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piglets in farrowing crates using
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Cheng-En Chiang1 and Yan-Fu Kuo1*

1Lab of Machine Learning and Machine Vision, Department of Biomechatronics Engineering, National
Taiwan University, Taipei, Taiwan, 2Lab of Animal Breeding and Applied Resources, Department of
Animal Science and Technology, National Taiwan University, Taipei, Taiwan
Pig farming is a major sector of livestock production. The preweaning stage is a

critical period in the pig farming process, where lactation-related behaviors

between sows and their piglets directly influence the preweaning survivability of

the piglets. Lactation-related behaviors are mutual interactions that require the

combined monitoring of both the sow and her piglets. Conventional naked-eye

observation is discontinuous and labor-intensive and may result in undetected

abnormal behavior and economic losses. Thus, this study proposed tomonitor the

lactation-related behaviors of sows and their piglets simultaneously and

continuously using computer vision. Videos were recorded from farrowing

crates using embedded systems equipped with regular RGB cameras. The sow

posture recognition model (SPRM), comprising a convolutional neural network

(CNN) of the architecture EfficientNet and a long short-term memory network,

was trained to identify seven postures of sows. The piglet localization and tracking

model (PLTM), comprising a CNN of the architecture YOLOv7 and a simple online

and realtime tracking algorithm, was trained to localize and track piglets in the

farrowing crate. The sow posture information was then combined with the piglet

activity to detect unfed piglets. The trained SPRM and PLTM reached an accuracy

of 91.36% and amultipleobject trackingaccuracyof94.6%. Theperformanceof the

proposedunfedpiglet detectionachievedaprecisionof 98.4%anda recall of90.7%.

A long-term experiment was conducted to monitor lactation-related behaviors of

sows and their piglets from the birth of the piglets to day 15. The overall mean daily

percentages ± standard deviations (SDs) of sow postures were 6.8% ± 2.9% for

feeding, 8.8% ± 6.6% for standing, 11.8% ± 4.5% for sitting, 20.6% ± 16.3% for

recumbency, 14.1%±6.5% for lying, and38.1%±7.5% for lactating. Theoverallmean

daily percentages ± SDs of piglet activities were 38.1% ± 7.5% for suckling, 22.2% ±

5.4% for active, and 39.7% ± 10.5% for rest. The proposed approach provides a total

solution for the automatic monitoring of sows and their piglets in the farrowing

house. This automaticdetectionof abnormal lactation-relatedbehaviorscanhelp in

preventing piglet preweaning mortality and therefore aid pig farming efficiency.
KEYWORDS

sow posture, piglet movement, unfed piglet detection, pig feeding, suckling sow
posture, suckling
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1 Introduction

Pork accounts for a major proportion of meat consumption

worldwide. According to the Food and Agriculture Organization

(FAO, 2022), 122.5 million tons of pork was produced worldwide in

2021. The average consumption of pork was 23.0 kg per person in

2020 (Racewicz et al., 2021). In Taiwan, more than 5.3 million pigs

were farmed (Council of Agriculture, 2022). The production value

of pig farming reached 79.8 billion new Taiwan dollars, accounting

for 39.1% of the total output value of animal production and

making it the highest output value in animal husbandry.

Although the pig farming industry has continued to grow and

expand at a steady pace, there exists several recurring problems that

impact the industry, such as transboundary diseases, fluctuation of

feed costs, and preweaning mortality of piglets.

Preweaning is the most critical stage in pig rearing. Preweaning

mortality rates in major pig-producing countries range between

10% and 20% (Muns et al., 2016). In Taiwan, 11.6% of piglets die

before weaning (National Animal Industry Foundation, 2020),

greatly impacting the efficiency of pig farming. Knowing the

lactation-related behaviors of sows and their own piglets is the

key to preventing the preweaning mortality of piglets. Muns et al.

(2013) indicated that the lactation-related behaviors of sows are

critical for the early survival of pre-weaned piglets. Van

Beirendonck et al. (2014) discovered that the longer the sow was

standing, the more active her piglets were. Wischner et al. (2009)

indicated that sows that crushed no piglets (NC-sows) and sows

that crushed piglets (C-sows) had different posture patterns. NC-

sows had more time in the lying posture and C-sows had more time

in the sitting posture.

Understanding lactation-related behaviors is also essential for

the welfare of sows and their preweaning piglets. Performing

natural lactation may enhance the maternal satisfaction of both

sows and piglets. Tomas et al. (2024) indicated that piglets with

more maternal contacts were more likely to approach novel objects

and gained higher weaning weights compared with piglets with

restricted maternal contacts. Receiving adequate nutrition and

water is vital for the survival and growth of piglets. da Silva et al.

(2020) demonstrated that piglets with increased total water intake

had higher average daily gain and weaning weight during the

nursing phase.

Conventionally, the evaluation of the lactation-related

behaviors of sows and piglets was performed by manually

observing the sows and their piglets in farrowing crates. However,

manual approaches are laborious, time-consuming, and may be

prone to error due to fatigue. In addition, the pig industry is facing

labor shortage due to lack of incentive for the young generation to

join the industry (Chou, 2019). This trend of increasing labor costs

combined with the effects of decreasing birth rates makes manual

surveillance even more expensive for pig farmers. Therefore, there is

a need to develop an automatic approach for observing the

lactation-related behaviors of sows and piglets in farrowing houses.

The environment of pig farrowing houses is usually complex

with miscellaneous items filled in the space (Figure 1). It is

challenging to automatically observe sows and piglets using

conventional image processing-based approaches. Recently, deep
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learning has emerged as a powerful tool for solving complex

machine vision tasks. Research was conducted to identify sow

postures using deep learning approaches (e.g., convolutional

neural network, CNN). Zheng et al. (2018) used faster region-

based CNN (Faster R-CNN) to identify five postures of sows in

depth images. They further analyzed the daily activity levels and

posture change frequencies of sows and achieved an accuracy of

93.6%. Yang et al. (2018) identified the nursing behaviors of sows in

videos using the combination of a fully convolutional network and

optical flow. Their approach achieved an accuracy of 96.4% in sow

nursing behavior identification. Zheng et al. (2020) designed

an improved Faster R-CNN to analyze the postures of sows in

videos captured using depth cameras. Their approach achieved

mean average precisions of 92.7% and 77.4%, respectively, in

recognizing four sow postures and in recognizing eight posture

change actions. Küster et al. (2021) detected sow body parts in

videos using a CNN of architecture you only look once version 3

(YOLO v3; Redmon and Farhadi, 2018). They further classified the

sow postures using the detected sow body parts and a hierarchical

conditional statement classifier and achieved an accuracy of 59.6%.

Wang et al. (2021) identified five postural behaviors of sows in

videos using the combination of a CNN (VGG-16), long short-term

memory (LSTM; Hochreiter and Schmidhuber, 1997), and principal

component analysis. Their approach achieved an accuracy of

90.60%. Although presumably accurate, these studies only

analyzed the postures of sows. The lactation-related behaviors

of piglets were also essential information and remained to

be investigated.

Mobility is one essential behaviors of pre-weaning piglets to be

observed. Higher mobility of piglets usually indicates better health

status. Deep learning methods have also been used to detect and

track pigs and piglets. Cowton et al. (2019) detected and tracked

adult pigs using the combination of Faster R-CNN and simple

online and realtime tracking (SORT; Wojke et al., 2017) or deep

SORT. Their method achieved a multi-object tracking accuracy

(MOTA) of 92.0%. Zhang et al. (2019) detected adult pigs using a

CNN of architecture single shot multibox detector (Liu et al., 2016)

and tracked the pigs using a correlation filter-based tracker. Their

approach achieved a precision of 94.72%, a recall of 94.74%, and a

MOTA of 89.58%. Psota et al. (2020) detected the key points of ear

tag-equipped adult pigs using a fully-convolutional detector and

tracked the pigs using a probabilistic tracking-by-detection method.

The ear tags were used to identify individual pigs. Their method

achieved an average precision and recall of at least 0.8251. Gan et al.

(2021) proposed a customized approach, named online piglet

tracking network, to detect and track piglets simultaneously.

Their approach achieved a MOTA of 97.04% and an inference

rate of 6.89 frames per second (fps). Kim et al. (2022) counted pigs

using a CNN of architecture YOLO v4 tiny and modified deep

SORT. Their approach achieved a MOTA of 89.88% in adult pig

tracking. Ho et al. (2021) quantify the movements of piglets using a

CNN based on architecture of EfficientNet and SORT. Their

approach achieved an overall mean average precision of 87.90%.

Although presumably effective, most aforementioned studies

worked on adult pig tracking in open spaces. The sizes of the pre-

weaning piglets were small, and the environment in farrowing crates
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was complex (e.g., filled with rails, heat lamps, and buckles). Very

limited studies have been conducted to track pre-weaning piglets in

farrowing houses. Neither was long-term analysis performed.

This study aimed to monitor the lactation-related behaviors of a

sow and the litter of her piglets in a farrowing crate simultaneously

and continuously. Seven postures of sows (feeding, standing, sitting,

recumbency, lying, left lactating, and right lactating) and three

lactation-related activities of the piglets (suckling, active, and rest)

were identified using the combination of multiple deep learning

models. Subsequently, six metrics were derived from the seven sow

postures to explicitly measure the lactation status of the sow. Long-

term analysis of sows and their piglets was conducted. The

differences in lactation-related behaviors between crates were

observed and compared. Sows or piglets with outlying behaviors

were identified and discussed.
2 Materials and methods

2.1 Overview of the system

The system formonitoring behaviors of sows and piglets consisted

of a) embedded systems for capturing videos of farrowing crates,

b) image preprocessing algorithms, c) two deep learning models

(sow posture recognition model, SPRM; piglet localization and

tracking model, PLTM), and d) data analysis algorithms (Figure 2).

The image preprocessing algorithms converted the videos into clips
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and images of appropriate formats. The deep learning models

identified the postures of sows and localized and tracked the piglets.

The data analysis algorithms calculated nine measures of sows and

piglets: sow lactating time, sow lactating frequency, sow feeding time,

sow feeding frequency, sow recumbency time, sow posture change

frequency,pigletmovement, piglet activity ratio, andunfedpiglet event

in e of Figure 2.
2.2 Experimental sites and
farm management

The experiment was conducted in the farrowing houses of

two commercial pig farms located in Tainan (Figure 1A) and

New Taipei (Figure 1B), Taiwan. The farms in Tainan and New

Taipei City were small- and intermediate-sized swine operations,

respectively, which have around 80 and 480 sows in the herds. Both

farms have loose housing with waterproof tarpaulin covered in the

winter. There were two and four regular farrowing crates used for

monitoring the farrowing houses of the Tainan and New Taipei City

farms, respectively. The crate dimension was 1.9 × 2 m2. The breeds

of the sows in the Tainan farm were mainly Landrace (L) and

Landrace and Yorkshire crosses (LY). The piglets were mostly

Duroc × Yorkshire × Landrace (DYL) with a small number of L

and YL. The breeds of the sows in the New Taipei City farm were

mainly Landrace (L) and Yorkshire (Y). Their piglets were mostly

Yorkshire × Landrace (YL) with a certain number of L and Y.
A B

DC

FIGURE 1

Farrowing houses in the (A) Tainan and (B) New Taipei commercial pig farms, and embedded systems installed in the (C) Tainan and (D) New Taipei
farrowing houses.
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The regular farrowing and lactation of sows in the two farms were

managedwith a 4-week period. The piglets wereweaned andmoved to

nursery houses in the farms. The managers of the farrowing houses

followed the regular feeding and caring procedure on the farm: feeding

twice in the morning and evening, and cleaning once right after

morning feeding on a daily basis. Medication if necessary was very

limited.Thus, the interference of sows andpiglets bymanagerswas less

thanonehour in aday.Toavoid influencing thenormal behaviorof the

observed subjects, the feeding and cleaning periods were skipped out

from the video collection. In addition,weobserved the sowsandpiglets

via cameras instead of on the farm.
2.3 Video acquisition

Videos of certain farrowing crates were collected using the

embedded systems. Each of the embedded systems was composed of

a single-board computer (Raspberry Pi 3 Model B+, Raspberry Pi

Foundation; Cambridge, United Kingdom) and a wide-angle camera

(KS2A17, Majortech; Shenzhen, China). The cameras were installed

above the farrowing crates at an inclination angle q (in Figure 2A) of

approximately 30°C and a height of approximately 3 m in the Tainan

farm (Figure 1C), and at an inclination angle of approximately 10°C

and a height of approximately 2 m in the New Taipei farm (Figure 1D).

The cameras captured videos from the back of the sows. The camera

view covered a complete farrowing crate, including the feeding buckles

of the crates. The videos of sows and piglets from birth to weaning were

recorded. The videos were acquired at a rate of 5 frames per second

(fps) and a resolution of 960 × 540 pixels. Each video was one-minute

long. The acquired videos were stored in the single-board computers

and were sent back to a network attached storage in the laboratory
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through 4G internet. The videos were collected from 8:00 to 18:00 daily

from 2020 to 2022. More than 5,000 hours of videos were collected.
2.4 Video conversion

The videos were converted into clips and images for training the

SPRM and PLTM, respectively. In the conversion, the frame rate of the

videos was reduced to 1 fps. Each frame was extracted. Consequently,

each one-minute long video rendered 60 frames. Cropping and

perspective transformation were then applied to the frames to remove

redundant areas in the videos (i.e., adjacent crates or walkways) and to

diminish the impact of differences in the shooting angles. The resulting

frames included a single and complete farrowing crate. Thirty

consecutive frames were composed as a clip. Consequently, each video

rendered two clips. The clipswere used to train SPRM.The frames in the

clips were resized and stored at a dimension of 224 × 224 pixels.

Furthermore, the cropped and transformed frames were also stored as

the images for training thePLTM.These imageswere referred toaspiglet

images. For the purposes of annotation, the piglet images were resized

and stored at a dimension of 1024 × 1024 pixels. The aforementioned

process was performed automatically.
2.5 Clip and image annotation

Clips of seven sow postures were recognized and collected: feeding,

standing, sitting, sternal or ventral recumbency (referred to as

recumbency in this work), lying, lactating on the right side, and

lactating on the left side (Figure 3; Table 1). The posture of the sows

in a clip was recognized by observing the original videos. Clips
A

B D

E

C

FIGURE 2

Flowchart of the proposed lactation-related behaviors monitoring system of a sow and her piglets: (A) embedded systems, (B) image preprocessing
algorithms, (C) deep learning models, (D) data analysis algorithms, and (E) output.
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containing posture transientswere not used. A total of 2,353 clipswere

collected (Table 1). The clips were split into training and test at a ratio

of 3:1.

The piglet images were screened before being used to train the

PLTM. To improve the robustness of the PLTM, images of a high

level of similarity were disregarded. The structural-similarity index

measure (SSIM; Wang et al., 2004) was used to exclude the images

of consecutive frames with high levels of similarity. After screening,

a total of 1361 piglet images were selected. Rotated bounding boxes

of the piglets in the images were labeled using the roLabelImg

toolkit. After annotation, the dimension of the images was reduced

to 512 × 512 pixels. The images were split into training, validation,

and test at a ratio of 4:1:1.
2.6 Sow posture recognition and
daily metrics

The combination of an EfficientNet (Tan and Le, 2019) and an

LSTM was used as the SPRM. The EfficientNet was used as an

encoder to extract the features from the piglet images in a clip.

Subsequently, the LSTM was used as a decoder to determine the

posture of sows using the temporal features (i.e., features of 30

consecutive frames) from the EfficientNet. The original fully

connected (FC) layer in EfficientNet was substituted by two FC

layers, each with dimensions of 1,280 × 1,024 and 1,024 × 512

respectively to reduce the dimensions of the spatial features. Two

additional FC layers were added to the LSTM output, each with

dimensions of 512 × 256 and 256 × 7 respectively. The first added

layer is used to diminish the dimensionality of the temporal

features. The subsequent layer is used to predict the output
Frontiers in Animal Science 05
associated with sow postures. SPRM was trained in the PyTorch

framework. Adaptive moment estimation (Kingma and Ba, 2014)

was used as the optimizer. The initial learning rate was set to 0.0001.

The batch size was set to 30. The model was trained for 48 epochs.

Two graphics processing units (GPUs; RTX A6000, NVIDIA; Santa

Clara, USA) were used for training the SPRM.

Once trained, the SPRM was used to identify sow postures in

clips converted from videos on a regular basis. Subsequently, the
TABLE 1 Number of labeled sow posture clips and definition of
sow postures.

Posture Training Test Description

Feeding 272 91 Four feet upright on the ground and
looking down to eat feed

Standing 231 77 Four feet upright on the ground but
not feeding

Sitting 233 78 Front two feet upright on the ground

Recumbency 377 126 Lying down but not seeing full udder

Lying 217 72 Shoulder on either side touching the
ground with udder fully visible

Lactating
right

215 72 Left shoulder touching the ground, belly
fully visible, and more than 50% of all
piglets exhibiting motions of suckling
on the right side

Lactating
left

219 73 Right shoulder touching the ground,
belly fully visible, and more than 50%
of all piglets exhibiting motions of
suckling on the left side

Total 1,764 589
A B D

E F G

C

FIGURE 3

Seven sow postures to be recognized: (A) feeding, (B) standing, (C) sitting, (D) sternal or ventral recumbency, (E) lying, (F) lactating on the right side,
(G) lactating on the left side.
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following daily metrics were quantified for each sow: sow lactating

time (hours per day), sow lactating frequency (times per day), sow

feeding time (hours per day), sow feeding frequency (times per day),

sow recumbency time (hours per day), and sow posture change

frequency (times per day). Sow lactating time is the summed

duration of lactating on the right side and lactating on the left

side. Sow posture change frequency summarized all the posture

change events, except for the changes between lying and lactating

and between feeding and standing.
2.7 Piglet movement quantification

The mobility of a piglet litter in each crate was quantified (i.e.,

group mobility). The combination of YOLOv7 (Wang et al., 2023)

and SORT was used as the PLTM. YOLOv7 was used to localize

piglets in the piglet images. SORT was used to track the piglets in

consecutive frames using the piglet locations from YOLOv7.

Movements of the piglets were subsequently quantified as the

Euclidean distance of the piglet center coordinates between

consecutive frames. Piglet movement was calculated for each crate

as the mean piglet movement (meters per piglet per day). Piglet

movements were quantified in meters because the dimension of the

farrowing crates is known (1.9 × 2 m2).

The YOLOv7 was comprised of a backbone CNN with E-ELAN

architecture, a neck with a path aggregate feature pyramid network

(PAFPN), and a YOLO head as the head. The backbone CNN

extracted feature maps from input images. The neck aggregated

these feature maps and enhanced information flow between

different pyramid levels through iterative bottom-up and top-

down pathways. The YOLO head predicted the bounding boxes

and confidence scores of objects of interest (e.g., piglets).

YOLOv7 was trained using the PyTorch framework. To train

the model, the dimension of the input images was set to 416 × 416

pixels. Online image augmentations were applied to the training

images to enhance the robustness of the model at each epoch. The

augmentation operations included hue variation (randomly

multiplied between 0.985 and 1.015), saturation variation

(randomly multiplied between 0.3 and 1.7), value variation

(randomly multiplied between 0.6 and 1.4), image scaling

(randomly scaled between 0.1 and 1.9), horizontal flipping

(randomly flipped left or right), and mosaic (randomly cropped,

repositioned, and combined four training images into one). Adam

was used as the optimizer. The initial value of the learning rate was

set to 0.01. The batch size was set to 32. The model was trained for

300 epochs. Two GPUs (RTX A6000, NVIDIA; Santa Clara, USA)

were used for training the model.

SORT was comprised of a Kalman filter (Kalman, 1960) and the

Hungarian algorithm (Kuhn, 1955). The Kalman filter was used first

to estimate the center coordinate, area, aspect ratio, and velocities of

the piglets in the present frame, and changes in the center

coordinate, area, aspect ratio, and velocities of the piglets in a

subsequent frame by using the same information in the previous

frame. The Hungarian algorithm was used to match the piglets in

two consecutive frames. Then, the Euclidean distance between the

successfully tracked piglets in consecutive frames was quantified.
Frontiers in Animal Science 06
Once trained, the movements of piglets were quantified using

PLTM at a rate of 5 fps (i.e., original video frame rate; Section 2.3).

Linear regression was applied to the daily piglet movements of the

same crate on consecutive days to observe the long-term trend of

piglet movements.
2.8 Piglet activity ratio and unfed
piglet detection

Piglet activity ratio (with respect to time) was calculated using

the SPRM and PLTM cooperatively. Three piglet activities were

considered: suckling, active, and rest. Suckling was defined

equivalently as sow lactation, and, consequently, suckling time

was equivalent to the sow lactating time quantified using the

SPRM. When piglets were not suckling, their activities (active and

rest) were further identified using the PLTM. Piglets of a crate were

considered as active if the piglet movement exceeded one meter in

five minutes and more than five piglets were detected (i.e., not in the

heat lamp chamber) in the piglet images. Otherwise, piglet activity

was considered as rest. Piglet activity ratio was subsequently

quantified as the percentages of the three activities.

Unfed piglets were also detected using the SPRM and PLTM

cooperatively. SPRMwas used to identify the status of sow lactation,

and PLTM was used to detect piglets outside the suckling zones

(Figure 4A) and recognize them as unfed piglets. When the sow was

lactating on the left side (Figure 4B), the suckling zone was defined

as the area framed by the four coordinate points L1 (77, 175), L2

(215, 175), L3 (215, 460), and L4 (77, 460) in a 512 × 512 image.

Points L1 and L4 were connected by a convex arc with a radius of

750 pixels, and the rest of the points were connected by straight

lines. Similarly, when the sow was lactating on the right side

(Figure 4C), the suckling zone was defined as the area framed by

points R1 (275, 175), R2 (435, 175), R3 (435, 460), and R4 (275,

460), with points R2 and R3 connected with the convex arc. The

suckling zones were determined by inferring from images with

unfed piglets. The occurrence of an unfed piglet event was

considered when one or more unfed piglets were detected

throughout a lactation event. A lactation event was defined as an

occurrence of sow lactation that spans the consecutive clips detected

as sow lactation by PLTM.
2.9 Video collection for long-term analysis

Ten sets of farrowing crate videos were prepared for examining

the performance of the proposed approaches on a long-term basis.

Each set comprised videos recorded in a crate hosting a sow and her

piglets. The videos were recorded continuously from 8:00 to 18:00,

from the birth to day 15 of the piglets. Each video was one-minute

long, yielding a total of 600 videos per day. Five sets were recorded

in the Tainan farm, and the other five were recorded in the New

Taipei farm. Certain videos were missing due to unstable internet

connection or the maintenance of the embedded systems. A total of

1,351.4 hours of videos were collected. The videos were not used for

training the SPRM or PLTM. The collected videos were converted
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into clips using the aforementioned procedure (Section 2.4). Sow

and piglet metrics (Sections 2.6, 2.7, and 2.8) were calculated using

the proposed approaches. Subsequently, an analysis was conducted

to examine the difference between crates.
2.10 Statistical analysis

Statistical analyses were conducted on the data collected in the

long-term experiment. The data were presented as mean ± standard

deviation (SD). To determine the statistical significance of

differences between groups, we employed Welch’s t-test and

Bonferroni multiple comparison tests. For the sow posture

analysis, the statistical units included lactating time, lactating

frequency, feeding time, feeding frequency, recumbency time, and

posture change frequency. In addition, for the piglet movement

analysis, the statistical unit was the daily movement. Welch’s t-test

was used to determine the significance of differences between

groups with unequal variances. To control for the increased risk

of Type I errors due to multiple testing, Bonferroni multiple

comparison tests were performed. All statistical analyses were

conducted with a significance level of p < 0.05. The statistical

analyses were performed using Python.
3 Results

3.1 Performance of the sow posture
recognition model

The performance of the trained SPRM was evaluated using the

589 test clips (Table 1). The model achieved an overall accuracy of

91.36%, an overall precision of 0.93, an overall recall of 0.93, and an

overall F-1 score of 0.92 (Table 2). The processing speed of the

trained SPRM was 0.77 clips per second using the RTX A6000.

Predictive analysis was conducted to understand the details of

misidentification. The resulting confusion matrix (Figure 5)

indicates that 15.0% of the feeding clips were misidentified as

standing. By inspecting the misidentified clips (Figure 6A),
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certain feeding postures had a high level of similarity with

standing postures (Figure 6B), with only a slight difference in the

position of the head. Thus, the confusion between feeding and

standing was high. This is a natural limitation of our top-view

surveillance approach, since the defining features of certain postures

are not easily visible from a top-view perspective. The analysis also

showed that 8.0% of the lying clips (5.0% lactating on the left side

and 3.0% lactating on the right side) were misidentified as lactating.

Lying is usually a transition between lactating and other postures.

By inspecting the misidentified lying clips (Figure 6C), it was

observed that the misidentification occurred when the sow was

about to start or to end lactation, causing high confusion between

lying and lactating (Figure 6D).

Certain long-term videos were selected to examine the

prediction performance of the trained SPRM (Figures 7A, B). The

selected videos were captured in two crates. The total length of the

videos in each crate was one-hour long, rendering a total of 120

one-minute videos (i.e., 240 clips). These clips were selected because

the sows in the clips had a high frequency in posture change. The

SPRM achieved an accuracy of 93.7% on the clips.

Four failure cases were observed, including twomisidentifications

between lying and lactating (c in Figures 7A, D in Figure 7B), one

misidentification between feeding and recumbency (e in Figure 7B),

and one misidentification between sitting and recumbency (f in

Figure 8B). Of the two misidentification cases between lying and

lactating, the first case was a lactating misidentified as a lying (c in

Figures 7A, C). This case occurred at the end of sow lactation. In the

misidentified clip, only 3 to 6 piglets were suckling. The rest of the

piglets were resting at the top left corner of the crate. The moment

was the critical point when the lactation period was about to end.

Another case was a lying misidentified as a lactating (d in Figures 7B,

D. In this case, only 3 to 5 piglets in the misidentified clips had been

suckling for about 3 minutes before the sow started lactating. The rest

piglets were in the heating lamp area. The clips were characteristically

similar to the transition period before sow lactation, leading to

misidentification. The case that a recumbency was misidentified as

a feeding occurred when the sow changed her posture (e in

Figures 7B, E). By analyzing the clip, 50.0%, 43.3%, and 6.7% of

frames corresponded to recumbency, feeding, and transient postures,
A B C

FIGURE 4

(A) Coordinates of the suckling zones, (B) suckling zone for sows lactating on the left side, and (C) suckling zone for sows lactating on the right side.
Piglets outside the suckling zone during lactation were considered unfed piglets.
frontiersin.org

https://doi.org/10.3389/fanim.2024.1431285
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Tsai et al. 10.3389/fanim.2024.1431285
respectively. Although the ground truth (GT) of the clip was

recumbency, the percentages of recumbency and feeding were

close. The last failure case was a recumbency misidentified as

sittings (f in Figures 7B, F). By inspecting the misidentified clips,

the sow was observed to have both front feet flexed. Neither the left

nor right shoulder of the sow touched the ground. This recumbent

posture has a high level of similarity with sitting.
3.2 Long-term sow posture analysis

The postures of the ten sows over the 15-day long-term

experiment were identified using the trained SPRM (Figure 8).
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Statistics were subsequently calculated on a daily basis. The overall

mean daily percentages ± standard deviations (SDs) of sow postures

were 6.8% ± 2.9% for feeding, 8.8% ± 6.6% for standing, 11.8% ±

4.5% for sitting, 20.6% ± 16.3% for recumbency, 14.1% ± 6.5% for

lying, and 38.1% ± 7.5% for lactating (25.2% ± 8.1% for lactating on

the left side and 12.6% ± 6.2% for lactating on the right side).

Six daily metrics were subsequently calculated from the

identified postures (Figure 9). Of the ten sows, the lactating time

was 3.8 ± 0.75 (mean ± SD) hours per day. The lactating frequency

was 17.5 ± 2.54 times. The feeding time was 0.7 ± 0.29 hours per

day. The feeding frequency was 14.6 ± 5.36 times per day. The

recumbency time was 2.1 ± 1.63 hours per day. The posture change

frequency was 109.5 ± 23.51 times per day.

The sow in crate 4, also referred to as sow 4, was observed as an

anomaly. Compared with the other sows, sow 4 displayed

significantly lower lactating time (p = 0.0006), feeding time (p =

0.0001), feeding frequency (p = 0.0001), and posture change

frequency (p = 0.0001). Sow 4 also significantly excessed in

recumbency time (p = 0.0001). In addition, sows 8 and 10 were

observed as marginal anomalies. Sow 8 was significantly lower in

feeding time (p = 0.0048) and feeding frequency (p = 0.0063). Sow

10 was significantly lower in lactating time (p = 0.0057) and

lactating frequency (p = 0.0001). The aforementioned

observations indicate that the proposed metrics are effective in

identifying abnormal sows.

Ignoring the abnormal sow, it was also observed that the sows in

the Tainan farm (crates 1, 2, 3, and 5) and the sows in the New

Taipei farm (crates 6 to 10) significantly differed in lactating time

(p = 0.0001) and posture change frequency (p = 0.0001). The mean
FIGURE 5

Confusion matrix of the sow posture recognition model (SPRM) in predictive analysis.
TABLE 2 The precision, recall, and F1 score of the seven postures.

Posture Precision Recall F1-score

Feeding 0.93 0.84 0.88

Standing 0.90 0.96 0.93

Sitting 0.98 0.91 0.94

Sternal or
ventral
recumbency

0.86 0.96 0.91

Lying 0.98 0.93 0.95

Lactating right 0.99 0.92 0.95

Lactating left 0.85 0.96 0.90

Overall 0.93 0.93 0.92
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lactating time of the four sows in the Tainan farm was 4.5 ± 0.14

(mean ± SD) hours per day. By contrast, the mean lactating time of

the five sows in the New Taipei farm was 3.5 ± 0.42 hours per day.

The mean posture change frequency of the four sows in the Tainan

farm was 98.6 ± 12.59 times per day. By contrast, the mean posture

change frequency of the sows in the New Taipei farm was lower at

128.6 ± 9.95 times per day. The aforementioned observations

indicate that the proposed metrics are effective in quantifying the

performance differences of sows in different farms.
3.3 Performance of piglet localization

The piglet localization performance of the trained YOLOv7 was

evaluated using the 200 test images. The visualization threshold for

piglet localization was set to a confidence score of 0.5. The IoU

threshold for positive detection was set to 0.45. The model achieved

a precision of 0.99, a recall of 0.99, an F-1 score of 0.99, and a mean

average precision (mAP) of 99.6%.
Frontiers in Animal Science 09
Challenging scenarios in localizing piglets in the images were

examined (Figure 10). The scenarios included incomplete piglet

body due to occlusion and insufficient illumination. Under the

condition illustrated in Figure 10A, the illumination was

insufficient, which caused both the piglets and the background to

appear dark. Under the conditions illustrated in Figure 10B, piglets

were partially occluded by rails. Despite these challenges, the piglets

were successfully detected.
3.4 Performance of piglet tracking

Certain long-term videos were used to test the PLTM (i.e., YOLOv7

for localization and SORT for tracking). The videos were acquired from

four different crates. The total length of the videos in each crate was one-

minute. These videos were selected because there were multiple piglets

present in the video and the piglets had a high level ofmotility. TheGTs

of the piglets were labeled using LabelImg (Tzutalin, 2015). The

performance of piglet tracking was evaluated using multiple object
A B

DC

FIGURE 6

Images to explain the confusion between (A) feeding and (B) standing, and between (C) lying and (D) lactating: (A) a feeding posture misidentified as
standing, (B) a typical standing posture, (C) a lying posture misidentified as lactating, and (D) a typical lactating posture.
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FIGURE 8

Daily percentage of sow postures in the long-term experiment.
A

B

D E FC

FIGURE 7

Two-hour videos for demonstrating the performance of the trained sow posture recognition model (SPRM): (C) lactating misidentified as lying,
(D) lying misidentified as lactating, (E) recumbency misidentified as feeding, and (F) recumbency misidentified as sitting. (C–F) correspond to the
equivalent lower-case labeled regions in (A, B).
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tracking evaluation metrics (Milan et al., 2016). The proposed piglet

tracking approach achieved an overall precision of 98.7%, a recall of

96.2%, and multiple object tracking accuracy (MOTA) of 94.6%

(Table 3). The processing speed of the SORT was 166.3 frames

per second.
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3.5 Long-term piglet movement analysis

The movements of the piglets in the 15-day long-term videos were

quantified using the PLTM. For each crate, the daily movement,

defined as the movement summation from 8:00 to 18:00, of the
A B

FIGURE 10

Successful cases of piglet localization under the challenges of (A) insufficient illumination and (B) partial occlusion.
A B

D

E F

C

FIGURE 9

Mean daily (A) lactating time, (B) lactating frequency, (C) feeding time, (D) feeding frequency, (E) recumbency time, and (F) posture change
frequency of the 10 sows in the long-term experiment. The error bars represent the standard deviations of the individuals. The horizontal dashed
lines represent the overall mean values. The uppercase alphabets at the top of the bar plots denote groups of Bonferroni multiple comparison tests
performed at a confidence level of 0.95.
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piglets was calculated (Figure 11). For each day, the 68.3% confidence

intervals (mean ± 1 SD) of the daily movements of piglets in the ten

crates were also calculated. In general, the daily movements increased

gradually when the piglets grew, with an overall mean daily movement

of 326.36 m on day one and an overall mean daily movement of 436.91

m on day fifteen. However, differences in daily movement among the

crates were observed. Crates 5 to 10 demonstrated increasing trends in

daily movement, with regression line slopes between 9.32 and 23.80. By

contrast, crates 1, 2, 3, and 5 demonstrated essentially flat trends in

daily movement, with regression line slopes between 0.18 and 1.99. On

the other hand, crate 4 demonstrated a decreasing trend in daily

movement. It was observed that there is a significant difference in the

movement trend of the crates in Tainan farm and the crates in Taipei

farm (p = 0.0001).

To further analyze the movements of the piglets in different crates,

the mean daily movement and SD of each of the ten crates over the 15

days of the long-term experiment were calculated (Supplementary

Figure S1). Welch’s t-test indicates that the mean piglet movement of

the crates in New Taipei farm was significantly higher than that of the

crates in Tainan farm (p < 0.0001). The daily mean ± SD movement of

the piglets in the Tainan farm was 291.84 ± 100.75 m. By contrast, the

daily mean ± SDmovement of the piglets in the Taipei farmwas 421.52

± 118.79 m.
3.6 Piglet activity quantification using
SPRM and PLTM

Piglet activities over the 15-day long-term experiment were

identified using the combination of the SPRM and PLTM

(Figure 12). Statistics were subsequently calculated on a daily

basis. The overall mean daily percentages ± SDs of piglet activity

were 38.1% ± 7.5% for suckling, 22.2% ± 5.4% for active, and 39.7%

± 10.5% for rest. The piglets in crate 4 were observed to have the

lowest active time and the longest rest time compared to the piglets

in other crates. The active time of the piglets in crate 4 was 9.7%

lower than the overall mean active time. The rest time of the piglets

in crate 4 was 24.0% higher than the overall mean rest time.

Furthermore, it was observed that the piglets in crate 10 had

comparatively more rest time (Figure 12). The piglets in crate 10

rested 9.2% more than the overall mean rest time.
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3.7 Unfed piglet detection

Unfed piglets were detected using the combination of the SPRM

and PLTM (Section 2.8). The performance of unfed piglet detection

was tested using 300 images with unfed piglets, achieving a precision of

98.4% and a recall of 90.7%. Figure 13 demonstrates examples of

detected unfed piglets (framed with red boxes). The unfed piglets were

detected regardless of whether the sows were lactating on the left or on

the right under various illumination conditions.

The percentages of unfed piglet events for each crate in the 15-

days were examined (Supplementary Figure S2A). An unfed piglet

event was logged for each lactation period with at least one unfed

piglet. The percentage of unfed piglet event was defined as the

number of unfed piglet events divided by the number of lactation

events. Across the ten crates, the overall daily percentage of unfed

piglet events was 16.9% ± 12.2% (mean ± SD). By observing

Supplementary Figure S2A, crate 8 was found to have a

significantly higher percentage of unfed piglet events (p = 0.0241).

The percentage of unfed piglet events in the first three days after

piglet birth was also examined (Supplementary Figure S2B). The

first three days were chosen because this is the period with the

highest piglet mortality. On average, the overall percentage of unfed

piglet events in the first three days was 6.0% higher than that of in

the 15-days period. From Supplementary Figure S2B, it was

observed that crate 8 had significantly higher incidences of unfed

piglet events (p = 0.0001).
4 Discussion

4.1 Piglet tracking performance at reduced
frame rate

Piglet tracking is computationally intensive. Experiments were

conducted to see if reducing the frame rate in piglet tracking could

still achieve a reasonable performance. Originally, piglets were

detected and tracked at a frame rate of 5 fps (Section 2.7). As an

experiment, the tracking performance of the trained PLTM at a

frame rate of 1 fps was examined. The experiment was performed

using the same test videos in Section 3.4. The results indicated that,

at 1 fps, the proposed piglet tracking approach achieved an overall
TABLE 3 Evaluation result of piglet tracking.

Crate Location Frame GT MT PT ML↓ IDs↓ Precision↑ Recall↑ MOTA↑

1 Tainan 300 8 7 0 1 5 99.2% 95.7% 94.6%

2 Tainan 300 10 9 1 0 5 99.9% 96.9% 96.7%

3 New Taipei 300 10 10 0 0 12 97.2% 95.5% 92.2%

4 New Taipei 300 9 9 0 0 10 98.8% 96.8% 95.1%

Overall – 1200 37 35 1 1 32 98.7% 96.2% 94.6%
Frame, number of frame; GT, number of piglets in the crate; MT, number of mostly tracked; PT, number of partially tracked; ML, number of mostly lost; IDs, ID switching; MOTA, multiple
object tracking accuracy; ↑/↓, higher/lower scores denote better performance.
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precision of 94.6%, an overall recall of 85.3%, and an overallMOTAof

78.5% (Table 4). The precision, recall, and MOTA were reduced by

4.1%, 10.9%, and 16.1%, respectively, when the frame rate changed

from 5 fps to 1 fps. Reducing the frame rate considerably decreases the

trackingperformance and is not preferable if accurate quantificationof

piglet movements is required.
4.2 Analysis of sow abnormality

The long-term sow posture analysis (Section 3.2) revealed

some information regarding the health status of the sows. It was
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observed that sow 4 spent a lot of time in the recumbency posture

(Figures 8, 9), indicating that sow 4 was reluctant to lactate and to

feed. The sow’s reluctance may be due to injured teats or illness.

Most sows with injured teats stay in the recumbency position to

reduce piglet suckling, as this position largely covers the teats (De

Passillé and Robert, 1989). On the other hand, a lack of appetite is

a clear indicator of sickness for pigs (Global Ag Media, 2018). It

was also observed that certain sows (sows 8 and 10) had marginal

metrics (Figures 8, 9). Although the reasons for low feeding

frequency for sow 8 and the reasons for low lactating time and

low lactating frequency for sow10 were unclear, the proposed

approach effectively revealed the issues. The proposed approach
FIGURE 12

Daily percentages of piglet activities in the long-term experiment.
FIGURE 11

Daily piglet movements of the ten crates in the long-term experiment. The dots represent the mean daily movement. The lines represent the linear
regression lines. The grey area represents the 68.3% confidence intervals of the daily movements.
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may be a tool for ass is t ing the management of pig

farrowing houses.
4.3 Limitation of the proposed approach

There are two remaining drawbacks of the proposed approach:

(1) not being able to track individual piglet and (2) not being able to

monitor night activities. The proposed approach tracked the

movement of a piglet litter. This is because the videos were stored

as one-minute clips. The identifications of the piglets in different

clips were reassigned, making it computationally costly to track

individual piglet across the clips. Although elongating the clip time

may be a solution, a short clip time is needed to accurately identify

the postures of sows. Thus, an appropriate clip time is needed. As

for the second drawback, night activities cannot be monitored

because the cameras used in this study do not have infrared

capability. Certain cameras have both infrared and RGB channels

and can acquire videos in low-light or nighttime conditions,

allowing for continuous monitoring and analysis of nocturnal

nursing behaviors of sows and piglets. However, infrared videos
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are monochrome. Additional deep neural networks are needed to

process infrared videos. Implementing dual channel (i.e., RGB and

infrared) cameras and training additional deep neural networks are

follow-up works of this study.
4.4 Practical applications of the study

The proposed approach can accurately and continuously monitor

the lactating-related behaviors of sows and their piglets. Lactating-

related behaviors are essential information for pig farming. Instead of

patrolling the farrowing houses frequently, farmers can identify

abnormal behaviors by checking the readings from computers and

take necessary actions, such as closely observing those abnormal sows

and piglets, giving additional nutrients as sowmilk replacer, or asking

for diagnosis assistance from veterinarians. In addition, the proposed

approach can help in precisely determining abnormality. Lactating-

related behaviors of sows and piglets vary with breed, location, and

ambient conditions. Through collecting lactating-related behaviors on

a vast number of sows and piglets, statistical tools can determine the

edge between normality and abnormality objectively.
TABLE 4 Evaluation result of piglet tracking at a rate of 1 fps.

Crate Location Frame GT MT PT ML↓ IDs↓ Precision↑ Recall↑ MOTA↑

1 Tainan 60 8 6 1 1 3 98.1% 90.8% 87.4%

2 Tainan 60 10 9 1 0 0 99.9% 85.3% 85.3%

3 New Taipei 60 10 5 5 0 11 89.0% 85.6% 71.8%

4 New Taipei 60 9 7 1 1 3 97.9% 80.6% 77.6%

Overall – 240 37 27 8 2 17 94.6% 85.3% 78.5%
Frame, number of frame; GT, number of piglets in the crate; MT, number of mostly tracked; PT, number of partially tracked; ML, number of mostly lost; IDs, ID switching; MOTA, multiple
object tracking accuracy; ↑/↓, higher/lower scores denote better performance.
FIGURE 13

Visualization of unfed piglets. Unfed piglets were framed in red.
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4.5 Importance of the proposed approach
to animal welfare and education

The information collected can help pig farmers to identify

problematic sows and piglets early. Thus, the sows and piglets can

get necessary assistance in time. During the experiment of our study,

we found that the sow in crate 4 was problematic. We informed the

farm manager immediately and had an online discussion with him

regarding the issues of the sow. Themanager latermentioned that sow

4mayhave injured teats andhadpainwhenpiglets suckled, causing the

sow being reluctant to lactate and staying in the recumbency posture.

The information provided by the proposed approach alleviates the

pain of the sow. In addition, during the discussion with the farm

manager, he realized the effectiveness of continuous monitoring of

sows and their piglets. The collected videos and statistical analyses

provide some essential information. The issues of sows and piglets

could be diagnosed online. The recorded videos and corresponding

statistics could also serve as someeducationalmaterials forpig farmers,

veterinarians, or researchers working on precision pig farming.

5 Conclusion

This study proposed a system to monitor the lactation-related

behaviors of sows and their piglets in farrowing crates simultaneously

and continuously. Over 5,000 hours of video were captured from

farrowing crates using embedded systems. A novel two-module

approach consisting of the SPRM and PLTM was employed to

monitor sow postures and quantify piglet movements. Subsequently,

sixmetrics of the sowwere defined and calculated daily from the seven

postures identified by the SPRM. Three activities of the piglets were

defined and calculated cooperatively using the SPRM and PLTM. The

trained SPRMandPLTMachieved anoverall accuracy of 91.36%and a

MOTA of 94.6%, respectively. In long-term analysis performed over a

15-day span, the SPRM and PLTM successfully identified an

anomalously lactating crate through statistically significant

deviations in sow posture frequency and mean piglet movement.

Unfed piglet events were further detected using the combination of

the SPRM and PLTM. Detection of unfed piglet events achieved a

precision and recall of 98.4% and 90.7%, respectively. The proposed

approach is a first step towards a total solution to automatically

monitor the lactation-related behaviors of both the sow and her

piglets. An assortment of calculated metrics for sow posture and

piglet activity enable the objective assessment and statistical analysis

ofpreweaning lactation-relatedbehaviors. Further researchcombining

animal-based data can be conducted to interpret and validate the

relationship between these metrics and the health of sows and piglets.

This will enable the system to provide useful insight to help pig

farmers prevent preweaning mortality and thereby increasing pig

farming efficiency.
Data availability statement

Thedatasets presented in this article arenot readily available because

the data are owned by the Ministry of Agriculture, Taiwan. Requests to

access the datasets should be directed to Y-FK, ykuo@ntu.edu.tw.
Frontiers in Animal Science 15
Ethics statement

Ethical review and approval were not required for the animal study

because the sows and piglets were exclusively observed from the video

and the observer did not come into direct contact with them and none

of the animals was handled or restricted at any time for this study.
Author contributions

Y-JT: Data curation, Formal analysis, Investigation, Software,

Visualization, Writing – original draft. Y-CH: Data curation, Formal

analysis, Investigation, Methodology, Software, Visualization, Writing

– original draft. E-CL: Conceptualization, Writing – review & editing.

S-CL: Software, Validation, Visualization, Methodology, Writing –

original draft. X-CH: Validation, Visualization, Writing – review &

editing. JT: Methodology, Software, Visualization, Writing – original

draft. C-EC: Software, Validation, Writing – original draft. Y-FK:

Conceptualization, Funding acquisition, Investigation, Methodology,

Project administration, Resources, Supervision, Validation, Writing –

original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This research

was supported by the Ministry of Agriculture, Taiwan, under grants

108AS-13.2.11-ST-a3 and 109AS-11.3.2-STa1.

Acknowledgments

We thank Tungying Co., Ltd., for providing the experimental site.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fanim.2024.1431285/

full#supplementary-material
frontiersin.org

mailto:ykuo@ntu.edu.tw
https://www.frontiersin.org/articles/10.3389/fanim.2024.1431285/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fanim.2024.1431285/full#supplementary-material
https://doi.org/10.3389/fanim.2024.1431285
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


Tsai et al. 10.3389/fanim.2024.1431285
References
Chou, W. L. (2019). Agriculture policy & Review. Agric. Policy Rev. 323, 27–33.

Council of Agriculture (2022). AG. STATISTICS YEARBOOK 2022 (Taiwan: Council
of Agriculture, Executive Yuan, Taiwan). Available at: https://agrstat.moa.gov.tw/
sdweb/public/inquiry/InquireAdvance.aspx.

Cowton, J., Kyriazakis, I., and Bacardit, J. (2019). Automated individual pig
localisation, tracking and behaviour metric extraction using deep learning. IEEE
Access 7, 108049–108060. doi: 10.1109/Access.6287639

da Silva, K. F., Silva, B. A., Eskinazi, S., Jacob, D. V., Araujo, W. A., Tolentino, R. L., et al.
(2020). Influence offlavored drinking water on voluntary intake and performance of nursing
and post-weaned piglets. Livestock Sci. 242, 104298. doi: 10.1016/j.livsci.2020.104298
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