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1ZuchtData EDV-Dienstleistungen GmbH, Vienna, Austria, 2Complexity Science Hub Vienna,
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Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
In the domain of precision livestock farming, the integration of diverse data sources is

crucial for advancing sustainability and evaluating the implications of farm

management practices on cow health. Addressing the challenge of data

heterogeneity and management diversity, we propose a key-feature-based

clustering method. This approach, merging knowledge-driven feature selection

with unsupervised machine learning, enables the systematic investigation of

management effects on cow health by forming distinct clusters for analysis.

Utilizing data from 3,284 Austrian farms, including 80 features related to feeding,

milking, housing, and technology systems, and health information for 56,000 cows,

we show how this methodology can be applied to study the impact of technological

systems on cow health resulting from the incidence of veterinary diagnoses. Our

analysis successfully identified 14 distinct clusters, further divided into four main

groups based on their level of technological integration in farm management:

“SMART,” “TRADITIONAL,” “AMS (automatic milking system),” and “SENSOR.” We

found that “SMART” farms, which integrate both AMS and sensor systems, exhibited a

minimally higher disease risk for milk fever (OR 1.09) but lower risks for fertility

disorders and udder diseases, indicating a general trend toward reduced disease

risks. In contrast, farms with “TRADITIONAL”management, without AMS and sensor

systems, showed the lowest risk for milk fever but the highest risk of udder disease

(OR 1.12) and a minimally higher incidence of fertility disorders (OR 1.07).

Furthermore, across all four groups, we observed that organic farming practices

were associatedwith a reduced incidence ofmilk fever, udder issues, and particularly

fertility diagnoses. However, the size of the effect varied by cluster, highlighting the

complex and multifactorial nature of the relationship between farm management

practices and disease risk. The study highlights the effectiveness of the key-feature-

based clustering approach for high-dimensional data analyses aimed at comparing

different management practices and exploring their complex relationships. The

adaptable analytical framework of this approach makes it a promising tool for

planning optimizing sustainable and efficient animal husbandry practices.
KEYWORDS

farm management practices, technological systems, cow health, key-feature-based
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1 Introduction

In dairy farming, evaluating farm management practices in

relation to cattle health is both complex and critical. The

complexity of livestock farming increases as it continually evolves

through the application of innovative technologies toward more

precise farm management. This progress generates a growing

volume of dynamic (e.g. daily milk yields) and static (e.g. type of

housing system) information. When integrated, these various data

streams offer a holistic perspective on the effects of farmmanagement

on cow health (Berckmans, 2014). However, the assessment of the

impact of different management practices on cattle health is often

based on a limited amount of information. The lack of holistic farm

management analyses that integrate several types of static

information with dynamic data is likely attributed to challenges of

data collection (Cabrera et al., 2019). In particular, reliable

information on management practices and farm equipment, often

acquired through surveys, is more challenging to obtain at a large

scale relative to dynamic data, which is produced by documentation

systems (e.g. veterinarian diagnoses) or in real-time and extensively

by sensors and automatic milking systems (AMS). A sufficiently large

sample size is required for a thorough comparison of different

management practices, which contributes to the fact that such

analyses are less often conducted on the basis of large datasets.

Alongside data collection, a methodological challenge arises in

handling the analysis of large datasets aggregated at farm level. The

inherent heterogeneity of farm data and the diversity of different farm

management practices make it challenging to categorize farms based

on their management practices for systematic studies. When

grouping farms based on their management practices, we can

distinguish between two approaches: knowledge-based and

machine learning-based grouping.

In the traditional knowledge-based approach farms are grouped

based on one or more pre-selected distinguishing management

practices (features) and differences can be assessed between farms

with different (inter-group analysis) or similar (intra-group analysis)

features. Inter-group analysis is used to examine differences between

farms of different groups (e.g. comparison of animal welfare in tie-

and free-stall housing systems (Popescu et al., 2014). Conversely,

intra-group analysis serves as a qualitative benchmarking tool by

comparing farms that are more similar, such as those exclusively

utilizing free-stall barns, and further distinguishing them based on

other criteria like production level (von Keyserlingk et al., 2012). A

knowledge-based selection of groups to analyze has the potential

to investigate specific relationships of interest. However, this

approach falls short in addressing complexity as it tends to isolate

the individual effects of features or pre-defined relationships,

neglecting the potential to reveal unexpected interactions between

them. Alternative knowledge-based approaches use a rule-based

assignment strategy grouping based on multiple traits (Mavura

et al., 2022), which allows to address the increasing complexity of

available data for analysis. Nevertheless, knowledge-based grouping

faces the challenge of balancing the number of grouping features and

the resulting group size. Too many features can lead to many groups

with the risk of over-fitting the data, whereas a selection of a low

number of features can lead to a broad grouping that carries the risk
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of confounding effects. As the implementation of Precision Livestock

Farming (PLF) systems, such as AMS and sensor technologies,

introduces novel features, the dimensionality of data for farm

management analysis expands. This expansion requires innovative

grouping methods, such as (unsupervised) machine learning

approaches, which are tailored to high-dimensional data sets.

Machine learning (ML) approaches aim to overcome challenges

arising from high-dimensional data and the necessity to pre-select

only relevant features by adopting a holistic approach, which utilizes

all features to classify groups. These approaches encompass

unsupervised techniques for dimension reduction, such as Principal

Component Analysis (PCA) or Uniform Manifold Approximation

and Projection (UMAP), as well as clustering methods like K-Means

or Hierarchical Density-Based Spatial Clustering of Applications with

Noise (HDBSCAN). In a previous study we showed how a UMAP-

HDBSCAN clustering method, which is a combination of both, can

be used to improve the classification process (Matzhold et al., 2021).

Unsupervised methods are particularly useful in discovering new

patterns as they operate without predetermined assumptions,

allowing the algorithm to extract insights directly from the dataset.

By leveraging all available data instead of selecting only specific

features for clustering, this method has the potential to reveal novel

insights. However, this approach often lacks “discriminatory power”

to effectively distinguish between different patterns. In contrast to a

supervised approach, an unsupervised approach is more likely to

produce contradictory results, such as the simultaneous occurrence of

mutually exclusive features within a single cluster, e.g. tie- and free-

stalls. This lack of discriminatory power impairs the accuracy

required to effectively separate and evaluate different management

practices and thus reduces the potential to gain practically

meaningful insights. To overcome the challenges associated with

grouping high-dimensional data and to achieve an optimal balance

between the number of features and group size, a combination of both

approaches, knowledge-based and machine learning-based, should

be considered. For instance, Nyambo et al. (2019), demonstrated how

an initial knowledge-based selection of several criteria, followed by

machine learning methods such as PCA, enables the identification of

homogeneous clusters describing certain farmmanagement practices.

The objective of this study was to demonstrate the effectiveness

of a key-feature-based clustering approach to evaluate the impact of

different management practices on cow health, emphasizing the role

of technology. In particular, we aim to explore how management

practices that incorporate AMS and sensor technologies affect cow

health. Building on an earlier study using unsupervised clustering

(Matzhold et al., 2021) we apply a key-feature-based clustering

methodology that integrates a knowledge-driven selection of

crucial features with unsupervised ML techniques to enhance

discriminative power. Key-features, which greatly influence farm

management (e.g. housing system or altitude) are identified to

enable a precise differentiation and meaningful comparisons

across varying farm management types. By selecting key-features,

the dataset used for cluster analysis is reduced, which improves the

ability to distinguish between clusters and effectively solves the

problem of discriminatory power. This delineation is essential for

further analysis aimed at a more comprehensive assessment of the

impact of farm management practices on cow health, through
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analysis between different clusters or groups of clusters (inter-group

analysis) and within a particular cluster or group (intra-

group analysis).
2 Materials and methods

2.1 Data

The dataset used for the analysis encompasses data from 3,284

farms in Austria with a total of 104,259 cows, covering the period

from January 1, 2020, to November 30, 2021. This dataset was

created by merging two different datasets: one dataset containing

information on farm management practices and equipment

(hereafter referred to as the “farm dataset”) and another dataset

containing information on health events (hereafter referred to as the

“health dataset”), both aggregated at farm level.

The farm dataset comprised a total of 52 features including an

identifier (ID), 4 numeric features, 47 character features with

varying levels of expression. All features are updated annually by

Dairy Herd Improvement (DHI) employees to ensure verification of

current conditions on the farms. To assure the integrity and logical

consistency of character features, a rule-based validation process

was developed. For instance, discrepancies such as a farm marked

negatively for “access to open areas” but positively for open areas

ground conditions (“natural” or “solid”), a DHI employee was

consulted to resolve the discrepancy. To enable a more detailed

analysis of categorical features, i.e. features with more than two

levels, we applied one-hot encoding. One-hot encoding converts

categorical features into a binary format, creating separate binary

features for each level of the original category. For example, instead

of having a single categorical feature “Housing system”, one-hot

encoding creates distinct binary features such as “Free-stall housing

system” and “Tie-stall housing system”.

Numeric features such as the number of lying, eating, and milking

places were checked for plausibility. For example farms using AMS

were expected to have only 1 or 2 milking places equaling the number

of AMS. Other numeric features, such as altitude, have been scrutinized

for plausibility concerning Austrian geography and entries above 2000

meters have been excluded. To ensure a meaningful comparison across

farms, we included only those with a minimum herd size of 10 cows.

For herds exceeding 300 animals, we verified accuracy by cross-

referencing case number entries with other databases, such as

databases containing information from annual reports on farm

performance. Additionally, the farm dataset has been enriched with

annual data on average milk yield and cell count, derived from yearly

farm performance reports and averaged over a two-year period. These

metrics, considered reliable, were not subjected to further validation.

They have been integrated as they serve as supplementary indicators

for estimating farm productivity through milk yield and cow health

through cell counts. In the data cleaning process, we further checked

for information completeness of each feature, keeping only features

with at least 80 percent information content in the analysis. Post-

cleaning and one-hot encoding, the final farm dataset consisted of 80

features providing information on feeding, milking, housing systems,

general farm management (organic or conventional), husbandry
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management (such as whether cows have access to pastures or if

calves are raised on the farm), and information on the application of

novel technologies like sensor systems or AMS. A detailed description

of the data cleaning and filtering methodology is provided in the

Supplementary Materials, ensuring transparency and replicability of

the research process (Supplementary Table S1).

The health dataset for this analysis was extracted from the

national cattle database. Information from this database follows the

documentation protocols outlined by Egger-Danner et al. (2012),

which ensures high quality through standardized and validated

procedures and in compliance with legal requirements as stipulated

by the Veterinary Medicinal Products Law. From this comprehensive

dataset, we extracted veterinary diagnoses and documented events

recorded specifically during calving observations, providing

additional information on cases of mastitis and on standard

postpartum behaviors. Within the scope of this analysis, all data

collected from these sources is uniformly labeled as “diagnosis,”

irrespective of its initial classification or source. For all cow-based

health events that occurred from 2020 to 2021, only the first

occurrence of a specific diagnosis was counted to mitigate biases

related to chronically ill animals causing multiple entries. The health

information was further aggregated at farm level. In addition, health

data of a farm was only classified as valid if at least 10 percent of the

herd had a veterinarian diagnosis within one year, and only first

diagnoses were considered. To gain a more comprehensive

understanding of disease complexes, diagnostic codes describing

similar diseases were grouped into three main categories: udder

diseases, milk fever, and fertility disorders. Acute mastitis and

chronic mastitis were combined under the collective term “udder

diseases”, while a range of reproductive disorders – including uterus

inflammation, anestrous, ovarian cysts, retained placenta, and

puerperal disorder – were grouped together as fertility disorders.
2.2 Key-features

A key-feature is defined as a crucial factor that influences the

choice or possibilities for management practices on a farm. Key-

features were selected based on existing knowledge of important

farm management factors, aligning with our research interests in

investigating the influence of technological systems, particularly

AMS and sensor systems. This selection led to the identification of

the following eight key-features that form our dataset for

cluster analysis:
• Herd size

To distinguish farms by their operational scale, separating

small from large farms. Larger herd sizes present challenges

in monitoring individual animal health and managing

disease outbreaks, impacting overall cow health (Beggs

et al., 2015).

• Average milk yield per year

To distinguish farms based on their milk production

intensity. High milk yield can be associated with

increased health risks, such as ketosis (Stengärde et al.,

2012) and fertility disorders (Lucy, 2007).
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• Altitude

To distinguish farms based on their altitude allows for

distinctions to be made regarding climatic and spatial

conditions. Altitude indirectly indicates whether cows are

exposed to high temperatures, with heat stress being a

known risk factor (Badinga et al., 1985). The location of a

farm also determines whether cows can access alpine

pastures and impacts the feeding ratio composition.

• Pasture access

To distinguish farms based on their ability to provide

cows with pasture access, influencing feeding strategies

and physical activity. Pasture access can contribute to

better overall cow health and welfare offering benefits

such as more freedom for movement and lower stress

leve ls (Schuppl i e t a l . , 2014 ; Ghassemi Nejad

et al., 2021).

• Access to open areas

To distinguish farms based on open area availability, which

impacts the physical activity and welfare of a cow, for

example, increased mobility improves estrus detection

(Roelofs et al., 2005).

• Free-stall housing system

To distinguish between different housing systems, such as

free- versus tie-stall. Housing systems can impact cow

health by providing animals with more freedom to move,

potentially reducing the incidence of injuries and improving

welfare (Beaver and Weary, 2021).

• Automatic milking system (AMS)

To distinguish farms based on the use of automatic versus

traditional milking systems. The AMS can influence cow

health through reduced stress during milking and

potentially improved milking hygiene (Hogenboom et al.,

2019). The adoption of AMS has been associated with a

lower risk of mastitis and improved animal welfare,

although the outcomes can vary depending on

management practices (Karttunen et al., 2016).

• Sensors

To distinguish farms that use sensor technology for herd

monitoring and management, this analysis exclusively

considers animal-mounted sensor systems, which record

e.g. behavior and/or physiological measurements. The

application of these sensor systems enables more precise

farm management practices, improving production

efficiency and animal health. For example, sensor-

triggered alerts can help identify health problems more

easily (Stygar et al., 2021).
Through this selection, we reduced the complexity, i.e.,

dimensionality, of the data. Numeric key-features, such as herd size

and average milk yield and altitude, were normalized to ensure a

consistent comparison across different scales. In a next step, the

similarities of the dataset were assessed by creating a similarity matrix.
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2.3 Cluster identification and evaluation

2.3.1 Similarity assessment
Within the key-feature-established dataset, similarity between

individual farms is assessed through statistical methods using

cosine similarity for numerical data and Jaccard similarity for

binary data. Jaccard similarity is particularly suitable for binary

data where each element is present or absent. Cosine distance, on

the other hand, is a metric used for quantifying the similarity between

two numeric vectors. Both similarity measurements are frequently

used, particularly in text analysis. Combining both similarity

measurements is expected to increase the overall similarity value

(Zahrotun, 2016). The resulting similarity vectors, where each farm is

represented by a combined similarity vector, formed the basis of the

similarity matrix. This matrix was then converted into a dissimilarity

metric to facilitate further cluster analysis.

2.3.2 Cluster identification
The HDBSCAN algorithm (Campello et al., 2013; McInnes and

Healy, 2017) is a density-based hierarchical clustering method

designed to transform data into relatively homogeneous groups of

similarity, i.e., clusters. The underlying principle of density-based

data analysis techniques is based on the assumption that the data is

a sample from an unknown probability density function, describing

the mechanism or mechanisms responsible for generating the

observed data (Campello et al., 2015). Unlike other clustering

methods such as K-Means, HDBSCAN does not require

specifying the number of clusters to extract. Instead, it relies on

defining a minimum distance and/or a minimum number of data

points to form a cluster. In this analysis, we evaluated several

parameters for the minimum cluster size and determined that 32

farms were optimal. This configuration ensured an adequate sample

size within each cluster, facilitated robust statistical analysis, and

resulted in a sufficient number of distinguishable clusters, allowing

for the examination of differences between them. HDBSCAN was

chosen because it facilitates cluster formation, as the algorithm

automatically handles the assignment of points to clusters. This

streamlines the clustering process without the necessity for manual

intervention in determining the relevance of feature combinations.

HDBSCAN was applied to the dissimilarity matrix transformed

from the similarity matrix to extract clusters. The obtained clusters

were then further grouped based on our main research interest, the

level of technological integration on the farm (e.g., AMS, SENSOR).

This grouping allowed us to assess the effects of individual key-

features, such as the use of AMS or sensor systems, at a group level.

In addition, a supervised clustering procedure was applied as an

alternative approach to extract clusters. Utilizing the similarity

matrix, various thresholds ranging from 0.80 to 0.95 were

employed to cluster similar farms. Both methodologies –

supervised clustering and unsupervised clustering – produced

comparable results i.e. a similar number of clusters. However, since

the supervised approach requires extensive manual review, which can
frontiersin.org
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be performed more effectively by an unsupervised method, we chose

the unsupervised approach. This strategy not only simplifies the

determination of the optimal number of clusters but also improves

the feasibility of future analyses based on selected key-features. The

script containing the code for the clustering procedure is provided in

the Supplementary Material Section 4: R Code. All data analyses were

performed using R (version 4.3.2) with the following libraries:

data.table and lubridate for data manipulation, proxy and dbscan

for computations, and ggplot2 and cowplot for data visualization.

2.3.3 Disease risk and pertinent
feature assessment

The assessment of disease risks and pertinent features was

conducted using a similar methodology as implemented in our

previous study on farm-risk-profiles (Matzhold et al., 2021).

Variations in the frequency of diagnoses served as an approximation

of the disease risk. Consequently, the term “disease risk” in this context

refers to the probability of a diagnosis occurring. Disease risks were

evaluated by determining the incidence rate (R) and odds ratios (OR)

for each disease across both cluster groups and individual clusters.

Disease incidence rate was determined according to the following

formula:

Ri,j =
Di,j

Hi
(1)

where:
Fron
– i denotes a specific population group, which can be a cluster,

a group of clusters, or the whole population.

– j denotes a disease group.

–Di,j is the sum of unique diagnoses of disease jwithin population

i throughout the entire two-year observation period.

– Hi represents the herd size for population i, with

memberships estimated based on the number of days a

cow is fed.
To mitigate the risk of bias toward cows with chronic illnesses,

multiple diagnoses of the same disease in a single cow were counted

as one (unique) positive case. The association of a cow with a farm

was determined based on feeding days, which enables a more

accurate estimate of the number of cows associated with the farm.

Note that our approach, which involves aggregating multiple health

data collected over a two-year period and grouping similar health

events, might result in higher incidence rates compared to other

studies (Egger-Danner et al., 2020). However, it provides a more

comprehensive overview of specific health groups by linking as

much information as possible.

The cluster or cluster group with the lowest disease incidence

rate was used as a reference for OR calculation for other clusters.

The OR is computed by the formula:

ORi,j =

Di,j

Hi−Di,j

Di,Rmin ,j

Hi,Rmin
−Di,Rmin ,j

(2)

where:
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– i denotes a specific population group, which can be a cluster

or a group of clusters.

– j denotes a disease group.

–Di,j and Di,Rmin ,j denote the sum of unique diagnoses in

population i and in the population with the lowest

incidence rate, respectively.

–Hi andHi,Rmin
represent the herd sizes for population i and the

population with the lowest incidence rate, respectively.
ORs and significance levels were derived using a one-sided

Fisher’s exact test.

To investigate the characteristics of a cluster, we evaluated the

pertinent features by computing the z-scores for each cluster’s

features. The z-score is computed by the formula:

zi =
xi − m
s

(3)

where:
– i denotes a specific population group, which can be a cluster

or a group of clusters.

– xi is the mean of a given feature within i.

– m is the global mean of the feature across all populations.

– s is the standard deviation of the feature across

all populations.
A high z-score suggests that a factor is highly relevant for

characterizing a cluster. Statistical significance was assessed using a

2-sided t-test or Fisher’s exact test.

To assess the impact of the numerical features, we performed an

additional statistical analysis to complement the z-score

evaluations. We conducted a two-tailed t-test for comparisons

between two groups and an ANOVA for comparisons between

more than two groups. An initial visual inspection of the

distribution of individual features indicated deviations from

normality for some features. Consequently, we also performed a

Kruskal-Wallis test to validate the t-test results. Results were

considered significant if p.values p ≤0.05.

2.3.4 Inter- and intra-group analysis
To assess the impact of farm management practices on cow

health, disease risk (Equations 1, 2) and pertinent feature (Equation

3) assessments were conducted across different groups of clusters

(inter-group analysis), as well as within a specific cluster group

(intra-groupanalysis). Inter-group analysis is applied to compare

the impacts of different farm management practices on cow health.

This analysis examines the relationship between key-features, i.e.,

features with high discriminatory power, especially those relevant to

the research interest, and their impact on disease incidence in

different clusters. The effects are assessed both at group level by

comparing different cluster groups and at individual cluster level by

comparing individual clusters between these groups. To deepen our

understanding of the impact of farm management practices on cow

health beyond the key-features, an intra-cluster analysis was

performed. In this analysis, investigations are carried out within a
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group, i.e., between clusters that show similarities in the key-

features. The aim was to uncover and explore the effects of

feature interactions and their impact on cow health.

Furthermore, numerical features were compared to gain

additional insights that assist in more accurately classifying and

distinguishing farm management types. Metrics such as cow count,

average milk yield, altitude, and cell count were used to evaluate

farm size, dairy farming intensity, climatic influences on farming

techniques, and cattle health indicators. We report the mean and

standard deviation to highlight the central tendencies of these

metrics. In addition, box plots were created to assess variability

and identify outliers within the numerical features.
3 Results

The results obtained from the key-feature-based clustering

indicated that we can differentiate among 14 distinct clusters.

These clusters were further categorized into four distinct groups

based on their technological integration in farm management: The

“TRADITIONAL” group, where AMS nor sensor systems are

incorporated; “AMS” or “SENSOR” group, each characterized by
Frontiers in Animal Science 06
the exclusive use of one of these technologies; and the “SMART”

category, where both AMS and sensor systems are synergistically

integrated, representing the most technologically advanced cohort

in our study. Figure 1A illustrates the individual clusters, the

number of farms, and the group relationships by color. Of the

3,284 farms analyzed, 3,101 were successfully assigned to a cluster

with a satisfactory sample size (a minimum of 32 farms per cluster),

allowing a comprehensive inter- and intra-group analysis of farm

management practices.

In the baseline analysis, the “TRADITIONAL” group emerged

as the largest group, comprising 2,400 farms (77.39%). Among all

farms, 373 are equipped with an AMS system. The smallest group

within this subset is the “AMS” group, which includes 45 farms

(1.45% of total number of farms). The remaining 328 AMS-

equipped farms also employ sensor systems, forming the

“SMART” group, and representing 10.58% of all farms. The

“SENSOR” group also encompasses 328 farms, constituting the

remaining 10.58% of the dataset.

Investigating the disease incidence rates over a two-year period

among all 98,037 cows in the dataset, the highest rate was observed

for fertility disorders (39.87%) followed by udder diseases (24.40%)

and milk fever (11.52%) (Supplementary Figure S1A).
FIGURE 1

Inter-group analysis: cluster results (A) display the extracted clusters including the number of farms in each cluster and color-coded groups.
Grouped (B) and cluster-individual (C) risks for udder diseases, milk fever, and fertility disorders are displayed as heat maps with yellow indicating the
lowest disease incidence rate and red indicating the highest risk. Each number in the heat map corresponds to an Odds Ratio (OR), with * used to
highlight results significant at p.values p ≤0.05.
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3.1 Inter-group analysis

The outcomes of the inter-group analysis are presented in

Figure 1. Disease risks are displayed through heat maps, at a

grouped level in the upper right section of Figure 1B, and at an

individual level for all clusters in the lower section of Figure 1C. In

the inter-group analysis we focus on key-features, specifically those

used for grouping, and their impact on disease incidence.

3.1.1 Disease risk
At the cluster group level, we observed a trend toward a reduced

overall disease risk in SMART farms, indicated by the lowest disease

incidence rates for fertility disorders (38.80%; baseline: 39.87%) and

udder diseases (22.82%; baseline: 24.4%) and a minor increased risk

for milk fever (OR 1.09, p.values p ≤0.05). The group level data

revealed the lowest disease incidence rate for milk fever (11.26%;

baseline: 11.42%) in TRADITIONAL farm management.

Nevertheless, this group also presents the highest disease risk for

udder diseases (OR 1.12, p.values p ≤ 0.05) and a marginal increase

in fertility disorder occurrences (OR 1.07, p.values p ≤0.05).

Conversely, the highest risk for milk fever (OR 1.23, p.values

p ≤0.05) was observed in the AMS group. Additionally, AMS

farms exhibited an elevated occurrence of fertility disorders (OR

1.11, p.values p ≤0.05) and a moderately lower incidence rate of

udder diseases (23.42%). The SENSOR group demonstrated an

increased occurrence of all three diseases. It showed the highest

risk for fertility disorders (OR 1.17, p.values p ≤0.05), with a

moderate yet increased risk for udder diseases (OR 1.11, p.values

p ≤0.05) and milk fever (OR 1.04).

On an individual cluster level, however, we observed a slightly

different trend than on group level. For instance, the lowest risk for

milk fever and udder diseases was observed in Cluster 8, which is

assigned to the SENSOR group. This demonstrates that there is also

a high variance within the individual cluster groups.

3.1.2 Pertinent feature assessment
Information on the pertinent features of each cluster is provided

in the Supplementary Material in the form of z-score-ranked tables

for all features (Supplementary Tables S2–S29). The focus of the

inter-group analysis in this study was on identifying features that

reveal trends, such as recurring characteristics, and on assessing

features that contribute to the understanding of the observed trends,

such as metrics related to the size and performance of a farm.

The analysis of numeric features, employing means to assess

central tendencies and box plots in Figure 2 to explore distributions,

showed expected associations at the group level. TRADITIONAL

farming was characterized by a significantly lower average yearly

milk yield of 8,049 kg with a standard deviation of ±1,402 kg and a

significantly smaller average herd size of 27 ± 14 cows, in contrast to

clusters within the AMS, SENSOR, and SMART group. Farms in

the latter three groups were situated at an average altitude of 558 ±

165 masl (meters above sea level), yielded a higher average milk

production of 8,994 ± 1,181 kg per year and had larger herd sizes,

averaging 48 ± 19 cows. Geographic distinctions were evident, with
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average altitude of 623 ± 222 masl. Furthermore, there were notable

differences in average cell counts among these clusters: Clusters

within the TRADITIONAL and SENSOR groups exhibited lower

average cell counts (177,000 ± 86,000 cells/ml; 177,000 ± 70,000

cells/ml, respectively), whereas the AMS and SMART clusters

reported higher averages (198,000 ± 61,000 cells/ml; 206,000 ±

69,000 cells/ml, respectively). Significant differences were observed

between the SMART and SENSOR clusters, as well as between the

SMART and TRADITIONAL clusters.

Aside of the observed positive impact of SMART farm

management on cow health, the investigation of pertinent

features revealed a trend toward decreased disease rates on farms

that practice organic farming and offer cows more freedom of

movement. This trend becomes apparent when comparing the

pertinent features of the individual clusters that exhibit the lowest

overall disease risks within their respective groups. Organic farming

Clusters 7 and 8 are identified as the healthiest within their group

(TRADITIONAL and SENSOR, respectively) with the third organic

Cluster 9 ranking second in its group (SMART). A more in-depth

discussion on pertinent features among all clusters is beyond the

scope of this paper, as the inter-analysis in this study predominantly

aims to provide insights into the impact of technological use on

cow health.
3.2 Intra-group analysis

The SMART group was selected for the intra-group analysis due

to its high incorporation of technological systems in farm

management. This examination aims to reveal additional factors

besides the shared use of technology that contribute to effective

disease risk management. The disease risks are illustrated with a

heat map in Figure 3A, while the distributions of the relevant

numerical characteristics are shown as box plots in Figure 3B.

3.2.1 Disease risk
The intra-group disease risk analysis indicates that among all

SMART clusters, Cluster 11 has the lowest disease incidence rate for

milk fever and udder diseases (11.09% and 20.78%, respectively).

However, Cluster 11 also has the highest risk for fertility disorders

(OR 1.39, p.values p ≤0.05). In contrast, Cluster 9 has the lowest

incidence rate of fertility disorders (31.67%) but shows a minimally

higher disease risk for milk fever (OR 1.13) and udder diseases (OR

1.12, p.values p ≤0.05). Cluster 12 exhibits an increased disease risk,

with the highest risk for udder diseases (OR 1.16, p.values p ≤0.05)

and milk fever (OR 1.14, p.values p ≤0.05) and a higher risk for

fertility disorders (OR 1.38, p.values p ≤0.05).

3.2.2 Pertinent feature assessment
Results of the intra-group pertinent features assessment is

provided in Table 1. Note, to facilitate the comparative analysis of

cluster characteristics, only features exhibiting positive z-scores that

are statistically significant (as determined by p.values p ≤0.05) are
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included in Table 1. Features with high z-scores are considered

important in characterizing a particular cluster. Numeric feature

comparison is provided in Figure 3B.

Within the SMART group, Cluster 11 describes farms located at

the lowest altitudes (533 ± 160 masl) and with management practices

that achieve the highest milk yield (9,284 ± 1,050 kg). The pertinent

feature analysis shows that the majority of farms practice

conventional management with an average herd size of 56 ± 20

cows and permanent access to open areas. Indoor conditions reveal

the utilization of cooling systems within lying and eating areas, along

with slatted alley flooring, and deep bed cubicles are employed for

lying areas. Feeding features indicate a preference for individual

concentrate feeding. Regarding health we observed an unexpected

paradox: with the highest average cell count of 213,000 ± 67,000 cells/

ml milk, indicative of potential mastitis (Foster et al., 2021), it

simultaneously recorded the lowest incidence rate of udder diseases

and milk fever.

Similar to Cluster 11, Cluster 12 describes a conventional farm

management practice for farms with a similar herd size (56 ± 18

cows) and altitude (550 ± 163 masl), but with a lower average yearly

milk yield (9,000 ± 1,054 kg). In contrast to Cluster 11, however,
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cows in Cluster 12 had only partial or no access to open areas, and

no cooling systems were used in the barns. Feeding was mainly corn

silage-based and concentrates were fed via partial mixed ration

(PMR) including the utilization of feeding robots. Further, we

observe that Cluster 12 exhibited the lowest average cell count per

year at 205,000 ± 71,000 cells/ml within the SMART group, while

facing the highest risks for milk fever and udder diseases. As shown

in Figure 3B it is likely that some farms assigned to this cluster have

significant cell count issues, contributing to this cluster having the

highest overall risk, as indicated by outliers.

Farms in Cluster 9 were located at the highest altitude (633 ±

131 masl), while milk yield was lowest with averagely 8,369 ± 1,117

liters per cow and year. The smallest herd size was also observed in

this cluster, with an average of 51 ± 20 cows per farm. In contrast to

Cluster 11 and 12, farms in Cluster 9 were organic farms that offer

more opportunities for physical activity. Cows in this cluster had

access to open areas and pasture. In the context of indoor

management, the utilization of lying areas with high bed cubicles

was observed. As for feeding, it was characterized by the absence of

silage and the use of a concentrate distribution system

with transponders.
FIGURE 2

Inter-group analysis: box plots of four characterizing numeric features, with color denoting group correspondence.
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4 Discussion

In this study, we demonstrated the use of a key-feature-based

clustering approach to analyze the effects of farm management

practices on cow health. We showed how this approach allows

tailoring analyses to specific research questions such as the impact

of technological systems on cow health. We successfully extracted 14

farmmanagement clusters, each of which contains a sufficient sample

size for meaningful further analysis. The achieved discriminatory

power between the clusters enabled their classification into 4 distinct

groups based on the integration of technologies: TRADITIONAL,

SENSOR, AMS, and SMART. This delineation formed the basis for

further analysis aimed at a more comprehensive assessment of the

impact of individual farm management practices on cow health. It

enabled analysis both between groups of clusters (inter-group

analysis) and within a specific cluster group (intra-group analysis).

The inter-group analysis examined the relationship between

farm management features with a high discriminatory power,

particularly those pertinent to the research interest, and their

impact on disease occurrences among different clusters. At the

group level, the inter-group analysis revealed a trend toward lower

disease risks in technologically advanced farms, in particular for

SMART farms that combine AMS with sensor systems. Farms in the

SMART group showed the lowest risk for udder diseases and

fertility disorders, and only a marginal elevation in milk fever

risk. Interestingly, we observed a rather unexpected increase in

the risk for fertility disorders in the SENSOR group, which is

contrary to the low risk in the SMART group. It can be

hypothesized that especially farms with higher incidences of

reproductive disorders and consequently low performance in

fertility parameters install sensor systems to improve fertility.

However, long-term improvements through the use of sensors

may take some time, as the positive effects of sensor technology
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on reproductive performance requires further changes in

reproductive management (Neves and LeBlanc, 2015).

On an individual level, the inter-group analysis results indicated a

positive impact of organic farm management on cow health, which is

consistent with research showing the benefits of organic farming

practices for longevity and animal welfare (Lund and Algers, 2003;

Berentsen et al., 2012). This trend is highlighted as organic farming

clusters (Cluster 7, Cluster 8, Cluster 9) consistently exhibited low

disease risks within their specific cluster group. Looking at the pertinent

features of these clusters, our analysis suggested potential explanations

for this trend, including a lowermilk yield and higher altitude 2. Higher

altitude is associated with more organic farming in Austria

(Schneeberger et al., 2002). Higher milk yield is often associated with

an increased risk of some diseases (Lasser et al., 2021). This relationship

is primarily based on the negative genetic correlation between milk

yield and in particular fertility disorders (Koeck et al., 2010). Due to

stricter regulations concerning e.g. feeding regimes, medical drug use or

pasture access in organic farming farmers may put more emphasis on

fitness traits such as fertility than on milk yield when selecting cattle for

breeding (Bieber et al., 2019).

However, the relationship between organic farming and cow

health is not straightforward. For instance, Clusters 7 and 9 exhibit

increased risks for udder infections. A possible explanation is that

the restricted antimicrobial usage policy in organic farming

contributes to these issues (Orjales et al., 2016). This concern is

part of a larger, multifactorial risk that encompasses several factors,

such as outdoor management practices, diets, or housing systems,

highlighting the complexity of assessing disease risks (Wagenaar

et al., 2011). The inter-group results also demonstrated the need for

a more comprehensive view of disease risks, as indicated by the

considerable variation both within and between the different

clusters, underscoring the complexity involved in comprehending

and managing these risks effectively.
FIGURE 3

Intra-group analysis: disease risks (A) and box plots (B) of four characterizing numeric features. The box plots show the three quartiles, the minimum,
the maximum and the median (marked in red). Disease Risks are displayed as heat maps. Yellow indicates clusters with the lowest disease prevalence
(OR = 1). Orange marks for a slight increase in the risk of a disease, red for a greater increase. Each number in the heat map corresponds to an Odds
Ratio (OR), with * used to highlight that results are significant at p.values p ≤0.05.
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The exploratory intra-group analysis was applied to examine in

more detail the specific risk factors associated with cow health

within an individual group of clusters. The intention was to gain

insights into relationships that go beyond key-feature associations.

However, in the comparative analysis of feature variances within

similar groups, the differences are less pronounced than those

observed between different groups of clusters. This implies that

the discriminative power of features describing certain farm

management aspects, such as feeding management (see Table 1),

tends to be less pronounced or may not be present at all. The

reduced discriminatory power complicates the interpretation of the
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results. Nonetheless, this exploratory approach offers valuable

insights into the interaction effects of farm management factors

on cow health. In line with the inter-group analysis, we found that

within the group of SMART farms, organic management was

associated with a lower fertility disorder risk but an increased risk

of udder diseases and milk fever, in contrast to conventional

management. In particular, the combination of interacting

features obtained in Cluster 9, i.e. organic management that is not

heavily geared toward intensive milk production, that does not use

silage and offers more freedom to move, had a positive effect on

fertility. In addition, the intra-group analysis of non-organic farms

in Cluster 12, which were located at similar altitudes and therefore

exposed to similar environmental conditions as organic farms in

Cluster 11, revealed differences in disease incidence rates. We

encountered an unexpected paradox: the highest average cell

count of 213,000 ± 67,000 cells/ml milk in Cluster 11, indicative

of potential mastitis, was unexpectedly associated with the lowest

incidence rates of udder diseases in this group. One potential

explanation may be that farms in Cluster 11 implemented air

conditioning in both the lying and feeding areas, whereas farms

in Cluster 12 did not employ any cooling system. As heat stress

weakens resistance this may lead to a higher incidence of

intramammary infections (Rakib et al., 2020). Furthermore,

regarding feeding practices, Cluster 12 used more corn silage and

fed a partial mixed ratio, whereas in Cluster 11, concentrates were

fed individually. This individualized feeding of concentrated feed

can indicate a generally increased focus on animal-related farming

practices, which can positively impact animal health.

In terms of study limitations, we recognize that data reuse studies

are subject to various biases, including reporting bias (McGauran

et al., 2010) and survey design (Foster et al., 2021) bias. In particular,

this analysis was affected by two types of bias, which we refer to as

“farm survey reporting bias” and “diagnosis detection bias”. Farm

reporting bias emerges from inconsistencies between the information

provided by respondents regarding their farm management practices

and the actual execution of these reported practices. Although we

implemented logical rules to verify the internal consistency of the

information, the practical implementation remains beyond our

control and may differ in some cases. Diagnosis detection bias is

influenced by the level and frequency of veterinary consultation

resulting in a higher number of veterinary diagnoses and

consequently in an overestimation of disease prevalence within the

studied populations. Additionally, a specific form of detection bias

may occur when farms adopt new systems in response to health

challenges. This is exemplified in our findings regarding increased

fertility disorder risks within the SENSOR group. A plausible

interpretation is that farms experiencing fertility issues may install

sensor systems aiming to mitigate these risks. This observation

underscores the complexity of interpreting associations, akin to the

classic causality dilemma of “the chicken or the egg.” It raises a critical

question in the context of animal health management: Does the

adoption of specific technologies or the increased engagement with

veterinary services act as a response to pre-existing health issues, or

are they deployed as proactive preventative strategies? Despite these

limitations, data-reuse studies hold the potential to uncover new
frontiersin.or
TABLE 1 Intra-group analysis: pertinent features comparison.

Cluster 11 Cluster 12 Cluster 9

Access To Open-Air
Areas: Always

Access To Open-Air
Areas: No

Pasture

Open-Air Floor: Paved Management:
Conventional

Pasture: Seasonal

Manure Removal: Manual Summer: Corn Silage Management: Organic

Calves: Outdoor Manure
Removal: Automatic

Access To Open-Air
Areas: Always

DHI: Milk Yield Average Access To Open-Air
Areas: Partial

Open-Air
Floor: Paved

Alley Flooring: Slats Barn Design: Outdoor
Climate House

Summer: No Silage

Calving Box: With
Sick Animals

Concentrates: PMR Altitude

Ventilation System:
Lying Area

Forage Type:
Mixed Ratio

Multiple
Feeding Places

Sick Bay: Together
With Calves

Sick Bay: No Concentrates: TMR

Ventilation System:
Feeding & Lying Area

Calves: Outdoor
Climate House

Claw Trim:
Tipping Crush

Concentrates: Individual Ventilation System: No Forage
Type: Template

Claw Trim: Professional Feed Pusher: Yes Calves: Warm Stable

Lure Feed Concentrates Calving Box: Separate Ventilation
System: No

Claw Trim: Standing Alley Flooring:
Solid Concrete

Milking Take-Off: Yes

Deep Bed Cubicles Management: GMO-
Free Feeding

High Bed Cubicles

Management:
Conventional

Claw Trim: 3 Times
A Year

Claw Trim: Low To
No Training

Concentrates: TMR Cooling System: No

Ventilation System:
Feeding Area

Concentrates:
Transponder Only
Significant positive features of each cluster are arranged in descending order of importance, as
determined by their z-values. Features with high z-scores are considered as pertinent features
that characterize a particular cluster.
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associations by integrating and linking various data sources, enabling

a detection of patterns that may not have been detected within

isolated, small-scale data analysis.

We believe that themethodology presented represents a further step

forward in data-reuse studies to turn farm management information

into actionable knowledge. Our approach merges key-feature-based

data reduction with unsupervised clustering techniques to enhance our

understanding of how various farm management strategies impact cow

health. By integrating a multi-faceted methodology, we address the

complexities inherent in high-dimensional data analyses aimed at

comparing different management practices and discovering new

relationships between interacting features. The presented methodology

supports the customized analysis of specific research questions by

allowing an adaptive selection of key-features. This flexible

methodology has the potential to become a valuable tool for the

planning and optimization of sustainable and efficient practices in

livestock farming.
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Term Definition
Frontiers in Animal Sc
Key-feature A factor that has a crucial influence on farm management

practices and thus serves as a distinguishing feature between
different types of farm management.
Cluster A collection of several farms (minimum 34) clustered based

on shared similar key-features, indicating a homogeneous
management practice or approach.
Group of clusters An aggregation of clusters categorized based on common

similarities among them, facilitating comparative analyses.
Inter-analysis Comparative analysis conducted between different clusters or

groups of clusters to identify distinct patterns or impacts.
Intra-analysis Analysis conducted within a single group of clusters to

understand the nuances and dynamics internal to the group.
ML Machine learning. Refers in this context to unsupervised

methods employed for identifying patterns or clusters
within the data without prior labeling.
AMS Automatic milking system
OR (odds ratio) A statistical measure used to compare the occurrence of a

certain event in one group to its occurrence in another group,
often used in risk assessment.
ience 13
PLF Precision livestock farming
TRADITIONAL
Cluster Group

Group representing farms that use neither AMS nor
sensor systems.
AMS Cluster Group Group is characterized by farms that exclusively use AMS

system, but no sensor systems attached to animals
SENSOR Cluster Group Group representing farms that exclusively utilize sensor

systems for monitoring various aspects of farm and animal
health, without integrating AMS
SMART Cluster Group Group representing farms where both AMS and sensor

systems are synergistically integrated, representing the most
technologically advanced farming practice in our study.
TMR Total mixed ration. A method of feeding livestock.
PMR Partial mixed ration. A method of feeding livestock.
GMO Genetically modified organisms. Organisms whose genetic

material has been altered using genetic engineering
techniques, often used in agriculture for crops resistant to
pests or herbicides.
masl Meters above sea level. A measurement of altitude.
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