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Association of milk metabolites
with feed intake and traits
impacting feed efficiency in
lactating Holstein dairy cows
Leonora M. James1, Mary S. Mayes1, Cori J. Siberski-Cooper1,
Matthew W. Breitzman2, Michael J. Vandehaar3

and James E. Koltes1*

1Department of Animal Science, Iowa State University, Ames, IA, United States, 2W. M. Keck
Metabolomics Research Laboratory, Iowa State University, Ames, IA, United States, 3Department of
Animal Science, Michigan State University, East Lansing, MI, United States
Genetic selection for feed efficiency is possible in Holstein dairy cattle. However,

measuring individual cow feed intake is expensive, which limits available

phenotypes, resulting in lower prediction accuracy of breeding values than

desired. New indicator trait phenotypes for feed efficiency could help improve

breeding value accuracies if they can be measured widely across dairy herds. The

objective of this study was to identify milk metabolites associated with feed intake

and efficiency traits thatmay serve as new indicator traits. Metaboliteswere obtained

from three sources and two distinct groups of cows. Gas chromatography mass

spectrometry (GC-MS), and liquid chromatography mass spectrometry (LC-MS)

assays were conducted on a subset of 39 cows identified based on their extreme

residual feed intake (RFI; top and bottom 15%). Routinely collected on-farm milk

testing data were evaluated on a second, larger subset of 357 cows. Statistical

models were created to evaluate if metabolites: 1) provided novel feed efficiency

information; 2) served as proxies for body weight traits not routinely collected on

farms; and 3) were associated with breeding values for feed efficiency traits,

including: predicted transmitting abilities (PTA) for feed saved (FS), RFI and body

weight composite (BWC). Ontology enrichment analysis was used to identify

enriched pathways from the contrast of extreme RFI cows by GC-MS and LC-MS.

The false discovery rate (FDR, reported as q-values) and Hommel corrections were

used as multiple testing corrections. Partial least squares discriminate analysis

confirmed animals could be classified as high or low feed efficiency groups. A

total of 33 GC-MS metabolites, 10 LC-MS ontology pathways (both q<0.20) and 42

fatty acid or milk quality assays from on-farm tests (Hommel adj-p<0.05) were

identified for analyses 1, 2, and 3 respectively. Ontology enrichment analysis of LC-

MS data identified the sphingolipid metabolism (analysis 2), and beta-alanine

metabolism (analysis 1) pathways (q<0.20). Heptanoic acid was identified as

associated with PTA BWC (GC-MS, Model 3; q<0.15). These metabolites represent

new candidate indicator traits for feed efficiency that could be included in existing

on-farm milk testing systems upon validation.
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1 Introduction

Feed is the number one cost on dairy farms (USDA-ERS, 2022).

Improvement of feed efficiency is of high importance to dairy farms

and the dairy industry, because of its large impact on profitability

and environmental sustainability. Understanding the factors that

impact feed intake and feed efficiency could lead to the development

of improved metrics to breed and manage dairy cattle to reduce feed

costs. However, individual feed intake data is difficult to obtain.

Individual feed intake collection is costly, laborious, and not feasible

on commercial dairy farms. For these reasons, there is a need to

develop new measurements or proxies for feed intake or feed

efficiency traits that can easily be obtained from commercial dairy

farms which could be applied in the dairy industry. Genetic

selection is currently being used to improve feed efficiency in

dairy cattle; however, there is a need for more phenotype data or

additional data from indicator traits to increase the accuracy of the

predicted transmitting abilities available for selection today (Gaddis

et al., 2021; Siberski–Cooper et al., 2022).

Feed efficiency can be defined several different ways (Siberski–

Cooper et al., 2022). The feed efficiency trait in the United States is

defined as predicted transmitting ability (PTA) feed saved (FS). The

PTA FS is composed of PTA residual feed intake (RFI), and body

weight composite (BWC). The RFI value represents the genetic

variability in feed efficiency standardized by milk production and

body weight values. PTA BWC accounts for the maintenance energy,

as it is a multi-trait breeding value including stature, strength, body

depth, rump width, and dairy form traits that account for difference in

body size that impact individual animal dietary energy requirements.

These traits are impacted by stage of lactation, as well as, parity of the

animal (Cavani et al., 2023). The PTA FS trait was selected for use in

the United States due to the ease of interpretation as larger, positive

values represent larger amount of feed saved per lactation (i.e., more

feed efficient cow have more feed saved).

In the dairy industry today, PTA RFI is used as part of the

genetic evaluation for feed efficiency in Holstein cattle as part of the

FS trait (Tempelman et al., 2015; Gaddis et al., 2021). The PTA RFI

measurement is the portion of feed saved that captures the variation

in individual animal feed intake and is defined as the difference

between the actual and expected feed intake adjusted to a

comparable level across animals by accounting for differences in

contemporary group (CG), days in milk (DIM), parity, milk energy

(including: milk protein, milk lactose, and milk fat), metabolic body

weight (MBW), and body condition score (BCS). An RFI

measurement reflects feed efficiency over a defined period of time.

In a similar way, adjusted dry matter intake model (aDMI) can be

used to adjust for the same variables in RFI on a daily basis as it is

adjusted for the same variables impacting feed efficiency as in RFI

(Siberski, 2019; Siberski-Cooper et al., 2023). This daily

measurement of efficiency can be useful to get a view of changes

in feed efficiency overtime on the same or similar timescale as other

trait measurements recorded on the same day. Variables impacting

RFI include DIM, parity, and milk energy, which are frequently

recorded on individual animals on dairy farms. However, energy

status indicators like body weight (BW) and body condition score
Frontiers in Animal Science 02
(BCS) are rarely routinely recorded. This leaves a gap in the

information known to be important to predict individual cow

feed efficiency measured as RFI.

Milk components (i.e., fat and protein) are routinely measured

on nearly two-million US dairy cattle annually through the dairy

herd improvement testing labs located across the United States, as

well as in additional cows in other countries internationally. Milk

and specifically the compounds in milk represent a unique

information source about cow health and productivity that is

under-exploited in the dairy industry. Milk metabolites are

reflective of the metabolic processes that occurred or that will

occur, and have been documented as indicative of animal energy

balance, methane yield, health, and fertility (Dechow et al., 2017;

van Gastelen et al., 2018; Wang and Kadarmideen, 2019; Marinho

and Santos, 2022; Hailemariam et al., 2023). Thus, milk metabolites

are a source of information that could likely serve as proxies for feed

intake, and efficiency related traits.

Milk testing labs already routinely generate milk spectral data

which may capture some information about metabolites in milk as

correlated information. Subsets of milk metabolites can already be

inferred from milk testing data (Dórea et al., 2018; Franzoi et al.,

2023), and a standard set of fatty acids and related measures are

inferred from commercial spectral data for producers to use

(Schwarz, 2018). This study utilized the inferred fatty acids and

related measures to evaluate the usability of information already

used by producers (i.e., milk fatty acid data) as indicators for feed

intake and efficiency traits. However, we do not know all of the

metabolites in milk nor which metabolites might be most useful for

predicting feed intake. Milk spectral data can help with some

metabolite data, but there are technical challenges in using milk

spectra for routine evaluation of traits in commercial dairy cattle.

Milk spectra are not frequently collected on farms, typically only

once a month or less. It is believed that milk data may need to be

tested weekly or even daily for information in milk to be

informative to predict other traits of interest (Wallén et al., 2018).

However, advancements in precision livestock technologies such as

in-line milk spectra testing devices may soon help overcome this

challenge (Kunes et al., 2021). Milk spectral based measurements

serve as proxies for some milk metabolites, but not necessarily for

all informative milk metabolites nor are these measures a direct

reflection of the metabolite levels for which they serve as proxies

(Marchi et al., 2014). Ideally, a comprehensive list of metabolites

would be identified that are informative or potentially informative

for traits of interest, like feed intake and other traits impacting feed

efficiency. Then, assays like milk spectra could be fine-tuned to

measure these specific metabolites that could be used as a

measurement of feed intake for use in precision feeding

management or potentially as indicator traits for genetic selection.

Relatively little is known about the association of milk

metabolites with feed intake and efficiency traits. Hailemariam

et al. (2023) evaluated the relationship between milk metabolite

profiles in high and low feed efficient animals to identify biomarkers

of RFI, as well as, investigating their predictive ability in early, mid,

and late lactation. The study concluded that accounting for stage in

lactation was important in the metabolite profile as these profiles
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changed across lactation stages. One candidate biomarker for feed

efficiency was identified for each stage of lactat ion:

decanoylcarnitine for early lactation, dodecenoylcarnitine for mid

lactation, and phenylalanine for late lactation. The study also used

the metabolite profiles to predict RFI with an R2 of 0.65, 0.37, and

0.60 for early, mid, and late lactation, respectively (Hailemariam

et al., 2023).

The objective of this study was to identify milk metabolites

associated with feed efficiency traits using three different metabolite

assays at varying levels of detection (i.e., LC-MS, GC-MS, and FT-

IR). Milk metabolites were measured with a non-targeted GC-MS

assay to evaluate free fatty acids at higher accuracy, an untargeted

LC-MS assay for wide-scale discovery of metabolites and a milk FT-

IR based assay available by commercial lab testing to approximate

fatty acids already used on dairy farm analytics. Three statistical

analyses were utilized to determine 1) if milk metabolites were

associated with feed intake phenotypes; 2) if milk metabolites add

new information beyond what is already explained by the energy

sink variables routinely collected to estimate RFI; and 3) if milk

metabolites could serve as proxies for body weight and BCS which

are known to impact feed efficiency and not commonly collected on

dairy farms.
2 Methods and materials

2.1 Animal husbandry

Cows used in this study were housed and reared at the Iowa

State Dairy Farm. Individual feed intake data was recorded between

the years of 2018–2021 under the Animal Care and Use Committee

Protocol: 18-174 and 21–144 at Iowa State University. Cows were

milked twice a day and received a total mixed ration (TMR) diet as

described (Siberski–Cooper et al., 2022; Siberski-Cooper et al.,

2023). Data for the two subsets of animals used in this study were

collected from a total of 7 cohorts (i.e., contemporary groups, CG)

of animals, defined by pen grouping and study period date. More

details regarding the animal care and phenotyping can be found in

(Siberski–Cooper et al., 2022; Siberski-Cooper et al., 2023).
2.2 Animal sample selection

Three sets of assays (i.e., GC-MS/LC-MS and milk quality

assays) were evaluated with two different population groups.

Population subset 1 is from the top and bottom 15% of the

population for RFI using GC-MS/LC-MS and population 2 is the

357 cows measured with the milk quality-based assays, including

the milk spectral inferred fatty acid data.

The population 1 subset used for the GC-MS/LC-MS assays

were identified as follows. Individual cow’s milk samples were

selected from the extremes of the phenotype distribution for

residual feed intake (RFI) of 465 lactating Holstein dairy cows.

The top 15% and bottom 15% of animals ranked by RFI were

selected with representation from each contemporary group (1–12)
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and parity (1, 2, 3+) and DIM (20–320) to ensure factors such as

weather or diet and stage of lactation could be adjusted for when

considering which animals were potentially more or less feed

efficient. Sick animals were excluded from the analysis.

Production details on the animals used in this study can be found

in Tables 1 and 2. A total of 39 extreme RFI cows were selected for

analysis with a range in RFI from −4.98 to −1.69 and 1.47 to 6.26 for

the high and low feed efficient animals, respectively.

A larger set of animals including 357 cows, population 2, were

evaluated for the milk quality assays. These samples were collected

on a larger set of cows as these measurements were routinely

available with milk-testing data. These cows ranged from 38 to

307 DIM and parities 1 to 6.
2.3 Milk sample collection and processing

Milk samples were collected on a weekly basis at each of two

milkings per day (AM and PM) over a six-week time frame while

daily feed intake data were collected as described (Siberski–Cooper

et al., 2022). After collection, milk samples were stored at 4°C before

processing to prepare for metabolomics assays. Samples were

processed by first mixing an individual cows two daily samples.

Samples were vortexed and then morning and evening samples

were merged in equal quantities, vortexed again, aliquoted into

replicates and stored at −80°C until utilized for metabolomics

assays. A total of 39 samples were used for gas chromatography

mass spectrometry (GC-MS) or liquid chromatography mass

spectrometry (LC-MS) assays.

2.3.1 LC-MS and GC-MS non-targeted metabolite
sample extraction

Milk samples metabolites were analyzed by LC-MS and GC-MS at

the Iowa State University W.M. Keck Metabolomics Research
TABLE 1 Summary statistics for feed efficiency phenotypes for the gas
chromatography mass spectrometry and liquid chromatography mass
spectrometry study population.

Trait Average Minimum Maximum

Milk Yield, kg 43.61 27.76 61.78

Milk Fat Yield, kg 1.72 0.91 2.95

Milk Protein Yield, kg 1.33 0.82 1.74

Milk Lactose Yield, kg 2.06 1.32 2.87

MBW, kg 131.02 110.57 157.17

BW, kg 666.22 530.70 848.22

DMI, kg 27.88 13.89 39.81

BCS 3.38 2.50 4.25

RFI 0.91 −3.51 6.26

GFE 1.62 1.10 2.89
MBW, metabolic body weight; BW, body weight; DMI, dry matter intake; BCS, body
condition score; RFI, residual feed intake; GFE, gross feed efficiency. N = 39, days in milk
(50 to 214), parity (1 to 4).
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Laboratory (RRID: SCR 017911). Preparation of samples was

conducted using a modified version of methanolic extraction and

preparation methods established by (A et al., 2005). Each sample was

allotted into 100 μL spiked with internal standards. The internal

standards cocktail consisted of 10 μg of nonadecanoic acid (Sigma-

Aldrich CO., St. Louis, MO), 10 μg ribitol (Sigma-Aldrich CO., St.

Louis, MO) and 5 μg 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine

(Avanti Polar Lipids, Birmingham, AL). Extraction was initiated with

the addition of 0.9mL of 80% ice-cold LC-MS grade methanol with

20% LC-MS grade water (Fisher Scientific, Waltham, MA). Samples

were vortexed for 10s and placed into an ice-cold sonication water bath

at full output power for 10 minutes. Samples were then vortexed for

five min followed by centrifugation for seven min at 16,000 x g.

Supernatants were recovered, leaving the insoluble pellets to be re-

extracted using 0.9 mL of 80% ice-cold methanol. Lastly before

preparation for LC-MS and GC-MS analyses, the supernatant

extracts were pooled.

2.3.2 Non-targeted LC-MS acquisition
and analysis

Supernatant extracts were filtered using 0.2-micron centrifugal

filters (Cat. No. UFC30LG25, Millipore Sigma, Burlington, MA)

then six μL of each sample was injected into the LC system.

Separations for LC were carried out at 40°C with a flow rate of

0.400 mL/minute using an Agilent Technologies 1290 Infinity

Binary Pump UHPLC instrument equipped to an Agilent

Technologies Eclipse C18 1.8 μm 2.1 mm × 100 mm analytical

column coupled to an Agilent Technologies 6540 UHD Accurate-

Mass Q-TOF mass spectrometer (Agilent Technologies, Santa

Clara, CA). Solvents used for running the analysis included A:

water with 5 mM ammonium formate and 0.1% formic acid and B:

25% iso-propanol in acetonitrile with 5 mM ammonium formate

and 0.1% formic acid. Solvent conditions started at 0% B and
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increased on a linear gradient to 100% B over a 15 min period,

which was held for five min before returning to 0% B over a two min

period. After each LC-MS acquisition, there was a six min run at

0% B.

To detect metabolites in the LC-MS assay, electrospray

ionization was used in both negative and positive ionization

modes. The service gas used for the ion source was nitrogen with

a drying gas flow rate of 12 L/min at 350°C, a 25-psi nebulizing

pressure, and gas flow of 11 L/min at 400°C. The nozzle and

capillary voltages were 1,750 and 4,000, respectively. Mass

spectrometry was operated in the high resolution (four Gz) mode

and a scan range from amass to charge ratio (m/z) 100 to m/z 1,700.

The acquisition rate used was 1.5 spectra per second. During LC-

MS data acquisition, the reference masses were monitored for

continuous mass calibration for positive mode and negative

mode, m/z 121.050873 with m/z 922.009698 (positive mode) and

m/z 112.985587 with 1033.988109 (negative mode), respectively.

Peak detection and data evaluation was carried out using Mass

Profiler programs (version 8.0) (Agilent Technologies, Santa Clara,

CA) and Agilent MassHunter Qualitative Analysis (version 10.0).

Accurate mass spectral analysis by comparison to the METLIN

(Smith et al., 2005) database was used to identify the

metabolite peaks.

2.3.3 Non-targeted GC-MS acquisition
and analysis

Prior to derivation (Koek et al., 2006), 600 μL of the combined

extracts were dried using a speed-vac for 10 hours (h).

Derivatization of samples was carried out with 50 μL of

methoxyamine hydrochloride (20 mg/mL in pyridine) added to

the dried extract followed by an incubation for 1.5h at 30°C. After

the initial incubation, 70 μL of bis-trimethyl silyl trifluoroacetamide

with 1% Trimethylchlorosilane (BSTFA + 1% TMCS) was added to

the samples which were incubated again for 30 min at 60°C to

induce trimethylsilylation.

Upon completion of derivation, one μL of each sample was

injected into an Agilent 6890 gas chromatograph coupled to a

model 5973 Mass Selective Detector (Agilent Technologies, Santa

Clara, CA) using a HP-5MSI 5% Phenyl Methyl Silox with 30 m ×

250 μM × 0.25 μm film thickness column (Agilent Technologies)

with the inlet in splitless mode and a constant temperature of 280°

C. Oven temperature was programmed to have an initial

temperature of 70°C that was increased to 320°C with a 5°C per

minute rate and then held for eight min. The carrier gas helium had

a flow rate of one mL per minute. The mass spectrometry transfer

line was held at 280°C. Detection for mass spectrometry was done

using electron ionization at 70 eV with a source and quadrupole

temperature set at 230°C and 150°C, respectively. Mass

spectrometry data was collected in the range from m/z 40 to m/z

800. Automated Mass Spectral Deconvolution and Identification

System (AMDIS, National Institute of Standards and Technology

(Gaithersburg, MD, USA)) was used for identification and

quantification of metabolites using a manually curated retention

indexed GC-MS library. Additional identification was performed
TABLE 2 Summary statistics for feed efficiency phenotypes for the
Fourier transformed infrared spectroscopy study population.

Trait Average Minimum Maximum

Milk Yield, kg 38.37 6.44 67.40

Milk Fat Yield, kg 1.72 0.33 3.84

Milk Protein Yield, kg 1.26 0.25 2.92

Milk Lactose Yield, kg 1.82 0.23 3.19

MBW, kg 125.56 98.29 164.37

BW, kg 629.97 453.59 900.38

DMI, kg 25.32 4.19 44.11

BCS 3.43 2.25 5.00

RFI −0.014 −8.68 5.76

GFE 1.55 0.69 6.25
MBW, metabolic body weight; BW, body weight; DMI, dry matter intake; BCS, body
condition score; RFI, residual feed intake; GFE, gross feed efficiency. N = 357, days in milk
(38 to 307), parity (1 to 6).
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using the NIST 20 and Wiley 11 GC-MS spectral library (Agilent

Technologies, Santa Clara, CA). Quantification for final results were

calculated by integrating corresponding peak areas relative to the

area of the internal standards. Raw data were normalized based on

the amount of sample used.

2.3.4 On-farm milk testing: milk quality assay
Milk component and milk fatty acid data were obtained from

AgSource Laboratories (Menomonie, WI, USA) from one weekly

milk sample for each week (n=6) that feed intake data was collected

from cows. Milk samples were pooled from the morning and

evening milking to get a homogeneous daily sample per cow.

Milk Fatty acid data were inferred based on a proprietary method

using the milk Fourier transformed infrared spectrometry (FT-IR)

spectral data. The milk fatty acids and other compounds that were

inferred from spectra include: fat, lactose, protein, urea, mono-

unsaturated fatty acids, poly-saturated fatty acids, saturated fatty

acids, short chain fatty acids, middle chain fatty acids, long chain

fatty acids, trans fatty acids, acetone, beta hydroxybutyrate, myristic

acid, palmitic acid, octadecanoic acid, oleic acid, de novo fatty acids,

mixed fatty acids, and preformed fatty acids.
2.4 Statistical modeling

To determine the statistical association of milk metabolites with

feed intake and feed efficiency, we developed three sets of models

that are described below. Three different dependent variables

representing feed intake or feed efficiency measurements were

considered. Feed efficiency was defined as RFI or adjusted dry

mater intake (aDMI) which is similar to a daily RFI value

(Tempelman et al., 2015; Siberski, 2019; Siberski-Cooper et al.,

2023). These feed efficiency traits were preadjusted for the variables

parity, contemporary group, days in milk, metabolic body weight,

health status, body condition score, and milk components using

concurrent data (i.e., fat, protein, and lactose yield). We also

considered feed intake expressed as dry matter intake (DMI) as a

dependent variable. Concurrent data for DMI and aDMI was used

in these calculations. To correct for multiple testing and estimate

false discovery rates the q-value method (Storey et al., 2022) was

used for the LC-MS and GC-MS data sets. The q-value is the

statistic of false positive discovery. With large datasets and a

nominal p-value of 0.05 q-values are used to further validate that

the metabolite found nominally significant were true positives

rather than false positives. The Hommel correction (R Core

Team, 2013) was used to account for multiple testing with the

metabolite and other milk quality metrics obtained from

commercial milk testing data. Significance for this assay is

denoted as adjusted p-values (adj. p). All models were fit in R

software (R Core Team, 2021) using stats (R Core Team, 2013).
2.4.1 Association of metabolites with feed
efficiency and dry matter intake

The goal of the first model was to identify metabolites that

provide novel information about feed intake or efficiency beyond
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the information explained by traits and measurements already used

to estimate feed efficiency as RFI in Holstein dairy cattle.

Metabolites were associated with feed intake, RFI and aDMI as

the response variable (Y) (Tempelman et al., 2015; Siberski, 2019;

Siberski-Cooper et al., 2023). The following model were fit in R

software using the lm function in the stats package (R Core Team,

2013):

Yijk = metabolitei + CGj + DIMi + Parityk

+MilkYieldi +MilkProteinYieldi

+MilkLactoseYieldi +MilkFatYieldi +MBWi + BCSi + ϵijk

(1)

where the dependent variable, Yijk, is RFI, aDMI (Siberski, 2019), or

DMI for the ith cows individually measured metabolite; CG and

Parity are the class effects of contemporary group (n = 7) and parity

(classified as 1,2, or 3+); MilkYieldi, MilkProteinYieldi,

MilkLactoseYieldi, MilkFatYieldi, MBWi and BCSi are fixed effects;

and ϵ is the random residual associated with Y. Herein, results from

this model will be referenced as “feed intake proxies” to denote the

use of Model 1 and differentiate results from other models.

2.4.2 Association of metabolites with body
weight traits

The goal of the second model was to identify the metabolites

associated with BW and BCS (i.e., as proxies for BW and BCS) as in

many cases, these traits are not measured on dairy farms. To

identify the metabolites useful as proxies for BW and BCS, a full

model including both BW and BCS (Model 1) was compared to a

reduced model (Model 2) without BW and BCS. By comparing the

full and reduced models, metabolites were identified that were

associated with both the feed intake and efficiency variables as

well as the body weight variables. The full model was the same as

Model 1.

The reduced model was:

Yijk = metabolitei + CGj + DIMi + Parityk

+MilkYieldi +MilkProteinYieldi

  +MilkLactoseYieldi +MilkFatYieldi + ϵijk

(2)

where the dependent variable, Yijk, is RFI, aDMI (Siberski, 2019), or

DMI for the ith cows individually measured metabolite; CG and

Parity are the class effects of contemporary group and parity

(classified as 1,2, or 3+); MilkYieldi, MilkProteinYieldi,

MilkLactoseYieldi and MilkFatYieldi are fixed effects; and ϵ is the

random residual associated with Y. Metabolites were considered as

associated with one of the three feed intake variables if they were

statistically different (p<0.05) in the reduced model (Model 2) but

not different (p>0.05) in the full model (Model 1). Herein, results

from this model will be referenced as the “body size proxies”model

to denote the comparison between Models 1 and 2 to differentiate

results from other models.

2.4.3 Association of metabolites with breeding
values for feed efficiency traits

The goal of the third model was to identify metabolites that are

associated with genetic merit for feed efficiency traits and body
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energy related traits (i.e., metabolites associated with PTA RFI, PTA

FS, and PTA BWC). To determine if specific metabolites were

associated with PTAs for feed efficiency traits, the following model

was evaluated:

PTAYij = metabolitei + ϵij (3)

where the dependent variable, PTAYij was feed saved (FS), RFI, or

BWC for the ith cows individually measured metabolite; and e is the
random residual associated with PTAY. Herein, results from this

model will be referenced as the “genetic proxies” to denote the use

of Model 3 and differentiate results from other models. PTAs were

provided by the Council for Dairy Cattle Breeding (CDCB) for all

animals. The PTA data used in this manuscript was from April

2023. Metabolites were considered as associated with one of the

PTA variables if they were statistically different at a nominal p<0.05.

When possible, the false discovery rate was estimated and provided

using a q-value (Storey et al., 2022).

2.4.4 Metabolite pathway ontology
enrichment analysis

Ontology enrichment and pathway analysis was conducted on

the metabolite profiles that were identified as nominally significant

(p<0.05). Nominally significant metabolites were evaluated based

on previous research that successfully identified novel candidate

pathways that provided relevant and important biological

information to what was already known (Koltes et al., 2015).

Enrichment and pathway analysis was done using MetaboAnalyst

5.0 in R (https://www.metaboanalyst.ca/, accessed on September 23,

2023) (Xia et al., 2009). Pathway enrichment analysis was

conducted using a hypergeometric test with a relative-

betweenness centrality test was used for the topology analysis to

search for enriched pathways from the Bos Taurus KEGG database.

MetaboAnalyst was also utilized to obtain PCA, partial least squares

discriminate analysis (PLS-DA), clustering statistics, and heatmaps

with the R based statistical package MetaboAnalyst (Pang et al.,
Frontiers in Animal Science 06
2021). The false discovery rate was estimated for ontology

enrichment results using q-values (Storey et al., 2022). Important

molecular features were elucidated using the multivariate

analysis tools.

2.4.5 Metabolite-based discriminant analysis
A partial least squares discriminant analysis (PLS-DA) was

utilized to evaluate if the metabolites could differentiate between

the high and low feed efficient groups based on the RFI phenotype

of each cow (high or low RFI). The results from the PLS-DA were

plotted using the MetaboAnalyst software in R (Pang et al., 2021).

2.4.6 Power analysis
A power analysis was conducted to determine the level of power

for 18 cows per feed efficiency group was a sufficient number to

identify associations with each of the metabolites measured by the

GC-MS and LC-MS assays. The true difference was estimated using

20% of the low feed efficient mean concentration per each

individual metabolite for the GC-MS and LC-MS assays Bristol

(1995). A pooled standard deviation was computed using a t-test

and alpha was set at 0.05. Power was calculated for all individual

metabolites for both the GC-MS and LC-MS assays. All calculations

were completed using R (R Core Team, 2021).
3 Results

Metabolites identified by GC-MS and LC-MS were able to

classify samples by high and low RFI based on the PLS-DA

results (Figure 1), and had sufficient power (>0.80) for the

majority of metabolites assayed as shown in Figure 2. A total of

87 GC-MS metabolites, 5,993 LC-MS metabolites, and 18 fatty acids

and associated milk quality measurements predicted by FT-IR data

(i.e., total solids, oligosaccharides, somatic cells, and differential

somatic cell count) were analyzed with linear Models 1 (feed intake
FIGURE 1

Partial Least Squares-Discriminate Analysis (PLS-DA) differentiates high and low residual feed intake (RFI) animals by their milk metabolic profiles. A
PLS-DA was utilized to classify lactating Holstein dairy cows by high or low RFI designation using both (A) GC-MS (n = 87) metabolites, and (B) LC-
MS (n = 5,993) metabolites.
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proxies), 2 (body size proxies), and 3 (genetic proxies) to identify

statistical associations with variables impacting feed efficiency. A

total of 54 GC-MS and 5,060 LC-MS metabolites were identified as

statistically different (nominal p<0.05), for aDMI, RFI, and DMI

combined. These metabolites were used to identify 10 enriched

ontology pathways (q<0.20) Across all three of the models, a total of

33 metabolites were identified as significant (q<0.20), including 31

GC-MS and 2 LC-MS identified metabolites. The analysis of the on-

farm based milk quality assay identified 42 statistical associations

with fatty acids and related measure (total solids, oligosaccharides,

somatic cells, and differential somatic cell count) identified by

Model 1, with none uniquely identified by Model 2. All summary

information associated with these analyses can be found in the

Supplementary Material. Gross feed efficiency (GFE) was also

evaluated for the selected animals to compare the feed efficiency

status of the selected animals based on the two most common feed

efficiency calculations (i.e. RFI and GFE). GFE is the ratio of milk

output to feed input (Connor, 2015). The relationship between the

two feed efficiency traits were as expected. As GFE increased RFI
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decreased, as shown by both plots in Figure 3. While change in BW

is a variable used to calculate RFI, in our study it was not found

significant. Thus suggesting that metabolite profiles did not

fluctuate with change in body weight in our sample set.
3.1 Metabolites associated with feed
intake traits

3.1.1 Model 1: RFI
The milk quality assay identified a total of 12 metabolites or

quality measurements significantly associated with RFI, including:

solids not fats, urea, monounsaturated fatty acids, saturated fatty

acids, total unsaturated fatty acids, medium chain fatty acids, long

chain fatty acids, myristic acid, palmitic acid, oleic acid, mixed fatty

acids, preformed fatty acids (adj. p<0.05). No GC-MS or LC-MS

metabolites were associated with RFI after applying a multi-testing

correction. A total of 201 LC-MS metabolites were associated with

RFI (p<0.05). Of these 201 metabolites, 83 were annotated, and 118
FIGURE 2

Power analysis summary for gas chromatography mass spectrometry (GC-MS) shown in panel (A) and liquid chromatography mass spectrometry
(LC-MS) shown in panel (B) A power analysis was calculated to determine the amount of power for the study sample size. A total of 67.20% of LC-
MS metabolites were greater than or equal to 0.8. A total of 98.85% of GC-MS metabolites were greater than 0.8.
FIGURE 3

The relationship of gross feed efficiency (GFE) with residual feed intake (RFI) for extreme RFI cows (top and bottom 15%) included with the gas
chromatography mass spectrometry (GC-MS) and liquid chromatography mass spectrometry (LC-MS) analyses. Two different ways of visualizing the
relationship of RFI and GFE are presented. (A) The regression of GFE on RFI. (B) The distribution of RFI plotted by GFE.
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were not annotated. All nominally significant metabolites can be

found in Supplementary Table 1. Ontology enrichment analysis

identified five statistically significant pathways (p<0.05). These

enriched pathways included: pantothenate and CoA biosynthesis,

sphingolipid metabolism, cysteine and methionine metabolism,

glycerophospholipid metabolism, and linoleic acid metabolism.

3.1.2 Model 1: aDMI
The milk quality assay identified a total of 16 significantly

associated with aDMI, including: milk protein, lactose,

monounsaturated fatty acids, polyunsaturated fatty acids,

saturated fatty acids, total unsaturated, short chain fatty acids,

medium chain fatty acids, long chain fatty acids, trans fatty acids,

acetone, BHB, myristic acid, palmitic acid, octadecanoic acid, and

oleic acid (adj. p<0.05). No GC-MS or LC-MS metabolites were

associated with aDMI after applying a multi-testing correction.

However, three GC-MS metabolites were identified nominally

associated with aDMI including: 1,2-Dilaurin, and beta-D-

Glucopyranose (p<0.05). A total of 284 LC-MS metabolites were

associated with aDMI (p<0.05). Of these 284 metabolites, 85 were

annotated, and 199 were not annotated. All nominally significant

metabolites can be found in Supplementary Table 2. Ontology

enrichment analysis identified six total statistically significant

pathways: pantothenate and CoA biosynthesis, beta-Alanine

metabolism, glycerophospholipid metabolism, and pyrimidine

metabolism (q<0.20) and linoleic acid metabolism and vitamin B6

metabolism (p<0.05).

3.1.3 Model 1: DMI
The milk quality assay identified a total of 14 significantly

associated with DMI, including: milk protein, lactose, somatic cells,

urea, monounsaturated fatty acids, polyunsaturated fatty acids,

saturated fatty acids, total saturated fatty acids, medium chain

fatty acids, long chain fatty acids, acetone, myristic acid, palmitic

acid, and oleic acid (adj. p<0.05). No GC-MS or LC-MS metabolites

were associated with DMI after applying a multi-testing correction.

However, one GC-MS metabolite was identified nominally

associated with DMI 1,2-Dilaurin (p<0.05). A total of 253 LC-MS

metabolites were associated with DMI (p<0.05). Of these 253

metabolites 90 were annotated and 163 were not annotated. All

nominally significant metabolites can be found in Supplementary

Table 3. Ontology enrichment analysis identified six total

statistically significant pathways: pantothenate and CoA

biosynthesis, beta-Alanine metabolism, glycerophospholipid

metabolism, and pyrimidine metabolism (q<0.20) and linoleic

acid metabolism and vitamin B6 metabolism (p<0.05).
3.2 Metabolites associated with BW and
BCS traits

3.2.1 Model 2: RFI
No GC-MS, LC-MS, or milk quality metabolites were associated

with RFI after applying a multi-testing correction. However, the
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GC-MS assay identified one metabolite nominally associated with

RFI was 2-Monomyristin (p<0.05). A total of 285 LC-MS

metabolites were associated with RFI (p<0.05). Of these

metabolites, 80 were annotated, 205 were not annotated, and 37

were unique to the reduced model. All nominally significant

metabolites can be found in Supplementary Table 4. Ontology

enrichment analysis identified two total statistically significant

p a t hway s : s ph i n go l i p i d me t a bo l i sm (q<0 . 1 0 ) and

glycosylphosphatidylinositol anchor (GPI) biosynthesis (p<0.05).

3.2.2 Model 2: aDMI
No GC-MS, LC-MS, or milk quality metabolites were associated

with aDMI after applying a multi-testing correction. However, a

total of 293 LC-MS metabolites were associated with aDMI

(p<0.05). Of these metabolites 85 were annotated, 208 were not

annotated, and 54 were unique to the reduced model. All nominally

significant metabolites can be found in Supplementary Table 5.

Ontology enrichment analysis identified two statistically significant

pathways (p<0.05). These pathways included: GPI anchor

b i o s y n t h e s i s a n d p e n t o s e a n d g l u c u r o n a t e

interconversions pathway.

3.2.3 Model 2: DMI
No GC-MS, LC-MS, or milk quality metabolites were associated

with DMI after applying a multi-testing correction. However, four

GC-MS metabolites were nominally associated with DMI including:

beta-D-Glucopyranose, 2-Hydroxyglutaric acid, and C16:C18 ratio

(p<0.05). A total of 302 LC-MS metabolites were associated with

DMI (p<0.05). Of these metabolites, 104 were annotated, 198 were

not annotated, and 66 were unique to the reduced model. All

nominally significant metabolites can be found in Supplementary

Table 6. Ontology enrichment analysis identified three total

statistically significant pathways: pantothenate and CoA

biosynthesis pathway (q<0.15) and valine, leucine and isoleucine

biosynthesis and GPI anchor biosynthesis (p<0.05).
3.3 Association of metabolites with genetic
merit for feed efficiency and energy
status traits

3.3.1 Model 3: PTA body weight composite
One GC-MS metabolite was significantly associated with PTA

BWC, heptanoic acid, (q<0.20), while six (D-Myo-inositol, C16:C18

ratio, L-Threonine, octanoic acid, and phosphorylethanolamine)

were nominally significant (p<0.05). No LC-MS or milk quality

metabolites were associated with PTA BWC after applying a multi-

testing correction. However, a total of 245 LC-MS metabolites were

associated with BWC PTA at a nominal significance level (p<0.05).

Of these metabolites, 75 were annotated and 170 were not

annotated. All nominally significant metabolites can be found in

Supplementary Table 7. Ontology enrichment analysis identified

five nominally significant pathways (p<0.05). These pathways

included: glycerophospholipid metabolism, linoleic acid
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metabolism, caffeine metabolism, alpha-Linolenic acid metabolism,

and GPI anchor biosynthesis.

3.3.2 Model 3: FS PTA
A total of seven GC-MS metabolites were significantly associated

with PTA FS (q<0.20) including: D-Fructose, Octanoic acid,

Dodecanoic acid, and 9,12-Octadecadienoic acid (Z,Z)- while nine

(9-Octadecenoic acid, (E)-, Methyl alpha Lyxofuranoside, decanoic

acid, hexadecanoic acid, hexanoic acid, phosphorylethanolamine, 2-

Monocaprin, D-Myo Inositol, and Myo-Inositol 3,6 bisphosphate, bis

[bis(trimethylsilyl) phosphate], myo-) were nominally significant

(p<0.05). No LC-MS or milk quality metabolites were associated

with PTA FS after applying a multi-testing correction. However, a

total of 241 LC-MS metabolites were associated with PTA FS

(p<0.05). Of these metabolites, 74 were annotated, and 167 were

not annotated. All nominally significant metabolites can be found in

Supplementary Table 8. Ontology enrichment analysis identified

three nominally significant pathways (p<0.05). These pathways

included: glycerophospholipid metabolism, riboflavin metabolism,

and linoleic acid metabolism.
3.3.3 Model 3: PTA RFI
A total of 314 LC-MS metabolites were associated with PTA RFI

(q<0.20). Of these metabolites, 86 were annotated and 228 were not

annotated. All nominally significant metabolites can be found in

Supplementary Table 9. Ontology enrichment analysis identified

three statistically significant pathways (p<0.05). These pathways

included: sphingolipid metabolism, glycerophospholipid

metabolism, and linoleic acid metabolism. No GC-MS or milk

quality metabolites were associated with PTA RFI after applying a

multi-testing correction. However, a total of 20 GC-MS metabolites

associated with RFI PTA included 9-Octadecenoic acid, (E)-, 1-

Monopalmitin, 9,12-Octadecadienoic acid (Z,Z)-, D-Fructose, 2-

Palmitoylglycerol, Hexadecanoic acid, 1-Monomyristin, 3-

Hydroxybutyric acid, methyl alpha-Arabinofuranoside, glyceric

acid, oleic acid, dodecanoic acid, Pentanoic acid, butyl ester,

monolaurin, nonanoic acid, Isopropylamine, N-heptafluorobutyryl-

and octanoic acid (p<0.05).
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4 Discussion

The PLS-DA analysis indicated that GC-MS and LC-MS

metabolite assays were able to classify cows based on their high or

low RFI designation as shown in Figure 1. This result provides a basis

to justify that metabolites identified in this study can differentiate

animals based on their feed efficiency and body weight traits, as well

as, genetic merit for three feed efficiency traits. A total of 33 GC-MS

metabolites, 10 LC-MS ontology pathways, and 42 fatty acids were

identified as statistically associated with feed efficiency measured as

RFI, aDMI, or DMI (q<0.20; adjusted p<0.05 for the fatty acids).

Metabolites and pathways that were most noteworthy and further

discussed below are summarized in Table 3. The remainder of the

discussion focuses on the metabolites statistically associated with

feed efficiency and body size traits that were the most biologically

plausible based on previous studies as biomarkers or predictors for

feed efficient and related traits. Metabolites associated with milk

energy sinks are not discussed further as we chose to focus on

metabolites that could add new information about feed intake and

body weight as several milk related measurements are already

included in the estimate of RFI. The aDMI phenotype had the

most statistically significant associations, specifically from the feed

intake proxymodel (Model 1) and the body size proxymodel (Model

1 vs. Model 2) (588 total metabolites p<0.05). This may be a

reflection of metabolite data representing a snapshot in time,

much like aDMI which provides a point-in-time estimate of feed

efficiency on the same day the metabolite sample was taken. A full

summary of all significant metabolites analyzed for each of the three

models can be found in the Supplementary Material.

The sphingolipid, glycerophospholipid metabolism and linoleic

acid metabolism pathways were all identified as statistically

enriched from the list of metabolites identified as statistically

different when evaluating the various feed efficiency traits in the

high and low feed efficiency cows. Sphingolipids are components of

cell membranes with important metabolic functions. Specifically,

sphingolipid concentrations vary with differing body weights and

loss in body weight and impact insulin sensitivity as well as fatty

acid metabolism (Matsuura et al., 2016; McFadden and Rico, 2019;

Rico et al., 2021). These metabolic processes likely directly impact
TABLE 3 Summary of the top metabolites as candidate indicator traits for feed efficiency based on known biological functions.

Model type Data type Intake variable Metabolite
or metabolic pathway

Significance

Feed efficiency and dry matter intake
model 2.1

GC-MS aDMI 1,2-Dilaurin *

LC-MS aDMI beta-Alanine metabolism **

Body and energy status model 2.3 GC-MS DMI C16:C18 ratio *

LC-MS RFI Sphingolipid metabolism ****

PTA model 2.4 GC-MS BWC PTA Heptanoic acid ***

LC-MS BWC PTA, FS PTA, and
RFI PTA

Glycerophospholipid metabolism *
Number of tests per assay: LC-MS = 5,993, GC-MS = 87, FT-IR = 26; nominally significant (p<0.05) = *, q<0.20 = **, q<0.15 = ***, q<0.10 = ****.
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the feed efficiency status of the animal. Additionally, one KEGG

pathway was identified as enriched for metabolites associated with

both the feed intake (1) and body weight (2), the pantothenate and

CoA biosynthesis pathway (q<0.20). Changes in the pantothenate

and CoA biosynthesis pathway could be indicative of how changes

in milk production alter feed efficiency status. Increases in

metabolites within the pantothenate and CoA biosynthesis

pathways have been identified to increase milk fat and protein

production levels which is thought to be due to increased glucose

concentration and decreased acetic acid concentrations in response

to pantothenate supplementation (Bonomi, 2000; Ragaller et al.,

2011). Two additional KEGG pathways were identified as enriched

for metabolites associated with feed intake (1) and breeding values

for feed efficiency traits (i.e. genetics models) (3): the

glycerophospholipid metabolism pathways (q<0.20) and linoleic

acid metabolism (nominal p<0.05), respectively. This could be

indicative of genetic variation related to ATP production

efficiency and metabolic status as decreased glycerophospholipid

and linoleic acid production is associated with increased

inflammation and health issues, respectively (Wen et al., 2022;

Hailemariam et al., 2023).
4.1 Metabolites associated with feed intake
and efficiency (Model 1)

Beta-Alanine metabolism was identified as an enriched pathway

from the LC-MS metabolites identified as significantly associated

with aDMI in the feed intake proxy model (Model 1) (q<0.20). The

metabolism of b-alanine increases the cellular oxygen consumption

in conjunction with increased expression of several cellular proteins

that are associated with improved oxidative metabolism (Schnuck

et al., 2016). Furthermore, one of the cellular proteins that b-alanine
regulates is myocyte enhancer factor 2. b-alanine increases the

expression of myocyte enhancer factor 2, which leads to increased

glucose transporter 4 content (Schnuck et al., 2016). Metabolic

processes within the b-alanine metabolism pathway may play an

important role in energy balance in dairy cattle. Abnormalities in b-
alanine metabolism impacts reproduction abilities in dairy cows

(Bai et al., 2021). Thus, metabolites within the b-alanine
metabolism pathway may be indicators of both variation in feed

efficiency and reproductive health.

The metabolite 1,2-Dilaurin as measured by GC-MS was

identified as associated with aDMI in the feed intake proxy model

(Model 1) at a nominal significance level (p<0.05). The 1,2-Dilaurin

molecule has documented roles in lipid peroxidation, fatty acid

metabolism, and the insulin signaling pathway (Wishart et al.,

2007). This makes 1,2-Dilaurin a good candidate molecule to

understanding more about the metabolic processes that may differ

between high and low efficient animals. Furthermore, it is a

substrate in 10 different enzymatic processes involving lipid

metabolism, one lipid transporter protein, and gene function

including hepatic and pancreatic function (Cunningham et al.,
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2022). Thus, 1,2-Dilaurin may act as a proxy for fatty acid

metabolism in cows with differing levels of feed efficiency.
4.2 Metabolites associated with body
weight traits (Model 2)

Metabolites identified by LC-MS within the sphingolipid

metabolism pathway were identified as significantly associated

with body weight traits in Model 2. Sphingolipid metabolism has

several important connections to energy status because the

metabolism of sphingolipids are regulators of major cellular

processes including apoptosis, proliferation, senescence, cell

signaling, and inflammation (Matsuura et al., 2016; Quinville

et al., 2021). In dairy cows ceramides, which are the precursors

for sphingolipids, have the potential to be indicators for hepatic

function contingent on the energy status of the cow at a given time

(McFadden and Rico, 2019). Furthermore, it has been shown that

cows with higher adiposity have increased ceramide levels, which

are secreted during circulation and may trigger an insulin action

leading to a metabolic imbalance (Humer et al., 2016; Rico et al.,

2021). Additionally, altered profiles of sphingolipids can be used as

biomarkers for metabolic disease (Hailemariam et al., 2014).

Moreover, changes in sphingolipid availability throughout the life

cycle of a cow are time-dependent, which indicates the potential

role ceramides play in the physiological adaptations that allow for

the preservation of energy homeostasis (Navarrete, 2016). All of

these combined reasons make sphingolipid metabolism an excellent

candidate pathway that may be differential between high and low

feed efficiency animals.

The ratio of palmitic acid to stearic acid was found nominally

significant by the body weight surrogate model (Model 2) GC-MS

with DMI as the dependent variable. This could be indicative of the

ability this ratio has to explain the energy status of a cow since

palmitic acid to stearic acid are known indicators of energy balance

in dairy cattle. Palmitic acid is known to increase milk fat yield as

well as restore body reserves lost during negative energy balance.

Stearic acid is involved in the synthesis of milk fat and yield (Loften

et al., 2014). Having an indicator for energy status that is observed

in milk would help alleviate the issue of BW traits not being

collected as frequently on commercial dairy farms.
4.3 Metabolites associated with genetic
merit for feed efficiency traits (Model 3)

Heptanoic acid measured by GC-MS was identified as

associated with PTA BWC in the genetic model (Model 3)

(q<0.15). The biological role of heptanoic acid is in energy

storage (Wishart et al., 2007). Additionally, heptanoic acid plays a

catalytic role in the function of eight different enzymes including

seven mitochondrial acyl-CoA synthetase and A2 phospholipase

(Wishart et al., 2007). Among those eight enzymes one is encoded
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by the PLA2G1B gene, which has been associated with protein

a b s o r p t i o n and d i g e s t i o n , immun e d e f e n s e , a n d

glycerophospholipid metabolism (Cheng et al., 2023). The

mitochondrial acyl-CoA synthetase enzymes all play roles in fatty

acid metabolism as ligases acting on C4 to C11 compounds

(Wishart et al., 2007). In this way heptanoic acid impacts several

metabolic processes, which could influence feed efficiency.

Glycerophospholipid metabolism was also identified as a

significantly enriched pathway from the GC-MS assay with PTA

BWC this makes the PLA2G1B a gene of interest for variation in

body size. The other seven genes were a part of the acyl-coenzyme A

synthetase family. The acyl-coenzyme A synthetase family are vital

in the activation of fatty acids and is the prerequisite for fatty acids

entering anabolic and catabolic processes (Zhang et al., 2022). Thus,

suggesting that the function heptanoic acid may have genetic

variation between high and low feed efficient animals.

Metabolites identified by LC-MS were individually enriched for

each PTA BWC, FS, and RFI using Model 3 for the ontology term

glycerophospholipid metabolism pathway at a nominal significance

level (p<0.05). Metabolites within this pathway would be logical

indicators of energy status since levels of glycerophospholipids are

associated with over-conditioning (i.e., excessive storage of adipose

tissue). Glycerophospholipids are primarily synthesized in the liver,

and impact hepatic energy status (Ghaffari et al., 2019). Furthermore,

Ákos Kenéz et al. indicates that differing glycerophospholipid

concentrations are associated with fluctuations in the metabolic

status of dairy cows based on their longitudinal study tracking

metabolite levels of glycerophospholipids and sphingolipids over 20

weeks starting at the last 6 weeks of pregnancy, which is a time with

great potential for metabolic stress (Kenéz et al., 2016). Most

importantly, glycerophospholipid metabolism has previously been

associated with feed efficiency in cows during early lactation.

Specifically, less efficient cows produced milk with higher

concentrations of glycerophospholipids in the milk which is

thought to disrupt the integrity of the mitochondria leading to

compromised energy production. Glycerophospholipids can also

increase inflammation, which could increase energy demands

(Kvidera et al., 2017; Hailemariam et al., 2023).
4.4 Metabolites associated with on-farm
milk tests (Model 1)

Fatty acids and milk quality traits measured in the on-farm

milk tests were identified as statistically significant in the majority

of the statistical models evaluated. It is unclear how accurate the

estimates of the fatty acids are since they are inferred from FT-IR

spectral data using a proprietary method (Schwarz, 2018). Since

these fatty acids and milk quality traits are routinely measured on

a large number of US dairy farms and are consistently associated

with feed efficiency traits in this manuscript and previous studies

(Brown et al., 2022), they may be useful indicators of feed
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efficiency. Additional research is needed to determine their

heritabilities if they are to be considered for use as indicator

traits for feed efficiency.
5 Conclusion

A total of 33 milk metabolites identified by GC-MS and LC-

MS were identified and associated with feed intake and

efficiency traits (q<0.20). Ten metabolite pathways were

identified as enriched by ontology enrichment analysis,

i n c l ud ing the b -A l an in e me t abo l i sm , sph ingo l i p id

metabolism, pantothenate and CoA biosynthesis , and

glycerophospholipid metabolism pathways (q<0.20). These

pathways have published roles in energy balance, lipid

metabolism, and some were previously associated with feed

efficiency. A total of 42 fatty acids and milk quality

measurements were associated with feed efficiency (adj

p<0.05). These on-farm milk assays already have logistical

systems in place to facilitate evaluation on commercial dairy

farms. In total, metabolites were identified from all assays that

could be further investigated as candidate indicator traits for

feed intake and efficiency. Future research should validate these

associations in larger populations, across herds and determine

the heritability of these traits as well as the genetic correlations

with traits include feed efficiency PTAs.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author/s.
Ethics statement

This study was approved by the Iowa State University (ISU)

Institutional Animal Care and Use Committee (IACUC) under

protocol 18-174 and 21-144. The study was conducted in

accordance with the local legislation and institutional requirements.
Author contributions

LJ: Writing – original draft, Writing – review & editing,

Formal analysis, Investigation. MM: Writing – review & editing,

Investigation. CS-C: Writing – review & editing, Investigation. MB:

Writing – review & editing, Investigation. MV: Writing – review &

editing. JK: Conceptualization, Funding acquisition, Investigation,

Project administration, Supervision, Writing – review & editing.
frontiersin.org

https://doi.org/10.3389/fanim.2024.1393996
https://www.frontiersin.org/journals/animal-science
https://www.frontiersin.org


James et al. 10.3389/fanim.2024.1393996
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. Funding was

provided by the Foundation for Food and Agricultural Research

(FFAR) and the Council for Dairy Cattle Breeding (CDCB) under

Project #CA18-SS-0000000236 Improving dairy feed efficiency,

sustainability, and profitability by impacting farmers’ breeding

and culling decisions, the Iowa Agriculture and Home Economics

Experiment Station, Ames, Iowa (Project No. NRSP-8), the Hatch

Act and the State of Iowa.
Acknowledgments

The authors wish to thank Dr. Ranga Appuhamy Jayasooriya and

Dr. Susan Lamont for their helpful comments and suggestions to

improve the manuscript. Additionally, we would like to thank Dr.

Philip Dixon for the guidance and advice on data analysis. We

acknowledge the Iowa State University W.M. Keck Metabolomics

Research Laboratory (RRID: SCR 017911) for providing analytical

instrumentation and we thank Dr. Ann M. Perera and Dr. Lucas J.

Showman for their assistance and support. We also wish to thank Dr.

Marcela de Souza for her guidance and sharing of resources.
Frontiers in Animal Science 12
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fanim.2024.

1393996/full#supplementary-material
References
A, J., Trygg, J., Gullberg, J., Johansson, A. I., Jonsson, P., Antti, H., et al. (2005).
Extraction and gc/ms analysis of the human blood plasma metabolome. Anal. Chem.
24, 8086–8094. doi: 10.1021/ac051211v

Bai, Y., Song, Y., Zhang, J., Fu, S., Wu, L., Xia, C., et al. (2021). Gc/ms and lc/ms based
serum metabolomic analysis of dairy cows with ovarian inactivity. Front. veterinary Sci.
8. doi: 10.3389/fvets.2021.678388

Bonomi, A. (2000). Dairy cattle ration integration with rumen-protected pantothenic
acid. effects on milk production and reproductive efficiency. Rivista di Scienza
dell'Alimentazione. 29, 321–338.

Bristol, D. (1995). Delta: The true clinically significant difference to be detected. Drug
Inf. J. - Drug INF J. 29, 33–36. doi: 10.1177/009286159502900105

Brown, W., Caputo, M., Siberski, C., Koltes, J., Peñagaricano, F., Weigel, K., et al.
(2022). Predicting dry matter intake in mid-lactation holstein cows using point-in-time
data streams available on dairy farms. J. Dairy Sci. 105, 9666–9681. doi: 10.3168/
jds.2021-21650

Cavani, L., Gaddis, K. L. P., Baldwin, R. L., Santos, J. E., Koltes, J. E., Tempelman, R.
J., et al. (2023). Impact of parity differences on residual feed intake estimation in
holstein cows. J. Dairy Sci. 4, 201–204. doi: 10.3168/jdsc.2022-0307

Cheng, Z., Ferris, C., Crowe, M. A., Ingvartsen, K. L., Grelet, C., Vanlierde, A., et al.
(2023). Hepatic global transcriptomic profiles of holstein cows according to parity
reveal age-related changes in early lactation. Int. J. Mol. Sci. 24, 9906. doi: 10.3390/
ijms24129906

Connor, E. E. (2015). Invited review: improving feed efficiency in dairy production:
challenges and possibilities. Animal 9, 395–408. doi: 10.1017/S1751731114002997

Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I.
M., et al. (2022). Ensembl 2022. Nucleic Acids Res. 50, D988–D995. doi: 10.1093/nar/
gkab1049

Dechow, C., Baumrucker, C., Bruckmaier, R., and Blum, J. (2017). Blood plasma
traits associated with genetic merit for feed utilization in holstein cows. J. Dairy Sci. 100,
8232–8238. doi: 10.3168/jds.2016-12502
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