal health and welfare on dairy farms on

various levels in particular if this data is integrated with other farm data.

However, depending on the information available on how these data

are generated, to what extent they have been pre-processed and cleaned

for erroneousmeasurements, sensor drift, noise or outliers, they have to

be inspected for potentially biasing influences and cleaned accordingly.

In this paper we highlighted important aspects of sensor data and

presented suggestions on methods to detect potential sources of bias

and approaches to data preparation based on our work in the D4Dairy

project and scientific body of literature. Furthermore, we aimed to raise

awareness of the importance of communication between data

providers and recipients and which information may be important

to retrieve from companies, if possible. These recommendations are

targeted to all data analysts and professionals in the dairy sector, who

are collecting and analyzing data for herd management or breeding

applications. Standardizing data cleaning steps is crucial and one of the

core functions of ICAR, who already published guidelines on e.g. cattle

milk recording (ICAR, 2022b) or recording of direct health traits

(ICAR, 2022a). Together with the IDF Standing committee on animal

health and welfare, ICAR is currently developing guidelines regarding

the use of sensor data in herd management and breeding to

facilitate the use of sensor data in cattle breeding and management

on a global level (Egger-Danner et al., 2024).
FIGURE 3

Example for sensor data from one animal for the replacement of activity data by eating time during a software update.
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