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On-farm study: cytokine profiles
and vaginal microbiome of
Bos indicus cattle before
artificial insemination
Molly S. Smith, Dallas R. Soffa, Brooke E. McAnally,
Kyle J. Hickman-Brown, Erin L. Stockland
and Rebecca K. Poole*

Department of Animal Science, Texas A&M University, College Station, TX, United States
Prior studies in beef cattle have shown shifts in the reproductive microbiome prior

to artificial insemination (AI), yet few have characterized both the reproductive

microbiome and immune responses prior to AI, particularly in purebred Bos indicus.

Therefore, the aim of this study was to characterize the circulating cytokines and

the vaginal microbiome of Bos indicus females prior to fixed-time artificial

insemination (FTAI). Bos indicus females (n = 79) on four separate ranch

operations within a 20-mile radius in East Texas were subjected to the 7-day

CO-Synch + controlled intervaginal drug-releasing (CIDR) protocol beginning on

day (d)-9 with FTAI on d0. Blood samples were collected on d-9 (CIDR IN), d-2

(CIDR OUT), and d0 (AI DAY) for cytokine concentration analyses using the

RayBiotech Quantibody Bovine Cytokine Array Q1 kit per the manufacturer’s

instructions. Sterile vaginal swabs were inserted past the vulva, rotated, and

stored at -80°C for microbiome analysis. Bacterial community analyses targeted

the V4 hypervariable region of the 16S rRNA gene. Pregnancy status was

determined by transrectal ultrasonography approximately 60 days after FTAI for

resulting open females (n = 45) and pregnant females (n = 34). Regardless of

pregnancy status, the vaginal relative abundance of Firmicutes differed between

CIDR IN, CIDR OUT, and AI DAY (63.74% vs. 28.31% vs. 60.86% ± 3.66%,

respectively; P < 0.01). Genera with phylum Firmicutes including Ruminococcus,

Clostridium, Blautia, Butyrvibrio, and Mogibacterium followed a similar trend (P <

0.05). Butyrvibrio tended to have greater relative abundance in the vaginal samples

of Cows thanHeifers (4.17% ± 0.75% vs. 3.26%± 0.77%; P = 0.07). Concentrations of

the interferon (IFN)g (2005.98 ± 471.94 pg/mL vs. 1185.40 ± 482.65 pg/mL; P <

0.01), interleukin (IL)1F5 (153.89 ± 141.07 pg/mL vs. 627.30 ± 149.28 pg/mL; P <

0.01), and interferon gamma-induced protein (IP)10 (9363.26 ± 2929.83 pg/mL vs.

5905.53 ± 2983.60 pg/mL; P = 0.05) were greater in Cows than Heifers. There was

a parity-by-status interaction for IP10, with Open Cows having the greatest

concentration compared all other groups (P < 0.05). These results indicate

differences in circulating cytokines and shifts in the vaginal microbiome for in Bos

indicus cattle prior to FTAI.
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Introduction

With demand for the global food supply continuing to increase

with a growing world population, reproductive efficiency of cattle

on cow/calf operations will need to adapt. When a female fails to

establish a pregnancy, yet remains in the breeding herd, the rancher

experiences an economic loss (Cooke et al., 2020). While infertility

in cattle can be attributed to many factors, such as nutrition,

genetics, or disease; the immune system plays an active role in

reproduction and may influence reproductive efficiency.

Additionally, with Bos indicus-type or Brahman cattle consisting

of around 30% of the beef population in the United States, it is

important to understand how these factors impact reproductive

efficiency in this subspecies. Their adaptivity and hardiness in sub-

tropical and tropical climates make them ideal for beef production

on the Gulf Coast (NASS, 2017; Cooke et al., 2020).

The innate immune system in an animal is the initial defense in

the reproductive tract against invasive pathogens. It plays an active

role in pregnancy, especially in preventing the onset of infection

(Singh et al., 2008). Upon identification of an infection or

pathogenic bacteria in the reproductive tract, the innate immune

system will release small communication proteins called cytokines.

Cytokines can initiate an inflammatory response in an environment

by communicating with immune cells (Wira et al., 2005; Azawi,

2008; Murphy et al., 2022). There are two major classifications of

cytokines: pro- inflammatory or anti-inflammatory. Pro-

inflammatory cytokines may cause a more sustained and severe

immune reaction and can lead to detrimental effects on tissues. In

contrast, anti-inflammatory cytokines may aid in healing and

returning the immune system back to homeostasis after an

immune response (Dinarello, 2000; Cavaillon, 2001). Particularly

during the rebreeding period in postpartum cattle, the innate

immune system plays an active role in preventing an infection

from occurring (Singh et al., 2008). Previous work has

demonstrated certain bacterial genera are associated with cytokine

concentrations prior to breeding in beef cattle (Smith et al., 2023).

Additionally, the immune system’s first reaction for pregnancy

establishment appears at insemination (Fair, 2015). During

insemination, a variety of inflammatory cells are introduced at

the site of semen deposition, potentially affecting the overall

inflammatory response and subsequent fertility (Robertson, 2005).

Sheldon et al. (2002) and Williams et al. (2004) postulated that

bacterial contamination in the uterus could disrupt ovulation.

Other studies have indicated that changes in hormone

concentrations lead to shifts in bacterial relative abundances

(Sandrini et al., 2015; Org et al., 2016; Poole et al., 2023; Smith

et al., 2023). Ault et al. (2019a) observed greater relative abundances

of various commensal and pathogenic bacterial phyla in cattle in

response to increased or reduced concentrations of progesterone

(P4). These shifts in bacterial communities of the reproductive

microbiome could impact fertility (Swartz et al., 2014; Laguardia-

Nascimento et al., 2015; Luecke et al., 2022; Smith et al., 2023).

Evaluating certain factors, such as the reproductive microbiome,

provides an opportunity to develop methods that may increase

efficiency in animal agricultural practices (Sheldon et al., 2002).
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Characterization of the vaginal microbiome and circulating

cytokine concentrations on a purebred Bos indicus beef cattle

operation remains to be determined. As such, a unique

opportunity became available to collect samples from several

purebred Bos indicus beef cattle operations subjected to an estrus

synchronization protocol. Therefore, the first objective of the

current study was to determine the concentrations of specific pro-

and anti-inflammatory cytokines in purebred Bos indicus beef cattle

in association with a fixed-time artificial insemination (FTAI)

protocol on-farm. The second objective was to evaluate the

vaginal bacterial relative abundances in the vagina of Bos indicus

beef cattle on-farm subjected to a FTAI protocol. The hypothesis

was that concentrations of pro- and anti-inflammatory cytokines as

well as the taxonomic composition of bacteria within the vagina

would shift throughout during the estrus synchronization protocol.
Materials and methods

Animals

All animal procedures were conducted in accordance with

Texas A&M-approved protocols. Purebred Bos indicus females

from cow-calf seedstock operations (RANCH 1, n = 11; RANCH

2, n = 20; RANCH 3, n = 24; RANCH 4, n = 24) in Wharton

County, Texas were used for data collection from September to

December 2022. Of the 79 cattle, both Heifers (n = 30) and Cows

(n = 49) were utilized in this study. Cows were at least 60 days

postpartum and assumed to be free of any known reproductive,

health, or physical ailments. Heifers had not previously been

artificially inseminated (AI), or pasture exposed to a bull. Females

were subjected to the 7-day CO-Synch + controlled intervaginal

drug-releasing (CIDR) protocol, where only two animal handlings

were required prior to FTAI. The sampling and FTAI protocol is

depicted in Figure 1. In brief, gonadotropin-releasing hormone

(GnRH; Factrel, 100 mg; Zoetis Animal Health, Troy Hills, NJ) was

administered, and CIDR devices (Eazi Breed CIDR; Zoetis Animal

Health, Troy Hills, NJ) inserted 9 days (d-9; CIDR IN) prior to

FTAI, which occurred 60–66 hours after CIDR removal, on d0 (AI

DAY). On d-2 (CIDR OUT), an injection of prostaglandin F2a
(PGF2a; Lutalyse, 5 mL; 5 mg/mL; Zoetis Animal Health, Troy Hills,

NJ) was administered, and CIDRs were removed.

Groups were assigned post-hoc as determined by pregnancy

status via transrectal ultrasonography, resulting in Open (n = 45)

and Pregnant (n = 34) females. Criteria for animal inclusion in this

study the: females were cycling at the time of estrus synchronization

and female responded to the estrus synchronization protocol based

on P4 concentrations (described in subsequent sections).
Animal measurements and
sample collections

Cattle body condition scores (BCS) and patch/paint scores were

recorded on d0 (AI DAY). Vaginal swabs were collected on d-9
frontiersin.org
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(CIDR IN), d-2 (CIDR OUT), and d0 (AI DAY) for bacterial DNA

extraction and sequencing. During vaginal sampling, the perineal

region was cleaned and spread prior to insertion of the sterile swabs

to minimize fecal contamination. Swabs were inserted past the vulva

and rotated six times against the vaginal wall. In addition, when

sampling on-farm, a set of swabs was opened in between collections

to document environmental conditions (control samples). Swab

samples were collected in duplicate and stored in microcentrifuge

tubes at -80°C until sequencing. Blood samples were collected on

CIDR IN, CIDR OUT, and AI DAY via coccygeal venipuncture into

10 mL sterile vacutainer K2 EDTA collection tubes (BD Vacutainer,

Becton, Dickinson and Company, NJ). Samples were immediately

placed on ice and centrifuged at 1,500 g for 20 minutes. Plasma was

transferred into 1.5 mL tubes and stored at -20°C until P4 and

cytokine analysis. For blood and swab samples collected, on CIDR

IN, samples were taken prior to GnRH injection and CIDR

insertion, CIDR OUT swab sampling was performed following

CIDR removal, and AI DAY sampling occurred prior to AI rod

and lubricant insertion.
Progesterone radioimmunoassay and
cytokine assays

Progesterone concentrations were quantified per the

manufacturer’s instructions using a commercial double-antibody

radioimmunoassay (RIA) kit (MP Biomedicals, Santa Ana, CA), as

previously described (Pohler et al., 2016). Concentrations were

calculated using a calculated standard curve, including high/low

reference samples, for quality control. The intra- and inter-assay

coefficients of variation (CVs) were 4.30% and 14.24%, respectively.

Concentrations of interleukin (IL)13, IL1a, IL1F5, IL21,

interferon (IFN)a, IFNg, tumor necrosis factor (TNF)a,
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chemokine ligand (CXCL)9 (MIG), CXCL10 (IP10), and

chemokine ligand 4 (MIP1b) were measured in the Bovine

Cytokine Array Q1 kit (RayBiotech Life, Inc., Peachtree Corners,

GA). Plasma samples were diluted 1:1 as suggested by the

manufacturer, and cytokine concentrations for CIDR IN, CIDR

OUT, and AI DAY samples were quantified. Assays were run per

the manufacturer’s instructions, with slides being stored in a dark

box at 4°C before shipment to the manufacturer for laser scanning

and data extraction. These assays have been previously validated by

Poole et al. (2019); Poole et al. (2021) and Smith et al. (2023).
DNA extraction and 16S rRNA gene
amplicon sequencing

Microbiome analysis was performed on the vaginal swab

samples from CIDR IN, CIDR OUT and AI DAY as previously

described in Smith et al. (2023). Briefly, samples were delivered to

FERA Diagnostics and Biologicals Corp. (College Station, TX) for

DNA extraction and 16S rRNA sequencing. Samples were

transferred to 96-well plates, and DNA extraction was performed

per the manufacturer’s instructions using the Mag-Bind Universal

Pathogen 96 Kit (Omega Bio-Tek, Norcross, GA). As previously

described, the 16S amplicons were amplified by PCR for individual

metagenomic DNA samples (Bicalho et al., 2017). The V4

hypervariable region of the bacterial 16S rRNA bacterial genome

was amplified with 515F (5′-GTGCCAGCMGCCGCGGTAA-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) primers using

methods for the Illumina MiSeq platform (Caporaso et al., 2012).

The generated 16S rRNA gene sequences were assembled using the

standard MiSeq pipeline as previously described (Coil et al., 2015;

Bringhenti et al., 2021; Tomazi et al., 2023). The representative

sequences for each operational taxonomic unit were compared
FIGURE 1

7-day CO-SYNCH + CIDR protocol experimental timeline used in Bos indicus cows for estrus synchronization. AI, Artificial Insemination; BCS, Body
Condition Score; CIDR, Controlled Intervaginal Drug Releasing Device; PS, Patch Score; PGF2a, Prostaglandin injection; GnRH, Gonadotropin-
Releasing Hormone. Created with BioRender.com.
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against the Greengenes database (https://greengenes2.ucsd.edu/) for

taxonomy assignment, and only full-length, high-quality reads were

used. The MiSeq reporter classification was based on the

Greengenes database, and the output used from this workflow

was a classification of reads at multiple taxonomic levels

(kingdom, phylum, class, order, family, genus, and species).

However, for the purposes of this study, only the phylum and

genus levels were reported.
Statistical analysis

Pregnancy status was analyzed using the MIXED procedure in

Statistical Analysis Software (SAS; version 9.4, SAS Inst. Inc., Cary,

NC) and included ranch as a random effect and parity and sire as a

fixed effect. For each ranch, there was only one inseminator. Body

condition scores and P4 concentrations were analyzed using PROC

MIXED in SAS 9.4 with ranch as a random effect and parity, day,

and pregnancy status as fixed effects and all interactions were

evaluated. Bacterial abundances and cytokine concentrations were

analyzed using PROC MIXED in SAS 9.4 and included ranch as a

random effect and parity, day, and pregnancy status as fixed effects

and all interactions were evaluated. All variables were tested for

norma l i t y and homogene i t y o f v a r i ance us ing the

HOVTEST=LEVENE option in PROC GLM in SAS 9.4. All

bacterial abundance data and cytokine concentrations were

normally distributed. Terms with a significance value of P > 0.10

were removed from the complete model in a stepwise manner to

derive the final reduced model for each variable. Results were

reported as least square means ± standard error of the mean. A

statistical significance was reported at P ≤ 0.05. A tendency was

reported at P > 0.05 and ≤ 0.10.
Results

Pregnancy rates, BCS, and
progesterone concentrations

Between parity status (Cow vs. Heifer), no difference was

observed in pregnancy rate (P > 0.10). There was no difference in

pregnancy rate by sire (P > 0.10). No differences in P4

concentrations were seen by parity (P > 0.10) or by pregnancy

status (Open vs. Pregnant; P > 0.10). A difference in P4

concentrations were observed by day (P < 0.01). Specifically, AI

DAY exhibited reduced P4 concentrations versus CIDR IN (0.38 vs.

2.66 ± 0.57 ng/mL) and CIDR OUT (0.38 vs. 4.76 ± 0.57 ng/mL).

Additionally, a difference in P4 concentrations were observed

between CIDR IN and CIDR OUT days (2.66 vs. 4.76 ± 0.57 ng/

mL). A difference was found between the BCS of Heifers and Cows,

with Cows having greater body condition (5.45 ± 0.09 vs 5.76 ±

0.08; P < 0.01). Between pregnancy status, a difference was observed

with Pregnant females having a greater BCS than Open females
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(5.75 ± 0.09 vs 5.50 ± 0.08; P < 0.01). Overall, there was no

interaction between parity and pregnancy status for BCS (P > 0.10).
Cytokine concentrations

Differences in cytokine concentrations are displayed in Table 1.

There was no difference observed by day regarding cytokine

concentrations. By the main effect of parity, concentrations of

IFNg (2005.98 ± 471.94 pg/mL vs. 1185.40 ± 482.65 pg/mL; P <

0.01), IL1F5 (153.89 ± 141.07 pg/mL vs. 627.30 ± 149.28 pg/mL; P <

0.01), and IP10 (9363.26 ± 2929.83 pg/mL vs. 5905.53 ± 2983.60 pg/

mL; P = 0.05) were greater in Cows when compared to Heifers. By

the main effect of pregnancy status, there were greater

concentrations of MIP1b in Open females (463.29 ± 97.47 pg/mL

vs. 278.41 ± 97.91 pg/mL; P < 0.01) than in Pregnant females.

Furthermore, there was a tendency to have greater concentrations

of IL13 (8345.18 ± 1693.93 pg/mL vs. 6322.70 ± 1703.07 pg/mL; P =

0.06) in Open females compared with Pregnant females. There was

a parity-by-status interaction for IP10, with Open Cows having the

greatest concentration compared all other groups (Pregnant Cows,

Pregnant Heifers, Open Heifers; P < 0.05).
Relative abundance – phylum

Within the vagina, Firmicutes, Proteobacteria, Bacteroidetes,

Fusobacteria, Actinobacteria, Tenericutes, and Euryarchaeota were

the most abundant phyla observed (greater than 1% relative

abundance). Cows tended to have a greater relative abundance of

the phylum Firmicutes than Heifers (53.39% ± 3.50% vs. 48.55% ±

3.50%; P = 0.07). No differences were observed by pregnancy status

for phyla greater than 1% abundance in the vagina (P > 0.10).

Shifts in phyla by day are displayed in Figure 2. For the phylum

of Firmicutes, there was a decrease in relative abundance from

CIDR IN to CIDR OUT (63.74% ± 3.66% vs. 28.31% ± 3.66%) and

an increase in relative abundance from CIDR OUT to AI DAY

(28.31% ± 3.66% vs. 60.86% ± 3.66%; P < 0.01). Both Proteobacteria

(P < 0.01) and Bacteroidetes (P = 0.045) had an increase in relative

abundance from CIDR IN to CIDROUT (7.79% ± 1.79% vs. 26.39%

± 1.79%; 12.25% ± 1.30% vs. 15.68% ± 1.30%, respectively) and then

experienced a decrease in relative abundance from CIDR OUT to

AI DAY (26.39% ± 1.79% vs. 9.63% ± 1.79%; 15.68% ± 1.30% ±

12.73% ± 1.30%, respectively). Furthermore, CIDR OUT had the

greatest relative abundance of Fusobacteria, followed by CIDR IN,

and then AI DAY (15.38% ± 3.58% vs. 5.71% ± 3.58% vs. 4.64% ±

3.58%, respectively; P < 0.01). Additionally, a difference was

observed for Actinobacteria between CIDR IN and CIDR OUT

(5.15% ± 1.31% vs. 10.19% ± 1.31%; P < 0.01), as well as between AI

DAY and CIDR OUT (3.93% ± 1.31% vs. 10.19% ± 1.31%; P < 0.01).

Tenericutes relative abundance had a difference by day (P = 0.05)

between AI DAY and CIDR IN (4.50% ± 1.28% vs. 1.41% ± 1.28%).

The phylum of Euryarchaeota saw a difference by day between AI

DAY and CIDR OUT (1.47% ± 0.14% vs. 0.35% ± 0.14%; P < 0.01),
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as well as CIDR IN and CIDR OUT (1.73% ± 0.14% vs. 0.35% ±

0.14%; P < 0.01).
Relative abundance – genus

No differences were detected between pregnancy status for

genera greater than 1% relative abundance in the vagina (P >

0.10). Butyrvibrio tended to have greater relative abundance in the

vaginal samples of Cows than Heifers (4.17% ± 0.75% vs. 3.26% ±
Frontiers in Animal Science 05
0.77%; P = 0.07). Additionally, Mannheimia tended to differ

between Cows and Heifers (2.43% ± 1.07% vs. 4.93% ± 1.22%;

P = 0.08).

Furthermore, there was a parity-by-day interaction for

Mannheimia (P = 0.02) with CIDR OUT for Heifers having the

greatest relative abundance (14.12% ± 1.92%) and CIDR IN for

Cows and Heifers having the least relative abundance (0.29% ±

1.58% and 0.20% ± 1.92%, respectively). Additionally, there was a

tendency for Blautia to have a parity-by-day interaction (P = 0.07)

with CIDR IN day for Cows having the greatest relative abundance
FIGURE 2

Relative abundance (%) of significant vaginal phyla on CIDR IN, CIDR OUT, and day of FTAI.
TABLE 1 Differences in cytokine concentrations by main effects of parity (Cow and Heifer), resulting pregnancy status (Open and Pregnant), and
the interaction.

Cows Heifers P-value

Open Pregnant Open Pregnant Status Parity Interaction

IFNa 1723.7 ± 600.1 1090.5 ± 624.3 1821.9 ± 644.5 1652.4 ± 635.9 0.23 0.38 0.47

IFNg 2366.3 ± 492.9a 1645.7 ± 513.7b 1174.7 ± 531.0b 1196.1 ± 523.7b 0.21 <0.01* 0.17

IL13 9379.7 ± 1782.8a 6776.3 ± 1868.9ab 7310.6 ± 1940.1ab 5869.1 ± 1910.1b 0.06† 0.22 0.58

IL1a 804.8 ± 173.1 648.3 ± 182.7 511.3 ± 190.7 637.9 ± 187.3 0.89 0.22 0.19

IL1F5 1143.5 ± 154.8a 964.5 ± 168.9a 689.2 ± 180.2b 565.4 ± 175.6b 0.23 <0.01* 0.83

IL21 8681.2 ± 3363.8 7060.5 ± 3397.2 8225.2 ± 3425.9 7341.5 ± 3413.7 0.18 0.93 0.69

IP10 12115.0 ± 3037.4a 6611.7 ± 3143.8b 5515.2 ± 3232.9b 6295.9 ± 3195.2b 0.13 0.05* 0.04*

MIG 4147.4 ± 1030.2 3308.9 ± 1073.4 3162.4 ± 1109.3 2251.8 ± 1094.1 0.13 0.11 0.97

MIP1b 437.5 ± 101.9a 337.5 ± 106.2a 489.0 ± 109.8b 219.3 ± 108.3c <0.01* 0.61 0.13

TNFa 5255.7 ± 855.8 4212.9 ± 926.1 3669.9 ± 982.3 3664.1 ± 959.0 0.31 0.21 0.57
abcIndicates differences (P ≤ 0.05) in concentration by row.
*Indicates main effect or interaction was determined significant at P ≤ 0.05.
†Indicates main effect or interaction was determined as a tendency at P > 0.05 and ≤ 0.10.
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(7.14% ± 1.02%) and CIDR OUT day for Cows and Heifers having

the least relative abundance (2.36% ± 1.02% and 2.36% ±

1.06%, respectively).

Relative abundance of significant vaginal genera on CIDR IN,

CIDR OUT, and AI DAY are displayed in Table 2. A difference was

seen in Ruminococcus, Clostridium, Blautia, Butyrvibrio, and

Mogibacterium, with CIDR IN having greater relative abundance

than CIDR OUT. Furthermore, when comparing CIDR OUT to AI

DAY, Ruminococcus, Clostridium, Blautia, Butyrvibrio, and

Mogibacterium had increased relative abundance. Additionally,

there was a difference by day for Mannheimia, with CIDR OUT

exhibiting a greater relative abundance than CIDR IN and AI DAY.
Discussion

It has been previously established that the immune system plays

a role in beef cattle fertility; in addition to the relationship between

different bacterial communities and the immune system (Smith

et al., 2023). The first aim of this study was to determine

concentrations of pro- and anti-inflammatory cytokines in

purebred Bos indicus beef cattle plasma samples on producer

operations before FTAI. Furthermore, Ault et al. (2019a) stated

that relative abundances of bacteria appear to shift during estrus

synchronization and may influence fertility. Therefore, an

additional objective was to evaluate the fluctuations in vaginal

bacteria relative abundance associated with the 7-day CO-Synch

synchronization protocol in purebred Bos indicus beef cattle.

The immune system will respond to microbial invasion by

releasing cytokines or chemokines into the bloodstream to heal or

mitigate the effects of infection (Cavaillon, 2001; Murphy et al.,

2022). In addition, cytokines are essential for pregnancy

establishment and pregnancy maintenance (Yockey and Iwasaki,

2019). In the current study, the pro-inflammatory cytokine IFNg
was observed to be greater in Cows compared to Heifers. A greater

concentration of pro-inflammatory cytokines in the reproductive

tract is typically associated with uterine involution (Balkwill, 2006;

Galvao et al., 2011), which potentially explains the greater

concentrations in Cows, who have undergone the involution

process, as compared to Heifers in the current study. The

pleiotropic cytokine IP10 also had greater concentrations

measured in Cows than in Heifers as well as a parity-by-status

interaction for Open Cows. Interferon gamma-induced protein 10

is regulated by IFNg signaling and nuclear factor kappa B (NF-kB)
activity, thus it makes sense that both IFNg and IP10 concentrations
would be greater in Cows compared to Heifers. Pleiotropic
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cytokines can display both pro- and anti-inflammatory behavior

and stimulate a wide variety of cells (Zhang and An, 2007). As a

biomarker, IP10 has been shown as an indicator of infection prior to

onset of clinical symptoms in humans (Moreno et al., 2022; Wang

et al., 2023). Collectively, greater IP10 concentrations in Open Cows

prior to AI could indicate inflammation hindering the

establishment of a pregnancy. The anti-inflammatory IL1F5 was

also observed in greater concentration in Cows than in Heifers; and

in one study, it was found to have a correlation with bacteria that

induce cell inflammation (Smith et al., 2023). Additionally, IL1F5

inhibits the activation of NF-kB, which is important for regulating

pro-inflammatory immune responses (Abdulrahman Alrabiah

et al., 2021). Therefore, the increased concentrations of pro-

inflammatory immune responses (i.e., IFNg) would also be

associated with an increase in an anti-inflammatory immune

response (i.e., IL1F5) in Cows.

Concentrations of the anti-inflammatory cytokine IL13 tended to

be greater in concentration for Open females compared to Pregnant

females. Ma et al. (2013) and Dickinson et al. (2016) concluded that

IL13 inhibits cell breakdown of old and damaged cell components.

Interleukin 13 will also increase the production of an IL1 receptor

antagonist, which can bind with IL1 and reduce its pro-inflammatory

properties. Typically, IL13 is involved in downregulating pro-

inflammatory cytokine and chemokine production (de Vries, 1998);

however, some studies investigating the pathogenesis of asthma and

the lungs have demonstrated that IL13 can induce chemokine

responses (Zhu et al., 2002). Interestingly, concentrations of the

chemokine MIP1b were greater in Open cattle than in Pregnant

cattle. The increased concentrations ofMIP1bmay be attributed to its

function as a macrophage-attracting chemokine that plays a role in

controlling macrophage influx to tissues, such as the vagina (von

Stebut et al., 2003). In addition, cytokine concentrations did not differ

by day of the synchronization protocol in the current study, which is

different from a previous study by Smith et al. (2023), where it was

noted that hormone changes were associated with alterations in

cytokine concentrations by day in plasma, vaginal flushes, and

uterine flushes.

Bacterial phyla such as Firmicutes, Bacteroidetes, Proteobacteria,

Actinobacteria, and Tenericutes have been discovered to dominate

the reproductive tract of beef cattle which aligns with the findings of

the current study (Swartz et al., 2014; Clemmons et al., 2017;

Messman et al., 2020; Pickett et al., 2022). Additionally, some

studies have shown that bacterial abundances will shift due to

hormonal alterations in Bos taurus females (Ault et al., 2019a, Ault

et al., 2019b; Poole et al., 2023). In Bos indicus cattle specifically, some

studies have shown that Firmicutes, Proteobacteria, and Bacteroidetes
TABLE 2 Relative abundance of significant vaginal genera on CIDR IN, CIDR OUT, and day of FTAI.

Ruminococcus Clostridium Blautia Butyrivibrio Mogibacterium Mannheimia

CIDR IN 7.14% ± 0.54%a 6.38% ± 0.60%a 6.26% ± 0.97%a 5.15% ± 0.78%a 4.39% ± 0.51%a 0.24% ± 1.30%a

CIDR OUT 2.00% ± 0.54%b 1.70% ± 0.60%b 2.35% ± 0.97%b 1.33% ± 0.78%b 1.12% ± 0.51%b 10.16% ± 1.30b

AI DAY 7.11% ± 0.54%a 6.31% ± 0.60%a 6.34% ± 0.97%a 4.68% ± 0.78%a 5.20% ± 0.51%a 0.63% ± 1.30%a

P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001 P < 0.0001
abIndicates differences in relative abundance (P ≤ 0.05) by column.
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are frequently detected (Laguardia-Nascimento et al., 2015;

Giannattasio-Ferraz et al., 2019). The current study identified that

the relative abundance of Firmicutes was more abundant at CIDR IN

than CIDR OUT. These results coincide with Ault et al. (2019b),

where Bos taurus females subjected to an estrus synchronization

protocol had decreased relative abundances of Firmicutes two days

prior to AI (synonymous with CIDR OUT in the current study). In

addition, the relative abundance of Firmicutes increased from CIDR

OUT to AI DAY, where removal of the CIDR device and

administration of a PGF2a injection caused the corpus luteum to

undergo luteolysis and P4 concentrations to decrease. More

specifically, as P4 decreased the relative abundance of Firmicutes

appeared to increase. Notably, the tendency for Cows to have greater

relative abundances of Firmicutes compared to Heifers was also

observed in a study completed by Moore et al. (2017). Oppositely,

the relative abundances of Proteobacteria and Bacteroidetes were

reduced on CIDR IN compared to CIDR OUT days. The shift in the

relative abundance of Proteobacteria was also correlated with P4

(Ault et al., 2019b), further demonstrating that as P4 concentrations

increase, Proteobacteria relative abundance increases. Interestingly,

an increased abundance of Bacteroidetes and decreased relative

abundance of Proteobacteria has been found in Bos taurus metritic

cows (Jeon et al., 2015), although no incidences of uterine

inflammation were noted in this study.

The genus of Butyrvibrio, within phylum Firmicutes, was seen

in greater relative abundance in the vagina of Cows compared to

Heifers. Furman et al. (2020) reported that Butyrvibrio had greater

abundance in the rumen of Bos taurus calves that were delivered

vaginally versus via cesarean section, indicating this may be a

common genus found in the vaginal microbiome. Though not

typically categorized as pathogenic, Butyrivibrio has been

previously identified within the uterus of Bos taurus Open cows

(Clemmons et al., 2017; Ault et al., 2019b). Ruminococcus, Blautia,

andMogibacterium, all genera under the phylum of Firmicutes, had

greater relative abundance at CIDR IN day than CIDR OUT day.

This indicates that the introduction of a CIDR may have caused

shifts in the vaginal microbiome. Such alterations to the

microbiome have been shown to cause a rise in vaginal pH which

may then influence fertility (Dias, 2022). While Butyrvibrio and

Mogibacterium have been associated with compromised fertility

(Clemmons et al., 2017; Ault et al., 2019a), no differences by fertility

outcomes were observed in this study. The genus Mannheimia,

under the phylum of Proteobacteria, had greatest relative

abundance on CIDR OUT day and is known to be pleomorphic,

which means it can be irregular and vary in its form (Laishevtsev,

2020). The occurrence of Mannheimia in the vagina of Bos indicus

beef cows is not surprising as it has also been found in the vagina of

dairy cows (Bicalho et al., 2017), but the association between the

greater relative abundance ofMannheimia and its relation to CIDR

OUT day needs to be further assessed.

In conclusion, cytokine concentrations may be associated with

parity or fertility outcomes. This study also suggests that bacterial

relative abundances can shift through an estrus synchronization

protocol in Bos indicus cattle. Additional research may evaluate

hormone concentrations with or without the introduction of a

foreign object (e.g., CIDR) on bacterial shifts. Future research is
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necessary to determine the factors that can positively affect the

immune system and vaginal microbiome to improve reproductive

efficiency in Bos indicus cattle.
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