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Lipopolysaccharide-induced
alterations in the liver
metabolome of St. Croix and
Suffolk sheep
Samanthia R. Johnson, Kelsey Bentley, Scott Bowdridge*

and Ibukun M. Ogunade*

Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, United States
The development of resistance in parasites due to overuse of anthelmintics has

resulted in a marked decrease in the efficacy of these drug classes. Recent

research efforts have focused on exploring alternatives such as selection for

parasite-resistant breeds with the implication that immunocompetence may

align with parasite resistance. Two breeds that are often investigated are the St.

Croix (STC), a resistant hair breed, and Suffolk (SUF), a susceptible wool breed

sheep. The liver plays a vital role in metabolism in the body and metabolizes

lipopolysaccharide (LPS), which triggers whole body response through the

production of appropriate metabolites, cytokines and immune cells. The

objective of this study was to investigate the breed differences in liver

metabolome of sheep, with divergent resistance to parasites, in response to

LPS. Both STC and SUF sheep (n = 9/breed) were challenged with LPS

intravenously. Rectal temperatures and sheep grimace score (SGS) were

recorded hourly, for each animal, and averaged across the study for both

breeds. The average rectal temperature throughout the study was similar for

STC and SUF sheep (40.4°C and 40.2°C respectively), but the pattern of response

was different. STC had an average SGS of 0.8 while SUF had an average of 3.3.

Liver biopsies were collected from 3 sheep that were not challenged with LPS

(HR0; n = 3/breed), two hours post-challenge (HR2; n = 3/breed), and six hours

post-challenge (HR6; n = 3/breed). Liver tissue samples were subjected to

quantitative untargeted metabolome analysis using chemical isotope labeling/

liquid chromatography-mass spectrometry. Pathway analysis of the HR0

metabolome data revealed that 8 pathways (and their associated metabolites)

including beta-alanine metabolism, arginine and proline metabolism and

glutathione metabolism were altered (false discovery rate-adjusted P-value

(FDR) ≤ 0.05) between STC and SUF sheep. At HR2, 10 altered pathways such

as folate biosynthesis, taurine and hypotaurine metabolism, and glutathione

metabolism. At HR6, only 2 pathways (glycerophospholipid metabolism and
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purine metabolism) were altered (FDR ≤ 0.05) between STC and SUF sheep.

Results highlight the differences in hepatic metabolome and physiological

response to LPS challenge that exist between SUF and STC. These findings

suggest breed-specific differences in metabolic response to immune challenge,

potentially influencing the divergent resistance of the two breeds to

parasitic infections.
KEYWORDS
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Introduction

Parasite infections have consistently been one of the greatest

challenges facing small ruminant production and were listed as one

of the primary causes of non-predatory death loss in sheep in 2019

(Benford, 2022). Traditionally, the treatment of parasites depends

on the administration of anthelmintics. This approach has,

however, led to resistance in worms (Traoré et al., 2017). The

development of resistance in these worms has resulted in a marked

decrease in the efficacy of several anthelmintic drug classes (Fleming

et al., 2006). Recent research efforts have focused on exploring

alternatives including nutritional supplementation and selection for

parasite-resistance within breeds (Sayers and Sweeney, 2005).

In sheep, St. Croix and Suffolk are two popular breeds with

different resistance to parasites. St. Croix sheep respond quickly to

Haemonchus contortus (Hc) larvae which prevents establishment of

adult worms (Bowdridge et al., 2015). Conversely, Suffolk sheep’s

delayed response favors greater fecal egg counts and adult worm

establishment, making them more susceptible to infection (Weaver

et al., 2021). In response toHc larval antigen, St. Croix peripheral blood

mononuclear cells (PBMC) upregulated significantly more genes

associated with signal transduction, response to stress and immune

system processes compared to Suffolk PBMC (Jacobs et al., 2020).

Efficient and rapid response, in hair breeds, to parasites favors a Th2

response and may suggest STC are more immunocompetent than SUF

(MacKinnon et al., 2015).

Lipopolysaccharide, a component of the outer membrane of

gram-negative bacteria, stimulates immune cells to produce

proinflammatory cytokines such as tumor necrosis factor alpha

(TNFa) and interleukin 1-beta (IL-1b) (Lynn and Golenbock,

1992). Stimulation with LPS can reflect a bacterial infection and

presents a model for research into immune response (Lynn and

Golenbock, 1992). In a recent study, Bentley et al., 2023 evaluated

the differences in immune response to LPS in St. Croix and Suffolk

sheep. They observed an early decline in blood concentration of

TNFa, a pro-inflammatory cytokine in the parasite-resistant group,

compared to the susceptible group, which was associated with a

reduced duration of sick behaviors in the former. The liver plays a
02
vital role in the clearance of antigens such as LPS from the body, as

Toll-like receptors (TLRs) recognize and help trigger the

appropriate release of cytokines (Jirillo et al., 2002). However, the

effect of LPS stimulation on liver metabolic profile of St. Croix and

Suffolk sheep has not been fully described. The application of

metabolomics has facilitated the characterization of metabolic

phenotyping, providing insights into disease studies and

metabolic mechanisms (Kenéz et al., 2016). Metabolomics enables

the study of both exogenous and endogenous compounds as

intermediate and final products of biological processes. Therefore,

this study aimed to determine the effect of LPS on the liver

metabolome profile in sheep breed with divergent parasite

resistance (St. Croix and Suffolk breeds). We hypothesized that

there would be discernible alterations in liver metabolome profiles

in response to LPS between the two breeds.
Materials and methods

Animals

Animal use for this experiment was approved by the Institutional

Animal Care and Use Committee of West Virginia University

(protocol number # 2303064503). Nine (9) St. Croix wethers (BW=

66.8 ± 8.2 kg; 2.5 years of age) and 9 Suffolk (7 wethers and 2 ewes;

BW = 83.0 ± 8.7 kg; 2.5 years of age) were housed and raised at West

Virginia University Agronomy Farm, under parasite free conditions.

A licensed veterinarian evaluated the health of all sheep 24 hours

prior to start of experiment and only healthy animals were allowed to

participate in the study. Live weights were recorded and used to

calculate LPS dosage (E. coliO111:B4, Sigma-Aldrich, St Louis, MO).

The LPS was administered via jugular venipuncture at 2.5 mg/kg then
animals were euthanized via captive bolt gun at the following time

points; HR0 (n = 3/breed; prior to LPS challenge), HR2 (n = 3/breed;

2 hours post- LPS challenge), and HR6 (n = 3/breed; 6 hours post-

LPS challenge). This was immediately followed by exsanguination

then liver and spleen were retrieved. Animal carcasses were disposed

of via composting.
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Sample collection and
metabolome analysis

Rectal temperatures and sheep grimace score (SGS) were taken

for each animal every hour from the start of the experiment using

rectal thermometer. The orbital tightening, ear and head position,

flehming of each animal were scored between 0 and 3 and the total

of the three components were used to assess pain on a scale of 0 - 7

(Häger et al., 2017).

The liver was removed, weighed and photographed for each

animal. Duplicate biopsy punches were taken from the same area of

the right lobe and placed in cryogenic tubes for storage. Samples

were stored in liquid nitrogen until time of analysis. A total of

eighteen liver samples were subjected to untargeted metabolome

analysis. To extract metabolites from the liver tissue, the samples

were placed in plastic tubes with 6 ceramic beads, weighed, and

homogenized at 6 m/s for 15 seconds. Exactly 500 mL LC-MS grade

MeOH/water (4:1 v/v) was added before homogenizing again at 4

m/s for 10 seconds. Samples were then incubated at -20°C for 10

minutes and then centrifuged at 15,000 g for 10 minutes. All solvent

was then transferred to a new vial and centrifuged for an additional

1 minute before the supernatants were removed and dried. Sample

extracts were then re-suspended in 50 mL of LC-MS grade water.

Metabolome analysis of the liver sample extracts were performed

using chemical isotope labeling/liquid chromatography- mass

spectrometry (Zhao et al., 2019). The technique uses 12C and 13C-

isotope dansylation labeling to identify metabolites according to

their chemical groups (amines/phenols, carboxylic acids, carbonyls,

and hydroxyls (Zhao et al., 2019). Comprehensive details of the

technique, encompassing sample preparation and analysis, have

been previously documented (Zhao et al., 2019). A total of 18 raw

LC-MS data files (n = 6/time point) were processed using IsoMS Pro

1.2.14 to remove redundant pairs (adduct ions and dimers) and

singlet peaks. The peak pairs were identified as metabolites using

CIL metabolite library (containing 1060 unique endogenous

metabolites) at tier 1 and linked identity (LI) library (containing

over 2000 metabolic-pathway-related metabolites extracted from

the KEGG database at tier 2 (Li et al., 2013). All other metabolite

features that were not identified at tiers 1 or 2 were removed from

subsequent data analyses.
Statistical analysis

The intensity values for the metabolites were analyzed using

MetaboAnalyst 6.0 software (metaboanalyst.ca). Metabolome data

for each time point were analyzed separately. The data at each time

were normalized and pareto-scaled. Principal component analysis

(PCA) score plots were used to visualize differences between the

breeds of sheep at each time point. Volcano plot analysis was used

to determine the metabolites that were different (false discovery

rate-adjusted P-values (FDR) ≤ 0.05; Benjamini and Hochberg,

1995) between the two breeds at each time point. Pathway

enrichment analyses of all the metabolites were conducted using

the KEGG database, to determine pathways (and their associated
Frontiers in Animal Science 03
metabolites) that were significantly altered (FDR ≤ 0.05) between

STC and SUF at each time point.
Results

Physiological response to LPS

The average rectal temperature at HR0 was 39.5°C for STC and

39.0°C for SUF. STC sheep exhibited a more pronounced initial

temperature response to LPS, with a 1.1°C change compared to a

0.6°C change in SUF, between hour 0 and hour 1. By HR2, STC

showed minimal change in rectal temperature, which persisted for

the remainder of the study. In contrast, SUF displayed a gradual

increase in temperature, with the most significant change occurring

between hours 5 and 6 (Supplementary Figure 1). Despite STC

initially having a higher temperature than SUF, they maintained a

consistent average rectal temperature for the duration of the study.

Similarly, the average sheep grimace score (SGS) remained constant

throughout the study for STC, with the highest score recorded as 2

on a 0 -7 scale. The average SGS for SUF peaked at HR2, averaging

3 .3 compared to 0 .8 for STC throughout the study

(Supplementary Figure 2).
Liver metabolome prior to
lipopolysaccharide challenge

A total of 874 metabolites were detected and identified. The

PCA score plot showed a clear separation between SUF and STC,

indicating that there were clear breed differences (Figure 1) in the

liver metabolome of the two breeds HR0. The volcano plot analysis

revealed no metabolites with significant differential abundance
FIGURE 1

PCA scores plot of the liver metabolome of STC and SUF sheep at
HR 0.
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(FDR > 0.05). However, the results of the pathway enrichment

analysis showed that eight pathways (and their associated

metabolites such as uridine, uracil, and valine), including

pyrimidine metabolism, pantothenate and CoA biosynthesis,

folate biosynthesis, arginine and proline metabolism, and

glutathione metabolism, were altered (FDR ≤ 0.05) between STC

and SUF sheep (Figure 2; Table 1).
Liver metabolome two hours post
lipopolysaccharide challenge

The PCA score plot showed a clear separation between SUF and

STC at HR2 (Figure 3). The volcano plot analysis revealed no

differentially abundant metabolites (FDR > 0.05). Results of the

pathway enrichment showed that 10 pathways (and their associated

metabolites such as tetrahydrobiopterin, L-cysteine and tyramine)

including folate biosynthesis, glycine, serine and threonine
Frontiers in Animal Science 04
metabolism were altered (FDR ≤ 0.05) between STC and SUF

sheep (Figure 4; Table 2).
Liver metabolome six hours post
lipopolysaccharide challenge

The PCA score plot showed a clear separation between SUF and

STC, indicating that there were clear breed differences at

HR6 (Figure 5). The volcano plot analysis revealed no

differentially abundant metabolites (FDR > 0.05). However,

pathway enrichment analysis revealed alterations (FDR ≤ 0.05) in

two pathways, glycerophospholipid metabolism, and purine

metabolism, along with their associated metabolites like
TABLE 1 Pathways altered between STC and SUF prior to LPS challenge
(HR 0).

Pathway Name FDR Associated metabolites

Pyrimidine metabolism 0.01 Uridine ↑, uracil ↓, beta-alanine ↓

Pantothenate and
CoA biosynthesis

0.01 Uracil ↓, L-valine ↑, beta-alanine ↓

beta-alanine metabolism 0.01 Uracil ↓, beta-alanine ↓

Valine, leucine and
isoleucine degradation

0.01 L-Valine ↑

Valine, leucine and
isoleucine biosynthesis

0.01 L-Valine ↑

Folate biosynthesis 0.08 Tetrahydrobiopterin ↑

Arginine and proline metabolism 0.05 Putrescine ↓

Glutathione metabolism 0.05 Putrescine ↓
Only pathways with false discovery rate-adjusted (FDR)-P-values ≤ 0.05 are shown. Arrows
indicate associated metabolites that were greater (↑) or lower (↓) in STC compared to SUF.
FIGURE 3

PCA scores plot of the liver metabolome of STC and SUF sheep at
HR 2.
FIGURE 4

Pathways altered between STC and SUF at HR 2.
FIGURE 2

Pathways altered between STC and SUF at HR 0.
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deoxyguanosine, dGDP, and ethanolamine, between STC and SUF

sheep (Figure 6; Table 3).
Discussion

Hair breeds like STC demonstrate greater adaptability to harsh

climate conditions and increased resistance to internal parasites

when compared to their wool counterparts (Wildeus, 1997).

Though SUF sheep breeds are susceptible to parasites which
Frontiers in Animal Science 05
poses a significant challenge (Leymaster, 1991; Bahirathan et al.,

1996), they exhibit profitable growth rates and favorable carcass

traits. They have emerged as a prominent meat breed in North

America, leading to extensive efforts in generating crosses due to

their impressive performance and maternal abilities (Shrestha et al.,

2008). Fever response to LPS between breeds indicated a more rapid

but less prolonged change in rectal temperature for STC sheep

compared to SUF sheep, that presented longer lasting and slower

response in temperature for this study. Assessment of pain, through

SGS, revealed a more pronounced pain response to LPS in SUF

sheep. Similar physiological responses were observed by Hadfield

et al. (2018) in Dorset and Suffolk ewes’ response to LPS. They

reported a greater and more frequent display of sick behavior in

SUF ewes compared to Dorset ewes, and LPS treatment increased

rectal temperature, peaking at hour 4 post-administration. A

response akin to that of STC, as observed in this experiment,

would be more desirable, where the immune system can

promptly respond and resolve insults.

In this study, eight metabolic pathways, including those

associated with some amino acid metabolism were found to be

different between SUF and STC prior to LPS stimulation, suggesting

increased altered metabolic activity. Amino acid metabolism in

ruminants holds paramount importance, influencing various

physiological functions crucial for their health and productivity

(Titgemeyer and Löest, 2001). Serving as the fundamental building

blocks of proteins, amino acids are indispensable for protein

synthesis, and overall growth performance (Wu, 2009).

Wool production, a notable aspect of sheep husbandry, relies

heavily on amino acids, particularly those containing sulfur, such as
FIGURE 5

PCA scores plot of the liver metabolome of STC and SUF sheep at
HR 6.
FIGURE 6

Pathways altered between STC and SUF at HR 6.
TABLE 3 Pathways altered between STC and SUF at 6 hours post-
LPS challenge.

Pathway Name FDR Associated metabolites

Purine metabolism 0.01 Deoxyguanosine ↑, dGDP ↓

Glycerophospholipid metabolism 0.01 Ethanolamine ↓
Only pathways with false discovery rate-adjusted (FDR)-P-values ≤ 0.05 are shown. Arrows
indicate associated metabolites that were greater (↑) or lower (↓) in STC compared to SUF.
TABLE 2 Pathways altered between STC and SUF at 2 hours post-
LPS challenge.

Pathway Name FDR Associated metabolites

Folate biosynthesis 0.01 Tetrahydrobiopterin ↑

Glycine, serine and
threonine metabolism

0.01 L-Cysteine ↓, sarcosine ↓

Tyrosine metabolism 0.01 Tyramine ↑

Glycerophospholipid metabolism 0.01 Ethanolamine ↓

Purine metabolism 0.02 Xanthine ↓

Cysteine and
methionine metabolism

0.02 L-Cystine ↓, L-cysteine ↓

Taurine and
hypotaurine metabolism

0.02 L-Cysteine ↓

Glutathione metabolism 0.02 L-Cysteine ↓

Thiamine metabolism 0.02 L-Cysteine ↓

Pantothenate and
CoA biosynthesis

0.02 L-Cysteine ↓
Only pathways with false discovery rate-adjusted (FDR)-adjusted P-values ≤ 0.05 are shown.
Arrows indicate associated metabolites that were greater (↑) or lower (↓) in STC compared
to SUF.
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cysteine and methionine, which are pivotal for synthesizing keratin

—the principal component of wool (Hynd and Masters, 2002).

Furthermore, amino acids play a key role in supporting

reproductive processes, from fertility to fetal development,

highlighting their significance in sustaining the sheep population

(Kwon et al., 2003; McCoard et al., 2016). The vast differences in

metabolic profiles and pathways observed in this study may be

attributed to the larger liver size and likely support the better growth

performance, wool production, and maternal ability of SUF

compared to STC.

In response to LPS challenge, the traditional reaction involves the

activation of proinflammatory cytokines and mediators like TLR4, IL-

1b, and TNF-a, accompanied by the generation of reactive oxygen

species (ROS) and the initiation of NF-kB activation (Page et al., 2022).

NADPH oxidase is implicated in driving proinflammatory responses to

LPS, such as NF-kB activation (Koay et al., 2001; Qin et al., 2004).

NADH oxidase, particularly in phagocytic cells like neutrophils and

macrophages, is crucial for ROS production, contributing to

inflammatory responses against invaders like LPS (Forman and

Torres, 2002; Qin et al., 2004). Franchini et al. (2013) identified

NADPH oxidase, specifically the NADPH oxidase complex (NOX2),

as a crucial element in the complex essential for ROS production in

macrophages, leading to subsequent IL-6 production in response to

insults such as bacterial invasion. In this study, L-Cysteine drives most

of the pathways (such as cysteine and methionine metabolism, taurine

and hypotaurine metabolism, and glutathione metabolism) altered at

HR2, and its relative concentration was lower in STC compared to

SUF. Cysteine is directly derived from homocysteine and is required for

glutathione and taurine synthesis, which both play significant roles in

combating oxidative stress (Malmezat et al., 2000). Cysteine is also one

of the products of methionine degradation in the liver (Yin et al., 2016;

Coleman et al., 2020). It has been demonstrated that dietary

methionine supplementation improved oxidative status in ruminants,

through increases in glutathione transferase activity and glutathione

concentrations in plasma and liver (Osorio et al., 2014; Tsiplakou et al.,

2017). Batistel et al. (2018) further underscored the importance of

methionine in combating oxidative stress by facilitating ROS

scavenging, antioxidant activity, increased neutrophil phagocytic

activity, and oxidative burst activity, through taurine and glutathione

metabolism. Glutathione is an important component of living cells and

more specifically plays a protective role in red blood cells against

oxidative stress (Tucker et al., 1981). Given the central role cysteine

plays in combating oxidative stress, it can be concluded that by HR2,

STC sheep are actively combating LPS-induced oxidative stress.

Reduced cysteine concentration in STC suggests a shift in metabolic

functions to defend against LPS through oxidative stress interventions

as a result of inflammation.

The relative concentration of tetrahydrobiopterin (BH4) was

greater in STC, relative to SUF at 2 hours post LPS stimulation, and

this metabolite is associated with folate biosynthesis.

Tetrahydrobiopterin is a cofactor in nitric oxide (NO) production

and helps mediate excessive oxidative stress, through reduction in

superoxide radical anions (Gamal et al., 2018). Coupling of

endothelium nitric oxide synthases is facilitated by BH4, which

ameliorates oxidative stress (He et al., 2012). Folate is essential in

many metabolic processes such as nucleic acid synthesis, methionine
Frontiers in Animal Science 06
regeneration and purine and pyrimidine synthesis (Bailey and Gregory,

1999). Xu et al., 2014 showed that folate metabolism is affected by

biopterins, such as BH4, through increases in oxidative stress

abatement pathways. Also, at HR2, purine metabolism was driven by

xanthine, which was lower in STC. Xanthine is oxidized into uric acid,

catalyzed by xanthine oxidoreductase (XOR), as the end product of

purine metabolism (Al-Shehri et al., 2020). This enzyme, XOR, is most

abundant in the liver (hepatocytes) and is rate-limiting in the

degradation of nucleic acid (Harrison, 2002; Battelli et al., 2016).

Xanthine oxidase, a form of XOR, generates ROS. The elevated level

of BH4 and reduced relative concentration of xanthine in STC

probably suggest a mitigation of LPS-induced oxidative stress.

Tyramine was the only other metabolite that was enriched in

STC at HR2. Tyramine is a biogenic amine derived from the

decarboxylation of tyrosine (Scherer et al., 2015). (Glymenaki et al.,

2023) reported the negative impacts of tyramine on colon cells include

cytotoxicity, DNA damage, necrosis and upregulation of oxidative

stress-related genes. Despite its detrimental effects, tyramine exerts an

indirect influence on the nervous system, promoting pupil dilation,

respiration elevation, and blood sugar increase in humans (Shalaby,

1996). Tyramine has been reported to have a dose-dependent effect on

immune regulation, energy uptake, and feed uptake modulation in

response to starvation inmarine shrimp (Kuo et al., 2024). The result of

this study suggests potential immunological implications of tyramine

concerning its response to LPS in sheep.

Purine metabolism and glycerophospholipid metabolism were the

only two pathways altered at HR 6 post-LPS challenge. These two

pathways were driven by deoxyguanosine and ethanolamine,

respectively. The relative concentration of ethanolamine was lower in

STC, compared to SUF sheep, and its associated glycerophospholipid

metabolism was found to be a strong indicator of copper toxicity in pig

kidney (Qiao et al., 2021; Bi et al., 2022; Mukhopadhyay and Trauner,

2023). Reduced relative concentration of ethanolamine in STC may

suggest non-toxic liver tissue. The relative concentration of

deoxyguanosine was greater in STC. Deoxyguanosine is derived from

guanine, a very sensitive base nucleotide, which is known to be very

susceptible to oxidative damage (Nikolova et al., 2022). Increased

relative concentration of deoxyguanosine suggests that STC was able

to resolve the LPS insult with no oxidative damage to the liver tissue

which aligns with the results of sick behavior and rectal temperature

pattern of STC compared to SUF sheep breed.
Conclusion

This study highlights hepatic metabolic distinctions between STC

and SUF sheep breeds before and after an LPS challenge. The enriched

amino acid metabolism before the LPS challenge supports the better

growth performance, wool production, and reproduction of the SUF,

compared to STC breed. The observed variations in the relative

concentrations of several metabolites associated with important

metabolic pathways further contribute to understanding the

responses of SUF and STC to the LPS challenge. Notably, the lower

concentration of ethanolamine in STC indicates potentially non-toxic

liver tissue, while the increased relative concentration of

deoxyguanosine suggests the effective resolution of the LPS insult
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without oxidative damage. These findings enhance our understanding

of the hepatic metabolome changes of SUF and STC sheep breeds to

inflammatory challenges.
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