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Background: Infection by porcine respiratory and reproductive syncytial virus

(PRRSV), swine influenza virus (SIV) and porcine epidemic diarrhea (PEDV)

adversely affect worldwide pig production. Because effective control remains

elusive the present research was designed to explore the in vitro antiviral activity

of oleandrin and an N. oleander extract (PBI-05204) against each porcine virus.

Methods: Monkey kidney (MARK-145) cells, Madin-Darby canine kidney cells

(MDCK), and African green monkey kidney cells (VERO 76) were used for in vitro

culture systems for PRRSV, SIV and PEDV, respectively. Cytotoxicity was

established using serial dilutions of oleandrin or PBI-05204. Noncytotoxic

concentrations of each product were used either prior to or at 12 h and 24 h

following exposure to corresponding viruses. Infectious virus titers were

also determined.

Results: Oleandrin and PBI-05204 demonstrated strong antiviral activity against

PRRSV, SIV and PEDV when added prior to or following infection of cells.

Determination of viral loads by PCR demonstrated a decline in PRRSV

replication reaching 99.57% and 99.79% for oleandrin and PBI-05204,

respectively, and decrease of 95.36% and 99.54% in infectivity of progeny virus

in PRRSV infected cultures. Similarly, oleandrin tested against SIV and PEDV was

effective in near complete inhibition of infectious virus production.

Conclusion: The research demonstrates the potency of oleandrin and PBI-

05204 to inhibit infectivity of three important porcine viruses. These data

showing non-toxic concentrations of oleandrin as a single common agent for

inhibiting infectivity of the three different porcine viruses tested here support

further investigation of antiviral efficacy and possible in vivo use.
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Introduction

Infectious diseases represent a global threat to humans,

livestock, and wildlife animals with potential cross-species

transmission (Lerner and Berg, 2015; Andraud and Rose, 2020).

Over the last 30 years, diseases caused by emerging swine viruses

have acquired particular relevance, more so than in any other

species (Liu and Wang, 2021). Therefore, there is an important

need to address viral and associated infections in swine as the

production of these animals represents approximately one third of

meat consumption throughout the world with important

consequences on the food chain supply (VanderWaal and Deen,

2018). Beyond their role as a vital food source swine production has

increasingly been seen as a problem with respect to the role it plays

as intermediate/amplifying hosts for zoonotic viruses with

pandemic potential (McLean and Graham, 2022). Infected swine

also represent a major economic burden on farmers as adequate

control and elimination of viral mediated disease is often difficult

and problematic. Three of the most common viruses affecting swine

health and commercial production are PRRSV (porcine

reproductive and respiratory syndrome virus), SIV (swine

influenza virus (SIV), and PEDV (porcine epidemic diarrhea virus).

PRRSV has been indicated as the causative agent of the most

economically important disease for the pig industry worldwide

(Cornelison et al., 2018; Montaner-Tarbes et al., 2019). The

disease, characterized by producing reproductive failure in sows

and respiratory problems in growing pigs, appeared in the late

1980s in the United States and Canada. It was not until 1991,

however, when the causative agent of this disease, a virus, was

isolated in the Netherlands (Wensvoort et al., 1991) and the

following year another strain of the same virus (VR-2332) was

isolated in the United States (Collins et al., 1992; Ruedas-Torres

et al., 2021). Sharing only 55–70% of their nucleotide sequence

(Ruedas-Torres et al., 2021), these strains of PRRSV represent

enormous antigenic heterogeneity. Regardless of the genetic types

of PRRSV, clinical manifestations are similar representing mainly

respiratory symptoms in piglets and abortion, reproductive failure,

fetal death, and congenital infections in pregnant animals (Chand

et al., 2012; Lunney et al., 2016).

PRRSV is a member of the Arteriviridae family of enveloped

viruses (Ma et al., 2021; Ruedas-Torres et al., 2021). The viral

genome is a single-stranded positive-sense RNA and a great deal of

new information has been gained on the pathogenicity of the viral

infection that is now known to include deficits in the infected pig

innate immune system (Cai et al., 2023). While there exists a

commercial vaccine against PRRSV, it offers only modest

protection for pigs due in part to the problem of preparing an

effective vaccine against all known virus variants (Du et al., 2017;

Ma et al., 2021). Specific therapeutic drugs have not reached their

desired potential, making the prevention, control, and eradication

of PRRSV difficult. Moreover, despite a sustained effort, PRRSV-

specific treatment for infected herds, or prevention methods other

than vaccines are still unavailable (Du et al., 2017).

Swine influenza (SIV) is an important respiratory disease in pigs

which is epidemic in most areas worldwide. It is caused by influenza
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virus A (IAV) belonging to the family Orthomyzoviridae (Ma,

2020). In pigs, four influenza A virus subtypes (H1N1, H1N2,

H3N2 and H7N9) are the most common strains worldwide

(Darbeheshti et al., 2021). These are all enveloped RNA viruses.

Commercially available whole inactivated virus (WIV) vaccines

have been shown to be effective to protect pigs against

homologous or genetically similar virus infections and remain

widely used (Rahn et al., 2015; Mancera Gracia et al., 2020).

However, swine influenza has not been controlled partially due to

lack of heterovariant and heterosubtypic protection of WIV

vaccines (Ma and Richt, 2010; Ma, 2020). Furthermore, different

from influenza A viruses in humans, evolution of IAVs in pigs has

shown a unique trend which is subject to geographic locations,

depending on the country, region, and even the farm level (Simon

et al., 1992; Shao et al., 2017) Therefore, manufacturers of swine

influenza vaccines find it difficult to make a “universal” vaccine for

all farms in different areas and have to make independent decisions

regarding the strains used in their products. As such, swine

influenza is still a major challenge and causes significant

economic losses to the swine industry (Ma, 2020).

A third virus of economic importance to swine health and

commercial production is the porcine epidemic diarrhea virus

(PEDV), which is a member of the enveloped RNA coronavirus

family, causing deadly watery diarrhea in newborn piglets. The

currently available vaccines and drugs are only effective against the

classic GI strains that were prevalent prior to 2010, while there is no

effective control against the high mortality variant PEDV strains

that have emerged and spread globally, having a profound impact

on the global swine industry (Zhang et al., 2022). Considering the

hazards caused by PEDV, preventive immunization is administered

by vaccinating pregnant sows. However, due to the high

heterogeneity of PEDV, there are currently no effective and safe

vaccines to deal with the threat posed by this virus (Zhang

et al., 2023).

An ideal antiviral agent for the control of porcine relevant virally

mediated diseases would be safe, effective, and inexpensive. While

vaccines are, by design, centric to the particular virus being targeted,

there currently exists a need for more effective antiviral tools. Some

herbal extracts have been reported to be useful for control of PRRSV,

as an example of important swine relevant viruses. Extracts such as

those from green tea (epigallocatechin gallate or EGCG) were found

to inhibit PRRSV in vitro(Zhao et al., 2014), while additional in vitro

studies have shown the utility of herb based chlorogenic acid and

scutellarin as those with high anti-PEDV activities (Cheng et al.,

2013). We have recently demonstrated that safe, nontoxic

concentrations of oleandrin, derived from Nerium oleander, have

high efficacy both as broad spectrum prophylactic and therapeutic

agents against a number of human viruses (Newman et al., 2020) as

well as three of the most important enveloped viruses known to be

important in bovine health and wellbeing (Newman et al., 2022). The

purpose of the present research was to investigate whether oleandrin

and a defined extract (PBI-05204) containing this molecule would

serve as a prophylactic as well as a therapeutic agent against each of

the three most important viruses known to affect porcine health

and husbandry.
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Methods

Cells, viruses, and antiviral treatments

Porcine reproductive and respiratory syndrome virus (PRRSV)

North American VR 2332 strain, Porcine epidemic diarrhea virus

(PEDV) CO isolate, and Swine influenza virus (SIV) Iowa H1N1

strain were obtained from the National Veterinary Services

Laboratory (NVSL, Ames, Iowa). Prior to the assays, each virus

stock was titrated on susceptible cell line used for the assay. MARC-

145, Vero76, and MDCK cells were used for the prophylactic and/or

therapeutic assays for PRRSV, PEDV, and SIV respectively. The

cells were maintained in a 37°C incubator with 5% CO2 and

propagated using Eagle’s Minimum Essential Medium (MEM)

(Corning, Manassas, VA) supplemented with 10% Fetal Bovine

Serum (PAA GE Healthcare, Westborough, MA), 1× Antibiotic/

Antimycotic solution (Ab/Am) (Cytiva, Logan, UT), and 1× L-

glutamine solution (Gibco, Grand Island, NY).

PBI-05204 is a supercritical CO2 extract of Nerium oleander

leaves and was provided by Phoenix Biotechnology, Inc. (San

Antonio, TX). Characterization of PBI-05204 was carried out

using an AccuTOF-DART mass spectrometer (Jeol UAS,

Peabody, MA). Specific content of the extract was previously

reported (Dunn et al., 2011). The extract contains cardiac

glycosides, oleandrin (2.99%) and oleandrigenin (3.31%);

triterpenoid acids, ursolic and betulinic acids (combined total of

15.29%) and oleanolic acid (0.60%) and odoroside (0.8%); Urs-12-

ene-3b, 28-diol/botulin (5.44%), 3b, 3b-hydroxy-12-olean en-28-

oic acid (14.26%); 28-nours-12-en-3b-ol (4.94%); and urs-12-en-

3b-ol (4.76%) (Dunn et al., 2011). Other triterpenoids present in the

extract of Nerium oleander have been reported by others (Siddiqui

et al., 2012). A stock solution of PBI-05204 at a concentration of

1 mg/ml in DMSO was diluted based on the oleandrin content as

shown in the figures and tables for use in the different assays. A

stock solution of oleandrin (PhytoLab, Vestenbergsgreuth,

Germany) was dissolved at a concentration of 1 mg/ml in DMSO

(Invitrogen, Eugene, OR) and concentrations ranging between 1000

to 5 ng/ml were used in the different assays. The relative cytotoxicity

as well as data pertaining to antiviral efficacy of PBI-05204 are

reported as equivalent oleandrin concentrations to permit a direct

comparison to pure oleandrin. Actual PBI-05204 concentrations

ranged from 294 ng/ml to 58,800 ng/ml which were equivalent to 5

ng/ml to 1000 ng/ml of oleandrin, respectively.

Both the pure Oleandrin and PBI-05204 were tested for

cytotoxicity and antiviral activity at the Research Technology

Innovation laboratories (RTI, LLC, Brookings, SD, USA) as

described below.
Cytotoxicity testing of the
antiviral products

To determine the safe concentrations of oleandrin and PBI-

05204 for susceptible cells, tissue culture plates (96-well) were
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seeded with 4 × 104 of MARC-145, Vero76 or MDCK cells in

100 µl growth media and cultured in a 37°C/5% CO2 incubator

overnight. The following day, the growth media was removed and

replaced with 100 µl maintenance media containing either different

concentrations of pure oleandrin or PBI-05204 in DMSO along

with matching dilutions of DMSO or untreated media to serve as

controls. All treatments were added to triplicate wells and cultured

in the 37°C/5% CO2 incubator. At either 24- or 48-h post-

treatment, the cell viability was assessed by determining the

lactate dehydrogenase (LDH) released into the supernatant using

the CyQUANT LDH toxicity assay kit (Thermofisher, Waltham,

MA) according to the manufacturer’s directions. Absorbance was

measured at 490 nm and 680 nm on the Spectramax i3x (Molecular

devices, San Jose, CA).
In vitro assays to determine the antiviral
activities of oleandrin and PBI-05204

The antiviral activities of different concentrations of oleandrin

or PBI-0524 product were tested on susceptible monolayers

of respective target cells for each of the three viruses at a

concentration of approximately 5 × 105 cells per well in 12-well

plates. The antiviral activities were either evaluated prophylactically

(pre-challenge) or therapeutically (post challenge) at different time

points (12h and 24h) with serial dilutions of oleandrin (5–1000 ng/

ml) or PBI-05204 (5–50 ng/ml of oleandrin), selected based on the

toxicity assay, along with corresponding dilutions of DMSO

controls in fresh maintenance media.

For the pre-challenge treatment, the cells in triplicate wells were

incubated with the drug concentrations for 30 min followed by the

addition of virus (5 × 103 TCID50 virus units in a volume of 500 µL

maintenance media) at a multiplicity of infection (MOI) of 0.01.

The infection was allowed to proceed for one hour at 37°C/5% CO2.

Subsequently, the cells were washed gently 3 times with phosphate

buffered saline (PBS), and 2 ml of maintenance media containing

the original concentrations of oleandrin or PBI-05204 in DMSO, or

DMSO was added. Samples of cell culture supernatants were

collected at 24- and 48-h post infection for determining the

amount of virus and its infectivity as shown separately below as

“Determination of infectious viral load in the culture supernatants”.

For the post-challenge treatments, the cells in triplicate wells

were treated at either 12- or 24-h post-infection with the different

concentrations of oleandrin or PBI-05204 in DMSO or matched

DMSO-only controls. Samples of cell culture supernatants from the

12-h post-infection treatment were collected at 24- and 48-h post-

infection. Similarly, samples of cell culture supernatants from the

24-h post-infection treatment were collected at 48-h post-infection

as shown separately below as “Determination of infectious viral load

in the culture supernatants”.

Culture supernatant samples collected were either used

immediately for determining the infectious virus titer on

susceptible cells or stored at −80°C for determining the viral load

by polymerase chain reaction (PCR) assay.
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Determination of the infectious viral load
in the culture supernatants

Culture supernatant samples collected as described above were

serially diluted 10-fold in maintenance medium. Diluted samples

were added to susceptible cells in triplicate in a volume of 200 µL/

well and incubated at 37°C/5% CO2 for 3–4 days for PRRSV and

PEDV, and 2days for SIV. After incubation, plates were either

checked for cytopathic effect (CPE) as in SIV or fixed with 80%

acetone and stained using an appropriate monoclonal antibody

specific for each virus (PEDV S1D12, VMRD, Pullman, WA);

(PRRSV: SDOW-17, RTI, Brookings, SD). Virus replication was

visualized with a goat anti-mouse FITC secondary conjugate

(Invitrogen, Carlsbad, CA) and plates were read using a

fluorescence microscope. Positive and negative control wells were

included and virus titer for each virus was calculated as TCID50/ml

using the Spearman-Karber method of estimating 50% end points.
Determination of the viral nucleic acid load
between treatments

A sample from all treatments and timepoints for each virus was

sent to the ADRDL) Animal Disease Research & Diagnostic

Laboratory), South Dakota State University (Brookings, SD) for

viral nucleic acid extraction and real-time PCR (RT-qPCR) assay.

Also, 10-fold serial dilutions of each virus stock were used to create

a corresponding standard curve. Viral nucleic acid was extracted

from samples using the MagMAX viral RNA isolation kit (Life

Technologies, Carlsbad, CA) according to the manufacturer’s

instructions. Detection and quantitation of PRRSV or SIV RNA

was performed using a commercial EZ-PRRSV™/Flu A MPX 1.0

with ROX, while PEDV RNA quantification was achieved using EZ-

PED/TGE/PDCoV MPX 1.1 Master Mix and Enzyme with ROX

(Tetracore, Rockville, MD) following the manufacturer’s

instruction. The qPCR was performed using ABI 7500 Realtime

PCR system. The CT values were converted to TCID50 equivalent/

ml by plotting the average CT values for each sample against the

standard curve created for each virus.
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Results

Relative in vitro cytotoxicity of oleandrin
and PBI-05204

Cytotoxicity of oleandrin and PBI-05204 were determined in

MARC-145, MDCK, and Vero 76 cells used for infection by

PRRSV, SIV, and PEDV, respectively (Table 1).

MARC-145: Monkey Kidney cells used as target cells for PRRSV

infection; MDCK: Madin-Darby canine kidney cells used as target

cells for SIV infection; Vero-76: African Green Monkey kidney cells

used as target cells for PEDV infection. Concentrations of PBI-

05204 (at equivalent oleandrin concentrations of 100 to 1000 ng/

ml) exhibiting >20% cytotoxicity were not used for prophylactic or

therapeutic experiments.
Significant concentration-dependent
inhibition of PRRSV production and
infectivity by oleandrin and PBI-05204

The MARC-145 cells were treated with different concentrations

of oleandrin or PBI-05204 either 30 minutes before or 12h and 24h

after infection with PRRSV. Culture supernatants collected at 24h

and 48h post-infection were assessed for virus production by RT-

PCR (Figure 1A) along with determining the infectivity of the

progeny virus on fresh target cells (Figure 1B). Significant

concentration-dependent inhibition was observed for virus

production at 24h as well as 48h between 50 and 1000 ng/ml

concentrations of oleandrin added to cultures either prior to

infection with PRRSV or 12h and 24h post-infection.

Importantly, when oleandrin was added 12h post-infection,

significant inhibition of virus production was observed and was

more pronounced at 48h relative to 24h.

Consistent with the reduction in the virus production, a

significant loss of infectivity of the progeny virus was observed

when treatment with oleandrin was initiated 30 min prior to or 12

and 24h post-infection with PRRSV (Figure 1B). Interestingly, while

the amount of virus produced was significantly reduced at the
TABLE 1 Cytotoxicity of oleandrin and PBI-05204 on different target cells used for viral infections.

Oleandrin concentration
(ng/ml)

PBI-05204 Oleandrin

MARC-145
cells MDCK cells

Vero-76
cells

MARC-145
cells* MDCK cells

Vero-76
cells

5 0% 0% 0% 0% 0% 0%

10 0% 0% 0% 0% 0% 0%

50 0% 0% 0% 0% 0% 0%

100 >20% 7.1% 0% 0% 3.8% 0%

500 >20% 12.3% 0% 0% 6.5% 0%

1000 >20% 18.6% 0% 1.3% 7.9% 0%
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highest two concentrations of oleandrin tested: 500 and 1000 ng/ml,

the virus produced in cultures treated with these concentrations

completely lacked infectivity.

Similar oleandrin concentration dependent inhibition of virus

production (Figure 1C) and infectivity (Figure 1D) of the progeny

virus were observed with PBI-05204 at nontoxic cell concentrations

up to and including 50 ng/ml.
Optimal oleandrin concentration for the
inhibition of PRRSV production
and infectivity

A comparison of fold-inhibition values for virus production and

infectivity at the different concentrations of oleandrin and PBI-

05204 used to treat cells at different times pre- and post-infection

with PRRSV, identified 50 ng/ml as the optimum non-toxic

concentration to produce the maximal inhibitory effects

(Figures 2A, B).
Both oleandrin and PBI-05204 significantly
inhibit production of infectious virus in
cultures treated before infection with SIV
or PEDV

Based on the results presented in Figure 2 from studies with

PRRSV showing 2–3 log-fold reduction in the production of
Frontiers in Animal Science 05
infectious virus at 50 ng/ml oleandrin, we tested oleandrin and

PBI-05204 at this optimal non-toxic oleandrin concentration

against two other porcine viruses SIV (Figure 3) and PEDV

(Figure 4), which are of interest to commercial pig health

management. Strong inhibition of virus production ranging

between 378- and 8,405-fold was observed for SIV (Figure 3A)

paralleling 6.8- to 40.4-fold reduction in infectivity of the

progeny virus at 24h and 48h post-infection, respectively

(Figure 3B). Similarly, treatment with PBI-05204 at 50 ng/ml

resulted in 464- and 77,859-fold reduction in the infectivity of

virus produced (Figure 3C).

We also observed that both oleandrin and PBI-05204 were

effective in inhibiting the progeny virus infectivity in the cultures of

PEDV infected cells (Figures 4A, B) resulting in 11.5- and 7.5-fold

inhibition at 24h and 10- and 21.5-fold at 48h, respectively.
Discussion

Over the last 30 years, diseases caused by emerging swine

viruses have acquired great relevance, more so than in any other

species. Changes in virulence (mutation, reassortment,

recombination) of the agents in the host, particularly RNA and

single strand viruses that have a high mutation rate provide a

difficult challenge for effective vaccine development (Shao et al.,

2017). This, in turn, dictates the need for additional effective

prophylactic and therapeutic treatment options beyond vaccine

development. While there has been an increasing focus of the
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FIGURE 1

Oleandrin significantly inhibits production and infectivity of PRRSV. The MARC-145 cells were treated with pure oleandrin at concentrations up to 1000
ng/ml or PBI-05204, at matching oleandrin concentrations ranging between 0 and 50 ng/ml either before (Pre-24h and Pre-48h) or 12h and 24h post
infection with PRRSV. Culture supernatants collected at 24h and 48h later in each case were analyzed for the virus produced and expressed as virus load
(A, C) and the relative infectivity (B, D) in terms of TCID 50 values. Significance of change with each concentration (5 to 1000 ng/ml) of oleandrin relative
to no oleandrin (0 ng/ml) was calculated using a 2-way ANOVA with Turkey’s multiple comparisons test. The p values of <0.05 (*), <0.005 (**), <0.0005
(***), and <0.00005 (****) are shown.
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relative ability of cardenolide compounds such as oleandrin and

digoxin to serve as potential antiviral therapeutic agents against

viruses of importance to human health (Dunn et al., 2011; Newman

et al., 2020) relatively few studies have examined the potential

efficacy of cardenolides against viruses of importance to commercial

animal health. We have previously reported the prophylactic and

therapeutic efficacy of oleandrin against three pathogenic viruses

affecting cattle production (Newman et al., 2022) but to the best of

our knowledge only a single study of the antiviral efficacy of

cardenolides including oleandrin has been reported against

porcine transmissible gastroenteritis virus (TEGV) that affects all

ages and categories of pigs, with mortality rates close to 100% in

young pigs (Perfumo et al., 2020). The research presented here has

demonstrated that oleandrin and PBI-05204, a defined extract of N.
Frontiers in Animal Science 06
oleander plant leaves containing this molecule, are highly effective

as antiviral agents against PRRSV, SIV and PEDV that are among

the most important pathogenic viruses affecting pig health and

porcine production worldwide (Ma, 2020; Perfumo et al., 2020;

Ruedas-Torres et al., 2021; McLean and Graham, 2022).

The current research on porcine viruses replicates data from

earlier studies with HIV that we previously reported in which

oleandrin was shown to reduce viral infectivity as suggested by a

reduced formation of a key viral envelope glycoprotein content in

newly formed HIV viral particles as a potential mechanism for the

antiviral activity (Singh et al., 2013). Future studies testing the effect

of these two agents on the porcine viruses could include

investigation testing for potential antiviral mechanisms. Since that

report, numerous antiviral mechanisms of oleandrin and related
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Oleandrin significantly inhibits production and infectivity of PEDV. Vero 76 cells were pretreated with pure oleandrin (A, B) or PBI-05204 (C), both at
50 ng/ml and the culture supernatants were collected at 24h and 48h after infection with PEDV. They were analyzed for virus production (A) and
relative infectivity of the virus produced (B, C), and the TCID 50 values were plotted. Significance of change in cultures treated with 50 ng/ml
oleandrin, relative to untreated (0 ng/ml) was calculated using a 2-way ANOVA with Turkey’s multiple comparisons test. The p values of <0.05 (*),
<0.0005 (***) and <0.00005 (****) are shown. Also shown are fold change values for cultures treated vs untreated.
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Concentration of oleandrin to exhibit strong inhibition of production as well as infectivity of progeny virus in PRRSV cultures. The amount of virus
produced, and its relative infectivity were assessed in culture supernatants of MARC-145 cells treated with different oleandrin concentrations ranging
between 0 and 1000 ng/ml (A) or matching oleandrin concentrations between 0 and 50 ng/ml in PBI-05204 (B) either prior to (Pre-24h and Pre-
48h) or after (12–24h, 12–48h, and 24–48h) infection with PRRSV. Fold inhibition was calculated for each of the different oleandrin concentrations
used relative to no oleandrin (0 ng/ml) and the values plotted.
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cardenolide compounds have been reported (Yang et al., 2017;

Reddy et al., 2020). These include interaction with the endoplasmic

reticulum stress response that facilitates virally infected cells to

undergo apoptosis (Li et al., 2020), inhibition of viral protein

translation (Wong et al., 2018), inhibition of viral pre-RNA

splicing (Wong et al., 2013; Grosso et al., 2017), inhibition of

viral gene expression (Wong et al., 2013; Grosso et al., 2017;

Reddy et al., 2020), inhibition of viral entry through ATP-

mediated Src signaling and decreased content of viral envelope

leading to greatly reduced progeny virus infectivity (Hutchison

et al., 2019). A recent study has also demonstrated that cardenolides

suppress coronaviral replication by downregulating JAK1 via a Na+/

K+-ATPase independent proteolysis (Yang et al., 2020).

In addition to its ability to inhibit viral load and infectivity of

progeny virus there are other pharmacologic attributes of oleandrin

that may significantly impact animal health especially in the face of

viral infection. Viral infections contribute to morbidity and

mortality in part through an increase in inflammation and

reduced immune response in humans and host animals.

Oleandrin has been reported to block tumor necrosis factor

(TNF)-induced activation of NF-kb in a concentration- and time-

dependent manner as well as provide inhibition of damaging

oxidation reactions (Manna et al., 2000; Sreenivasan et al., 2003;

Yang et al., 2020). This effect was mediated through inhibition of

phosphorylation and degradation of Ikba, an inhibitor of NF-kb.
Oleandrin also blocked AP-1 activation induced by tumor necrosis

factor (TNF) and other agents and inhibited the TNF-induced

activation of c-Jun NH2-terminal kinase (Sreenivasan et al., 2003;

Sreenivasan et al., 2006). In an evaluation of the role of both

oleandrin and PBI-05204 to affect the human innate immune

system, we used an in vitro model of human peripheral blood

mononuclear cells to document effects under three different culture

conditions: normal, challenged with the viral mimetic polyinosinic:

polycytidylic acid Poly I:C, and inflamed by lipopolysaccharide
Frontiers in Animal Science 07
(LPS). Both PBI-05204 and oleandrin directly activated Natural

Killer (NK) cells and monocytes and triggered increased production

of cytokines. Under viral mimetic challenge, PBI-05204 and

oleandrin enhanced the Poly I:C-mediated immune activation of

monocytes and NK cells and enhanced production of IFN-g. Under
inflammatory conditions, many cytokines were controlled at similar

levels as in cultures treated with PBI-05204 and oleandrin without

inflammation (Jensen et al., 2023). The results show that PBI-05204

and oleandrin directly activate innate immune cells, enhance anti-

viral immune responses through NK cell activation and IFN-g
levels, and modulate immune responses under inflamed conditions.

A limitation to the present study is that only a single

representative variant of each virus was investigated. The data

suggest, however, that due to multiple mechanisms of antiviral

activity as well that the data may be applicable to additional variants

present currently or those to arise in the future. Vaccines are

targeted to specific viral variants and rarely afford broad

protection against a broad array of viral species. Fortunately, the

broader antiviral potential of selected plants and their isolated

natural compounds is now appreciated (Akram et al., 2018; Ben-

Shabat et al., 2020; Adhikari et al., 2021; de Oliveira et al., 2022).

The broad antiviral activities of oleandrin against viruses affecting

bovine health as well as those demonstrating adverse health of

humans would suggest that it, and appropriately defined and

characterized extracts containing this molecule, might very well

offer broad viral variant protection.

Like most compounds that are used for therapeutic effect, CGs

including oleandrin can be toxic at certain concentrations or doses.

While in vivo pilot studies of PBI-05204 and related products

prepared from N. oleander in pigs have yet to be carried out,

human clinical trials with PBI-05204 have shown that it can be

safely administered to cancer patients without serious adverse

consequences (Hong et al., 2014; Roth et al., 2020). The

documented plasma concentrations of oleandrin achieved in these
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FIGURE 4

Oleandrin significantly inhibits progeny virus infectivity in PEDV infected cultures. Vero 76 cells were pretreated with pure oleandrin (A) or PBI-05204
(B), both at 50 ng/ml. The culture supernatants collected at 24h and 48h after infection with PEDV were analyzed for relative infectivity of the virus
produced, and the TCID 50 values were plotted. Significance of change in cultures treated with 50 ng/ml oleandrin, relative to no oleandrin (0 ng/
ml) was calculated using a 2-way ANOVA with Turkey’s multiple comparisons test. The p values of <0.05 (*) and <0.00005 (****) are shown. Also
shown are fold change values for cultures treated vs untreated. Thus, oleandrin effectively inhibited infection of three different viruses of interest to
porcine health.
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clinical trials believed to be important for elimination of malignant

cell proliferation are significantly higher than the low

concentrations shown in the present study to be effective for virus

control. It is of obvious importance to carry out full toxicology

studies in appropriate pig populations including piglets and sows.

Such studies are currently being planned.
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